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Lattice Boltzmann model for the convection-diffusion equation
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We propose a lattice Boltzmann (LB) model for the convection-diffusion equation (CDE) and show that the
CDE can be recovered correctly from the model by the Chapman-Enskog analysis. The most striking feature
of the present LB model is that it enables the collision process to be implemented locally, making it possible
to retain the advantage of the lattice Boltzmann method in the study of the heat and mass transfer in complex
geometries. A local scheme for computing the heat and mass fluxes is then proposed to replace conventional
nonlocal finite-difference schemes. We further validate the present model and the local scheme for computing
the flux against analytical solutions to several classical problems, and we show that both the model for the CDE
and the computational scheme for the flux have a second-order convergence rate in space. It is also demonstrated
the present model is more accurate than existing LB models for the CDE.
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I. INTRODUCTION

The convection-diffusion or advection-diffusion equation
is widely used to describe transport phenomena where heat,
mass, and other physical quantities are transferred due to the
diffusion and advection processes [1]. The equation is given
by

∂φ

∂t
+ ∇ · (φu) = ∇ · (D∇φ) , (1)

where φ represents a scalar variable and is a function of
both time and space, D is the diffusion coefficient. u is the
velocity and governed by the incompressible Navier-Stokes
(N-S) equations:

∇ · u = 0, (2)

∂u
∂t

+ u · ∇u = − 1

ρ
∇P + ν∇2u + a, (3)

where P is the pressure, ρ is the fluid density, ν is the kinematic
viscosity, and a is the acceleration due to external force.

To reveal transport phenomena governed by the CDE, the
best way is to obtain an exact solution with a suitable analytical
method, but it has proven very difficult as the velocity in
the CDE is coupled with the N-S equations (2) and (3).
For this reason, many numerical approaches, including the
finite-difference, finite-volume, and finite-element methods,
have been developed [2–4]. However, these methods are
challenging in the study of the mass or heat transfer in a
complex geometry (e.g., porous media).

The lattice Boltzmann method (LBM), as a kinetic-based
numerical method, has made a great progress in the study
of fluid flows for its advantage in dealing with complex
boundaries [5–9], and has also been extended to solve the
CDE [10–22]. Dawson et al. [10] first applied the LBM to the
study of solvent flow where an LB model was used to solve
the N-S equations for fluid flow, while another was adopted to
solve the CDE for the concentration field; the method has also
been extended to investigate thermal flows [11]. To improve the
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efficiency of the LBM for CDE, van der Sman and Ernst [12]
developed an LB model with irregular lattices, which may be
more efficient for some special physical problems. In addition,
they also compared the LBM with some traditional methods
(finite-difference and finite-element methods) and found that
the LBM had a comparable performance with these traditional
approaches. Shi and co-workers [13,14] proposed a new LB
model for the CDE with a source term; unlike some previous
models, an additional term is included in this model such
that the CDE with a source term can be recovered. Zhang
et al. [15] constructed an LB model for the anisotropic CDE in
which the Bhatnagar-Gross-Krook (BGK) collision operator
and a directionally dependent relaxation time for each pair
distribution function with opposite discrete velocities are used.
However, as pointed out by Ginzburg [16], this BGK-typed LB
model cannot have a mass conserving equilibrium distribution
function once the relaxation times differ with each other.
To overcome this problem inherent in the BGK-typed LB
model, the two-relaxation-time and multiple-relaxation-time
LB models have also been proposed in a more general way
to solve the anisotropic CDE [16–19]. Although many LB
models have been proposed for the CDE, the Chapman-Enskog
analysis shows that the CDE can only be recovered exactly
from these models under some unrealistic assumptions (e.g.,
the velocity must be a constant). However, these assumptions
adopted in these previous works may not be satisfied in practice
and also influence the accuracy of the lattice Boltzmann
model [20]. Generally speaking, there are two possible ways
that can be used to eliminate constrains of the assumptions
adopted in these available LB models. The first is to add
a source term in the evolution equation of the LB model
such that the CDE can be recovered correctly [20]. Chopard
et al. [20] used this method to construct an LB model for CDE,
in which a time-derivative or space-derivative term is added
in the evolution equation, and found that the model with the
space-derivative term is more accurate. However, the collision
process of the model with the space-derivative term cannot
be implemented locally (here the word “local” means that the
computation of a physical variable at one point only depends
on the information of this point) since a finite-difference
scheme is needed to compute the space-derivative term, which
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not only affects the computational efficiency of the lattice
Boltzmann method, but also gives rise to some difficulties
in adopting a local scheme to treat the boundary condition
of the CDE. The other is to construct an LB model with a
modified evolution equation (without adding a source term
in the evolution equation) to ensure that the unwanted terms
in the previous models can be eliminated completely [21,22].
However, the collision process cannot yet be performed locally,
and thus the problems mentioned above still remain.

