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Statistical mechanics of the lattice sphere packing problem
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We present an efficient Monte Carlo method for the lattice sphere packing problem in d dimensions. We use
this method to numerically discover de novo the densest lattice sphere packing in dimensions 9 through 20. Our
method goes beyond previous methods, not only in exploring higher dimensions but also in shedding light on
the statistical mechanics underlying the problem in question. We observe evidence of a phase transition in the
thermodynamic limit d → ∞. In the dimensions explored in the present work, the results are consistent with a
first-order crystallization transition but leave open the possibility that a glass transition is manifested in higher
dimensions.
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The problem of identifying the highest density sphere
packing in d dimensions is a classical problem in geometry
with direct connections to fields of physics, information
theory, and mathematics. The case d = 3, for which Kepler
conjectured that the face-centered cubic lattice is optimal,
stood as an open problem for centuries before, finally, in 1998,
a proof was announced by Hales [1]. Aside from dimensions 2
and 3, the highest density is not known in any other dimension,
although it has been bounded to an extremely tight interval in
dimensions 8 and 24 [2].

The highest packing densities that have been obtained in
these dimensions, as in many others, are obtained by Bravais
lattices: periodic packings with one sphere in each unit cell.
From this point on, we use “lattice” to mean a Bravais lattice
unless a nontrivial basis is mentioned. When restricting the
sphere packing problem to lattices, many simplifications are
possible, and the problem becomes more tractable, but still far
from trivial. In fact, the densest lattice packings are known
in dimensions d � 8 and d = 24 [2,3]. The space of lattice
packings in d dimensions is finite-dimensional and much
simpler to study than the infinite-dimensional space of all
possible packings.

In fact, it is possible, in principle, to identify all local density
maxima in this space. Such lattices, called extreme lattices,
have been characterized by Voronoi in terms of their algebraic
properties. Voronoi showed that a lattice is extreme if and only
if it is perfect and eutactic [4]. Perfect lattices—those that are
fully determined by a list of their shortest vectors—are finite
in number, and Voronoi gave an algorithm that enumerates all
the perfect lattices in a given dimension. In dimensions d � 8,
the identity of the densest lattice packing has been established
by an exhaustive enumeration of the perfect lattices. Voronoi’s
algorithm relies on a method of obtaining, starting from any
perfect lattice, a set of neighboring perfect lattices. Voronoi
showed that this graph of neighbors is connected, so exploring
larger and larger neighborhoods of a single perfect lattice
would eventually uncover all perfect lattices.

However, as the number of perfect lattices grows rapidly in
dimensions d > 8, exhaustive enumeration becomes impracti-
cal, and other methods must be used to identify dense packings