To address the above mentioned problems in previous LB
models for the CDE, this work reports a new LB model that
makes use of a modified equilibrium distribution function and
the evolution equation with a source term. The Chapman-
Enskog analysis shows that the CDE can be recovered exactly
from the new model. More importantly, the model enables the
collision process to be implemented locally. In the following,
we present the model first, followed by the Chapman-Enskog
analysis to recover the CDE. With this model, we then
present a local scheme, instead of the traditionally nonlocal
finite-difference schemes, to compute the heat and mass fluxes.
Finally, some numerical examples are carried out to test the
present model and the scheme in computing the flux. The
numerical results show that both the present model for CDE
and the local scheme in computing the flux have a second-order
convergence rate in space.

II. MODEL DEVELOPMENT

The lattice Boltzmann method can be viewed as a meso-
scopic numerical approach for computational fluid dynamics
[7] and a general solver to some special partial differential
equations [23–26]. Based on the collision operator, the models
of LBM can be classified into three groups: the single-
relaxation-time model (or so-called BGK model) [27], the two-
relaxation-time model [28], and the multiple-relaxation-time
model [29,30]. In this work, the BGK model is considered for
its simplicity and high computational efficiency. The evolution
equation of the BGK model for the CDE, given by Eq. (1), can
be written as [20]

φi (x + ciδt,t + δt) − φi (x,t)

= − 1

τφ

[
φi(x,t) − φ

(eq)
i (x,t)

] + Ri (x,t) , (4)

which includes the two separate steps, i.e., collision and
propagation,

Collision : φ+
i (x,t) = φi(x,t) − 1

τφ

[
φi(x,t) − φ

(eq)
i (x,t)

]
+Ri(x,t), (5)

Propagation : φi (x + ciδt,t + δt) = φ+
i (x,t) , (6)

where φi (x,t) and φ+
i (x,t) are the distribution function and

postcollision distribution function associated with velocity ci

at position x and time t , and τφ is the dimensionless relaxation
time. φ

(eq)
i (x,t) is local equilibrium distribution function and

defined by

φ
(eq)
i = wiφ

[
1 + ci · u

c2
s

+ (ci · u)2

2c4
s

− u · u
2c2

s

]
+ λi

φP

ρ0c2
s

, (7)

where ρ0 is the average value of the fluid density ρ, and wi and
λi are weight coefficients and satisfy the following conditions:∑

i

wi = 1,
∑

i

λi = 0,

∑
i

wici,α =
∑

i

λici,α = 0,

∑
i

wici,αci,β =
∑

i

λici,αci,β = c2
s δαβ, (8)

∑
i

wici,αci,βci,γ =
∑

i

λici,αci,βci,γ = 0,

∑
i

wici,αci,βci,γ ci,θ =
∑

i

λici,αci,βci,γ ci,θ = αβγ θ ,

where αβγ θ = δαβδγ θ + δαγ δβθ + δαθ δβγ , δαβ is the Kro-
necker delta with two indices. For simplicity but without
the loss of generality, the weight coefficient λi is set as
λ0 = −∑

i �=0 λi , λi = wi (i �= 0). ci is the discrete velocity
and can be found in some published works (e.g., Ref. [27]). Ri

is the source term and given by

Ri (x,t) = wi

(
1 − 1

2τφ

)
δt

ci · (P∇φ/ρ0 + φa)

c2
s

. (9)

Based on mass conservation and Eq. (8), φi and φ
(eq)
i should

satisfy the following equations:

φ =
∑

i

φi =
∑

i

φ
(eq)
i , (10)

φu =
∑

i

ciφ
(eq)
i . (11)

It should be noted that a linear equilibrium distribution
function has also been widely used in previous LB models
for CDE [11,15,16,20], which, however, leads to a numerical
diffusion coefficient in the recovered CDE [16,20]. As the
numerical diffusion coefficient is proportional to the square
of the velocity, the LB model with the linear equilibrium
distribution function will result in lager errors in solving the
CDE [20].

We now perform the Chapman-Enskog analysis to derive
the CDE from the present model. To this end, we first expand
the distribution function φi , the derivatives of time and space,
and the acceleration a as [6,32]

φi = φ
(0)
i + εφ

(1)
i + ε2φ

(2)
i + · · · , (12a)

∂

∂t
= ε

∂

∂t1
+ ε2 ∂

∂t2
, (12b)

∇ = ε∇1, (12c)

a = εa1. (12d)

Appling the Taylor expansion to Eq. (4), we obtain

δt

(
∂

∂t
+ ci · ∇

)
φi + δt2

2

(
∂

∂t
+ ci · ∇

)2

φi

= − 1

τφ

[
φi − φ

(eq)
i

] + Ri. (13)

063309-2



LATTICE BOLTZMANN MODEL FOR THE CONVECTION- . . . PHYSICAL REVIEW E 87, 063309 (2013)

Substituting Eqs. (12) into Eq. (13), one can derive the zero-, first-, and second-order equations in ε as

ε0 : φ
(0)
i = φ

(eq)
i , (14a)

ε1 :

(
∂

∂t1
+ ci · ∇1

)
φ

(0)
i = − 1

τφδt
φ

(1)
i + wi

(
1 − 1

2τφ

)
ci · (P∇1φ/ρ0 + φa1)

c2
s

, (14b)

ε2 :
∂φ

(0)
i

∂t2
+

(
∂

∂t1
+ ci · ∇1

)
φ

(1)
i + δt

2

(
∂

∂t1
+ ci · ∇1

)2

φ
(0)
i = − 1

τφδt
φ

(2)
i . (14c)

From Eqs. (14a) and (14b) one can easily obtain ∑
i

φ
(k)
i = 0, k � 1, (15)

∑
i

ciφ
(1)
i = −τφδt

[
∂ (φu)

∂t1
+ ∇1 ·

(
φc2

s I + φuu + P

ρ0
φI

)
−

(
1 − 1

2τφ

)
(P∇1φ/ρ0 + φa1)

]
, (16)

where Eqs. (8) and (10) have been used.
Multiplying the operator ∂/∂t1 + ci · ∇1 on both sides of Eq. (14b), and substituting the result into Eq. (14c), we have

ε2 :
∂φ

(0)
i

∂t2
+

(
∂

∂t1
+ ci · ∇1

) (
1 − 1

2τφ

)[
φ

(1)
i + δtwi

ci · (P∇1φ/ρ0 + φa1)

2c2
s

]
= − 1

τφδt
φ

(2)
i . (17)

Summing Eqs. (14b) and (17) over i, and utilizing Eqs. (15) and (16), one can obtain the first- and second-order recovered
equations in ε as

ε1 :
∂φ

∂t1
+ ∇1 (φu) = 0, (18a)

ε2 :
∂φ

∂t2
+ ∇1 ·

{(
1 − 1

2τφ

)
(−τφδt)

[
∂(φu)

∂t1
+ ∇1 ·

(
φc2

s I + φuu + P

ρ0
φI

)
−

(
1 − 1

2τφ

)(
P∇1φ/ρ0 + φa1

)]}

+ δt

2
∇1 ·

[(
1 − 1

2τφ

)
(P∇1φ/ρ0 + φa1)

]
= 0. (18b)

Based on the first-order incompressible Navier-Stokes equa-
tions in ε [31],

ε1 :
∂u
∂t1

+ u · ∇1u = − 1

ρ0
∇1P + a1, (19)

Eq. (18b) can be rewritten as

ε2 :
∂φ

∂t2
− ∇1 · (D∇1φ) = 0, (20)

where Eq. (18a) has been used. By combining the results at t1
and t2 scales, i.e., Eqs. (18a) and (20), we recover the CDE as

∂φ

∂t
+ ∇ · (φu) = ∇ · [D∇φ], (21)

where D is the diffusion coefficient and given by

D = c2
s

(
τφ − 1

2

)
δt. (22)

The above Chapman-Enskog analysis clearly shows that
the CDE can be recovered correctly from the present model,
in which a modified equilibrium distribution function and an
additional source term are used. We note that the models
proposed by Chopard et al. [20] and Zheng et al. [22] can
also be used to recover the CDE, but a problem within the
previous models is that the collision processes cannot be
implemented locally. To ensure the collision process [Eq. (5)]
of the present model to be performed locally, a local scheme,

given by Eq. (31), is proposed to compute the gradient term
∇φ appearing in the source term Ri [see Eq. (9)].

In addition to the lattice Boltzmann model for the CDE, we
also need another lattice Boltzmann model to solve the N-S
equations (2) and (3). In the present work, the model proposed
by He and Luo [31] is adopted since it is more accurate in the
study of incompressible flows. Similar to Eq. (4), the evolution
of the model reads

fi(x + ciδt, t + δt) − fi(x,t)

= − 1

τf

[
fi(x,t) − f

(eq)
i (x,t)

] + Fi(x,t), (23)

Where fi(x,t) is the distribution function, and f
(eq)
i (x,t) is the

equilibrium distribution function and defined as

f
(eq)
i = wi

{
ρ + ρ0

[
ci · u
c2
s

+ (ci · u)2

2c4
s

− u · u
2c2

s

]}
, (24)

where the average fluid density ρ0 is set to be 1.0 for simplicity.
Fi is the forcing term and given by Ref. [32]

Fi (x,t) = wi

(
1 − 1

2τφ

)
δt

[
ci − u

c2
s

+ (ci · u)

c2
s

ci

]
· (ρ0a) .

(25)
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The macroscopic density and velocity can be obtained from

ρ =
∑

i

fi, (26)

u = 1

ρ0

∑
i

cifi + δt

2
a. (27)

Through the Chapman-Enskog expansion, we can obtain the
incompressible N-S equations (2) and (3) with the kinematic
viscosity ν = c2

s (τf − 1/2)δt .

III. A LOCAL SCHEME FOR THE HEAT AND
MASS FLUXES

As discussed in Sec. I, in developing LB models for the
CDE, many previous investigators focused on the accuracy
and convergence rate of the model in describing the scalar
variable φ [12–21]. More recently, the heat or mass flux,
as another important physical variable, has also received
increasing attention in predicting effective physical properties
of porous media [33]. However, to our knowledge, there is no
a special discussion on this topic in the framework of LBM.
To fill the gap, we provide a local scheme, instead of the
traditionally nonlocal finite-difference schemes, to compute
the heat and mass fluxes and perform a numerical study on the
convergence rate of the scheme.

A general mathematical definition of the heat or mass flux
(J) can be given as

J = −D∇φ + φu. (28)

Based on the results reported elsewhere [6,7,34], both the
scalar variable φ and velocity u have a second-order accuracy
in space, and thus the flux should have a first-order convergence
rate according to Eq. (28). However, as shown below, the flux
can be computed from the nonequilibrium part of the distri-
bution function with a second-order convergence rate, which
is similar to the computation of the strain rate tensor or shear
stress in the LBM [35,36].

Substituting Eq. (19) into Eq. (16), one can obtain∑
i

ciφ
(1)
i = −τφδt

[(
P

2τφρ0
+ c2

s

)
∇1φ + φa1

2τφ

]
, (29)

from which we can further derive the expression of ∇1φ:

∇1φ = −2
∑

i ciφ
(1)
i + δtφa1

δt
(
P/ρ0 + 2τφc2

s

) . (30)

Multiplying ε on both sides of Eq. (30) and utilizing the
relation εφ

(1)
i ≈ φi − φ

(eq)
i (we note that this approximation

has been widely used to calculate the strain rate tensor or
shear stress in the LBM [35,36]), we can obtain the following
scheme to compute the gradient term ∇φ:

∇φ = −2
∑

i ci

[
φi − φ

(eq)
i

] + δtφa

δt
(
P/ρ0 + 2τφc2

s

) . (31)

It is clear that Eq. (31) is a local scheme in the computation
of the gradient term ∇φ without adopting any finite-difference
schemes. Substituting Eq. (31) into Eq. (9), we can also give
a local scheme to compute the source term Ri so that the
collision process of the present LB model can be implemented

locally. In addition, substituting Eq. (31) into Eq. (28), one can
derive a local scheme to compute the flux:

J = D
2
∑

i ci

[
φi − φ

(eq)
i

] + δtφa

δt
(
P/ρ0 + 2τφc2

s

) + φu. (32)

Here we would like to point out that, in the same way as the
computation of the shear stress and strain rate tensor [35,36],
the flux can also be calculated by the nonequilibrium part of
the distribution function. Certain remarks on some schemes
for computing the flux are given below:

Remark I: In the standard LB model for the CDE [10,34],
we can also use the nonequilibrium part of the distribution
function to derive the computational scheme for the flux,

J = D

∑
i ci

[
φi − φ

(eq)
i

] + δtτφφ (a − ∇P/ρ0)

δtτφc2
s

+ φu,

(33)

which, however, cannot be computed locally. This is because,
in the framework of LBM, only the pressure, rather than the
pressure gradient term ∇P , can be computed directly based
on the relationship between the density and pressure. For this
reason, an additional finite-difference scheme is needed to
compute the pressure gradient term ∇P .

Remark II: In the corrected model proposed by Chopard
et al. [20], one can also obtain a similar scheme for computing
the flux,

J = D
2
∑

i ci

[
φi − φ

(eq)
i

] + δtφ (a − ∇P/ρ0)

2δtτφc2
s

+ φu. (34)

Like Eq. (33), Eq. (34) is also a nonlocal scheme for computing
the flux, as an additional finite-difference scheme to compute
pressure gradient term ∇P is also needed.

Remark III: For a pure diffusion process, i.e., the velocity
u is zero, there is no flow field effect on the scalar variable
φ. For this reason, the physical variables related to flow field,
including the pressure P and acceleration a, can be chosen
arbitrarily, and set to be zero for simplicity. Thus we can obtain
a simple local scheme for the flux,

J =
(

1 − 1

2τφ

) ∑
i

ci

[
φi − φ

(eq)
i

]
, (35)

which can also be derived from Eqs. (33) and (34).

IV. RESULTS AND DISCUSSION

To test the accuracies of the present model for CDE and the
local scheme for computing the flux, this section presents some
benchmark examples, including a one-dimensional periodic
problem, the problem of diffusion in the Couette flow with
wall injection, and the problem of diffusion in the Poiseuille
flow. In simulations, the following convergent criterion was
used for a steady problem to ensure that the numerical results
reach steady state:∑

x |φ (x,t) − φ (x,t − 100δt)|∑
x |φ (x,t)| < 1.0 × 10−8. (36)

To test the convergence rate of the present model for CDE
and the local scheme for the flux, the relative error (E) is
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FIG. 1. The distributions of scalar variable φ (a) and the flux J
(b) (Pe = 1).

used,

Eθ =
∑

x |θa (x,t) − θn (x,t)|∑
x |θa (x,t)| , (37)

where θ represents the scalar variable φ or one of elements
of the flux J, and the subscripts a and n denote the analytical
and numerical solutions. Unless otherwise stated, the half-way
anti-bounce-back and bounce-back schemes are used to treat
the boundary conditions of CDE and N-S equations since they
are both local schemes and have a second-order convergence
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Analytical [Eq. (41)]

(b)

FIG. 2. The distributions of scalar variable φ (a) and the flux J
(b) (Pe = 10).

rate in space [34,37]. In addition, it is also known that the
lattice Boltzmann method is a second-order accurate approach
in the study of fluid flows [6,7,37], and thus we focus only
on the results of present model for CDE and the scheme in
computing the flux and do not present any results of LB model
for fluid flows.

A. Numerical validations

To validate the present model for the CDE and the
scheme for computing flux, we performed simulations of a

TABLE I. Relative errors of the scalar variable φ and flux J with different relaxation times and Peléct numbers.

Eφ EJ

τφ Pe = 1 Pe = 10 Pe = 1 Pe = 10

0.51 1.727 × 10−3 1.736 × 10−3 1.019 × 10−3 1.190 × 10−3

0.8 1.570 × 10−3 1.819 × 10−3 8.659 × 10−4 1.404 × 10−3

1.2 8.247 × 10−4 1.425 × 10−3 9.814 × 10−5 1.867 × 10−3

3.0 1.175 × 10−2 8.850 × 10−3 1.222 × 10−2 1.226 × 10−2
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FIG. 3. The relative errors of scalar variable φ and flux J at
different times.

one-dimensional periodic problem, diffusion in the Couette
flow with wall injection, and diffusion in the Poiseuille flow,
and compared the numerical results with the corresponding
analytical solutions.

1. A one-dimensional periodic problem

We first use a one-dimensional problem with a periodic
geometry size L to validate the present model for CDE and the
local scheme in computing the flux. For this simple problem,
one can derive its analytical solution under some suitable initial

x

y

O

H

u=(u0, v0)

u=(0, v0)

φ =φ 1

φ =φ 0

FIG. 4. Schematic of diffusion in the Couette flow with wall
injection.

and boundary conditions [20],

φ(x,t) = φ0 + φ1e
−kD2t

{
cos(kx) cos

[
u0k

ζ
sin(ζ t)

]

+ sin(kx) sin

[
u0k

ζ
sin(ζ t)

]}
, (38)

u(t) = u0 cos(ζ t), (39)

where ζ = 2π , k = 2π/L, u0, φ0 and φ1 are some constants;
the acceleration a and the pressure gradient ∇P are given by

a = −u0ζ sin (ζ t) , ∇P = 0. (40)

From the above Eqs. (38) and (39) we can also obtain the exact
solution of the flux,

J = −D∇φ + φu = φ0u0 cos(ζ t) + φ1e
−kD2t

×
{

[kD sin(kx) + u0 cos(ζ t) cos(kx)] cos

[
u0k

ν
sin(ζ t)

]

+ [u0 cos (ζ t) sin (kx) − kD cos (kx)] sin

(
u0k

ν
sin(ζ t)

)}
.

(41)

In simulations, the D1Q3 model (a one-dimensional model
with there discrete velocities) in the lattice Boltzmann method
is used. The simulations are suspended after running one period
T = 1/ζ = Ntδt = 1/2π with Nt representing the time steps
in one period. The parameters L, u0, and φ1 are fixed to be 1.0,
while φ0 is set to be 0. The numerical results at different Peléct
numbers (Pe = Lu0/D) and relaxation times are presented in
Figs. 1 and 2. The results were obtained with a lattice size 64,
which is fine enough to derive the accurate results. As seen
from these two figures, the numerical results of scalar variable
φ and the flux J are in good agreement with the corresponding
analytical solutions.

To quantitatively evaluate the difference between numerical
results and the analytical solution, we compute the relative

TABLE II. Relative errors of the scalar variable φ and flux J with different relaxation times and Peléct numbers.

Eφ EJx
EJy

τφ Re = 10, Pe = 1 Re = 10, Pe = 10 Re = 10, Pe = 1 Re = 10, Pe = 10 Re = 10, Pe = 1 Re = 10, Pe = 10

0.8 6.771 × 10−5 1.859 × 10−3 1.861 × 10−3 3.793 × 10−3 2.559 × 10−5 1.585 × 10−2

1.0 6.891 × 10−5 2.071 × 10−3 2.930 × 10−3 6.686 × 10−3 1.560 × 10−5 9.689 × 10−3

1.2 7.070 × 10−5 2.923 × 10−3 4.134 × 10−3 9.640 × 10−3 6.239 × 10−7 2.984 × 10−4

1.5 7.452 × 10−5 4.928 × 10−3 6.252 × 10−3 1.470 × 10−2 3.120 × 10−5 1.998 × 10−2
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errors [Eq. (37)] at different Peléct numbers and relaxation
times and present the results in Table I. As seen from this
table, the results with a smaller relaxation time (τφ = 0.51) are
comparable to those with the relaxation time near unity, which
is similar to the results on shear stress [35]. However, a larger
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FIG. 5. The distributions of scalar variable φ (a) and the flux J
(b),(c) along the y direction (Re = 10, Pe = 1).

error will be obtained if the relaxation time is much larger
than unity (τφ = 3.0). Based on these results, we can conclude
that, to derive more accurate results, the relaxation time used
in simulation cannot be much larger than unity.
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FIG. 6. The distributions of scalar variable φ (a) and the flux J
(b),(c) along the y direction (Re = 10, Pe = 10).
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TABLE III. Relative errors of the scalar variable φ and flux J with different relaxation times and Peléct numbers.

Eφ EJx
EJy

τφ Re = 10, Pe = 1 Re = 10, Pe = 6 Re = 10, Pe = 1 Re = 10, Pe = 6 Re = 10, Pe = 1 Re = 10, Pe = 6

0.8 4.732 × 10−13 4.643 × 10−11 4.445 × 10−4 3.665 × 10−4 1.753 × 10−12 7.276 × 10−11

1.0 2.337 × 10−13 1.975 × 10−11 5.937 × 10−4 3.998 × 10−4 1.179 × 10−12 3.107 × 10−11

1.2 1.341 × 10−13 1.119 × 10−11 7.919 × 10−4 4.838 × 10−4 1.253 × 10−12 1.757 × 10−11

1.5 6.988 × 10−14 6.144 × 10−12 1.269 × 10−3 8.074 × 10−4 3.620 × 10−13 9.654 × 10−12

3.0 9.913 × 10−15 1.174 × 10−12 5.502 × 10−3 5.680 × 10−3 2.259 × 10−14 1.847 × 10−12

5.0 6.584 × 10−15 2.653 × 10−13 1.407 × 10−2 1.920 × 10−2 1.610 × 10−14 4.168 × 10−13

In addition, we note that this problem is time dependent, and
thus it is necessary to test the error variation with the increase
of time. To this end, the relative errors of scalar variable φ

and flux J at different times (t) are calculated and presented in
Fig. 3 where Pe = 1. As seen from this figure, the relative errors
of the case with a larger relaxation time (τφ = 3.0) increase
faster in time, while there are no apparent increases for other
cases. The similar results are also observed for the case of
Pe = 10.

2. The diffusion in the Couette flow with wall injection

The second tested problem is diffusion in the Couette flow
with wall injection, the schematic of the problem is shown
in Fig. 4, where the top and bottom walls move at different
velocities u0 and 0 in x direction, and simultaneously, a vertical
velocity v0 is injected at both walls.

This problem has the following analytical solutions of
velocity u = (ux,uy) and φ [34]:

ux = u0

(
eRe y

H − 1

eRe − 1

)
, (42)

uy = v0, (43)

φ = φ0 + (φ1 − φ0)

(
ePe y

H − 1

ePe − 1

)
, (44)

where φ0 and φ1 are values of the scalar variable φ on
the bottom and top walls, and H is the height of the two-
dimensional channel. Re and Pe represent the Reynolds and
Peléct numbers and are defined by

Re = Hv0

ν
, Pe = Hv0

D
. (45)

Based on Eqs. (42)–(45), we can also derive the analytical
solution of the flux J = (Jx,Jy):

Jx = −D
∂φ

∂x
+ φux

= u0

(
eRe y

H − 1

eRe − 1

)[
φ0 + (φ1 − φ0)

(
ePe y

H − 1

ePe − 1

)]
, (46)

Jy = −D
∂φ

∂y
+ φuy = ν0

(
φ0 − φ1 − φ0

ePe − 1

)
. (47)

Several numerical experiments were performed with the
D2Q9 model (a two-dimensional model with nine discrete
velocities), and the parameters u0, v0, φ0, φ1, and H used in
simulations were set as u0 = v0 = 0.01, φ0 = 0, φ1 = 1, and
H = 1. We present the simulation results at different Peléct
numbers in Figs. 5 and 6, in which the periodic boundary
condition is applied in the horizontal direction, and the lattice
size is 64 × 64. As shown in these figures, the numerical
results agree well with analytical ones, which indicates that
the present model and scheme are accurate in solving CDE
and computing the flux. However, we also find that, similar to
the lattice BGK model for fluid flows [37], the relaxation time
also influences the numerical results of this problem. Although
the maximum relative error is rather small, and the value is
less than 2%, an obvious deviation between the numerical and
analytical results can be observed, as shown in Fig. 6(c). We
also present a quantitative comparison between the numerical
results and analytical solution in Table II, where the relative
errors [Eq. (37)] at different Peléct numbers and relaxation
times are computed. As shown in this table, the results with
different relaxation times are comparable to each other. It is
also found that the relative errors increase with the increase
of the Peléct number; this may be due to the fact that the
convection effect is more predominant at a larger Pe, which
usually brings larger errors in simulations.

TABLE IV. Relative errors of the scalar variable φ and flux J with different relaxation times and Peléct numbers.

Eφ EJx
EJy

τφ Re = 10, Pe = 10 Re = 10, Pe = 100 Re = 10, Pe = 10 Re = 10, Pe = 100 Re = 10, Pe = 10 Re = 10, Pe = 100

0.8 3.448 × 10−7 4.157 × 10−7 2.525 × 10−4 1.711 × 10−2 5.416 × 10−7 6.529 × 10−7

1.0 2.063 × 10−7 2.507 × 10−7 2.473 × 10−4 4.816 × 10−2 2.240 × 10−7 3.936 × 10−7

1.2 1.453 × 10−7 1.711 × 10−7 8.043 × 10−4 9.473 × 10−2 2.282 × 10−7 2.688 × 10−7

1.5 9.471 × 10−8 1.196 × 10−7 2.011 × 10−3 1.937 × 10−1 1.487 × 10−7 1.879 × 10−7

3.0 2.952 × 10−8 4.357 × 10−8 1.444 × 10−2 1.213 × 100 4.636 × 10−8 6.843 × 10−8

5.0 1.419 × 10−8 2.015 × 10−8 4.757 × 10−2 3.929 × 100 2.229 × 10−8 3.614 × 10−8
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3. The diffusion in the Poiseuille flow

At last, the problem of the diffusion in the Poiseuille
flow is also used to test the present model for CDE and
the local scheme for the flux. For this problem, the flow in
the two-dimensional channel is driven by an external force
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FIG. 7. The distributions of scalar variable φ (a) and the flux J
(b),(c) along the y direction (Re = 10, Pe = 1).

F = ρa = ρ(ax,0) with constant density ρ and acceleration
a, and assumed to be periodic in horizontal direction. H

is the height of the channel, φ0 and φ1 are the scalar
variable φ at the top and bottom walls. Based on these
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boundary conditions, we can obtain theoretical solutions of the
problem:

ux = axH
2

2ν

y

H

(
1 − y

H

)
, (48)

uy = 0, (49)

φ = φ0 + (φ1 − φ0)
y

H
, (50)

Jx = φux = axH
2

2ν

y

H

(
1 − y

H

)[
φ0 + (φ1 − φ0)

y

H

]
, (51)

Jy = −D
∂φ

∂y
= − (φ1 − φ0)

D

H
. (52)

Similar to the Problem 2, the Reynolds number and Peléct
number are used and defined as

Re = Hu0

ν
, Pe = Hu0

D
, (53)
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FIG. 9. The relative errors of scalar variable φ (a) and the flux
J (b) at different lattice sizes (δx = 1/16, 1/32, 1/64, 1/96, 1/128,
1/192, and 1/256) (Pe = 1). The slope of the inserted line is 2.0,
which indicates the model for CDE and the scheme in computing
flux have a second-order convergence rate.

where u0 is the maximum velocity and given by u0 =
axH

2/8ν. After several algebraic manipulations, one can find
that the Peléct number does not affect the solutions of scalar
variable φ and flux Jx [Eqs. (50) and (51)], but it influences
the solution of flux Jy .

We also used the D2Q9 model to carry out several
simulations at different Peléct numbers and relaxation times;
the numerical results are shown in Figs. 7 and 8. From these
figures we can find that the numerical results agree well with
analytical solutions. A quantitative study on the deviation
between the numerical results and analytical solutions
was also performed; the relative errors at different Peléct
numbers and relaxation times were calculated and presented in
Tables III and IV. As seen from these tables, it is found that the
numerical results of scalar variable φ and the flux Jy almost
match corresponding analytical solutions exactly, which is
consistent with the theoretical analysis on this problem [34].
In addition, we also find that the relative errors of scalar
variable φ and flux Jy decrease with the increase of relaxation
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FIG. 10. The relative errors of scalar variable φ (a) and the flux
J (b) at different lattice sizes (δx = 1/16, 1/32, 1/64, 1/96, 1/128,
1/192, and 1/256) (Pe = 10). The slope of the inserted line is 2.0,
which indicates the model for CDE and the scheme in computing flux
have a second-order convergence rate.
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time τg , but an opposite trend is observed for the flux Jx

when the relaxation time τg is no less that unity. This may be
because the velocity ux in the computation of flux Jx is related
to the relaxation time τf [37] and as a consequence depends
on the relaxation time τg based on the relationship Re/Pe =
(2τg − 1)/(2τf − 1).

From the above discussion one can conclude that the
relaxation time τg cannot be much larger in order to derive
more accurate results of scalar variable φ and flux J. In
addition, we also would like to point out that, as the present
lattice Boltzmann model and scheme are both second-order
methods for scalar variable φ and flux J, the numerical results
should be convergent to the linear φ and constant flux Jy

exactly. However, with an increase of Pe, the larger errors are
observed, which may be caused by the fact that the convection
effect predominates at a larger Pe. We also note that the errors
of scalar variable φ and flux Jy increase dramatically when Pe
is in the range from 1 to 10, while slowly as Pe is changed
from 10 to 100.
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FIG. 11. The relative errors of scalar variable φ (a) and the flux
Jx (b) at different lattice sizes (δx = 1/32, 1/64, 1/96, 1/128, 1/192,
1/256, and 1/320) (Re = 10, Pe = 1). The slope of the inserted line
is used to indicate convergence rates of the model for CDE and the
scheme in computing flux Jx .

B. The convergence rates of the present model for the
convection-diffusion equation and local scheme

for computing flux

To investigate the convergence rates of the present model
for CDE and the local scheme for computing the flux, the
one-dimensional periodic problem described above is first
used here since the boundary effect on numerical results can
be excluded. We computed the relative errors with different
lattice sizes and show the results in Figs. 9 and 10. As seen
from these figures, the present model for CDE is second-order
accurate, as expected; more interestingly, the scheme for
computing the flux also has a second-order convergence rate in
space. Besides, we can also find that the relaxation time has an
influence on the accuracy of the present model and the scheme
for flux, but it does not affect the second-order convergence
rate in space.

Although the results presented above clearly show that the
present model for CDE and the scheme in computing mass or
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FIG. 12. The relative errors of scalar variable φ (a) and the flux
Jx (b) at different lattice sizes (δx = 1/32, 1/64, 1/96, 1/128, 1/192,
1/256, and 1/320) (Re = 10, Pe = 10). The slope of the inserted line
is used to indicate convergence rates of the model for CDE and the
scheme in computing flux Jx .
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heat flux have a second-order convergence rate, the boundary
effect, which may affect the convergence rate of LBM, is not
included since the periodic problem is considered. To test the
boundary effect on convergence rates of the present model
for CDE and the scheme for flux, we studied the problem of
diffusion in the Couette flow with wall injection at different
lattice sizes and presented the results in Figs. 11 and 12. As
shown in these figures, the appearance of the boundary does
not influence the second-order convergence rate of the present
model for CDE in that the half-way anti-bounce-back scheme
is a second-order method for the boundary condition of CDE,
but it affects the convergence rate of the scheme for flux [see
Figs. 11(b) and 12(b)]. To see the boundary effect more clearly,
the local errors of the scalar variable φ (LEφ = |φa − φn|)
and flux Jx(LEJx

= |Jx,a − Jx,n|) were also computed and
presented in Fig. 13 where the lattice size and Peléct number
are fixed at 64 and 10. As seen from this figure, the larger local
errors are observed near the top boundary where the scalar
variable φ is not zero.
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FIG. 13. The distributions of local errors of scalar variable φ (a)
and the flux Jx (b) at different relaxation times.
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FIG. 14. The relative differences between errors of present and
the previous model [34].

C. A comparison between the present model and
previous models

The Chapman-Enskog analysis presented in Sec. II shows
that the present model can recover the CDE correctly, which
can be used to conclude that the present model should be more
accurate than the popular model adopted in some previous
works [10,34]. To confirm the above statement, a comparison
between the present model and the popular one used in
Ref. [34] was conducted, and the one-dimensional periodic
problem with the same parameters as those mentioned above is
used in simulations. In order to give a quantitative comparison
on the accuracies of these two models, the following relative
difference (RD) between errors of the present model and the
existing model is used:

RD = Eφ̄ − Eφ

Eφ

, (54)
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FIG. 15. The relative differences between errors of the present
model and previous model [20].
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FIG. 16. Schematic of natural convection in a square enclosure
with a heated circular cylinder.

where Eφ and Eφ̄ represent the relative errors of present model
and previous model. We present the relative differences at
different relaxation times and lattice sizes in Fig. 14 where

the Reynolds number and Peléct number are fixed to be 10
and 1. From this figure one can find that present model is more
accurate than the popular model used in Ref. [34] since the
relative differences are larger than zero.

We also would like to compare the present model with the
one proposed in Ref. [20] in Fig. 15. From this figure, one can
find that, similar to the results shown in Fig. 14, the present
model is also more accurate than the previous one [20]. And
additionally, it is also found that there is no apparent difference
between the results derived by the model proposed by Chopard
et al. [20] and those obtained by the popular model in Ref. [34].

D. An application of the present LB model: Natural convection
in a square enclosure with a heated circular cylinder

A major advantage of the present model over previous
models [20–22] is that the collision process can be conducted
locally, and consequently, a local scheme can be constructed
for the boundary conditions of CDE. To show the potential
of present model in the study of the heat and mass transfer
in complex geometries, the natural convection in a square
enclosure with a heated circular cylinder [38,39] was studied.
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FIG. 17. Isothermals at different Rayleigh numbers: (a) Ra = 103, (b) Ra = 104, (c) Ra = 105, (d) Ra = 106.
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FIG. 18. Streamlines at different Rayleigh numbers: (a) Ra = 103, (b) Ra = 104, (c) Ra = 105, (d) Ra = 106.

A schematic of the problem is shown in Fig. 16, where a
circular cylinder with a radius (R, R = 0.2L) and a high
temperature Th is located in the central of square enclosure
with length L and a low temperature Tc; a detailed description
on this problem can be found elsewhere [38,39].

In our simulations, the local boundary schemes, anti-
bounce-back and bounce-back schemes, are adopted to treat
the boundary conditions of temperature and flow fields; the
grid number is fixed to be 512 × 512, which is fine enough
to give grid-independence results. The Prandtl number (Pr =
ν/D) is set to be 0.71 corresponding to that of air, and the
Rayleigh number, defined by Ra = gβL3(Th − Tc)/νD, where
g and β are the gravitational acceleration and volume expan-
sion coefficient, is varied from 103 to 106. We present isother-
mals and streamlines in Figs. 17 and 18 and found that these
results agree well with those reported in the literature [38,39].

V. CONCLUSION

A problem within previous LB models for the CDE is that
the collision process cannot be implemented locally, which

not only influences the computational efficiency of the lattice
Boltzmann method, but also causes a difficulty in adopting
a local scheme to treat the boundary condition of the CDE.
This problem is solved by the new LB model proposed in
this work. Furthermore, the present LB model enables the
construction of a local scheme, instead of the traditionally
nonlocal finite-difference schemes, to compute the heat and
mass fluxes. The numerical validation exercises demonstrate
that both the present model for the CDE and the local scheme
for the flux have a second-order convergence rate in space. We
also compared the present model with previous models and
found that the model proposed in this work is more accurate
in solving CDE. The present work is expected to play an
important role in studying heat or mass transfer processes
with complex geometries.
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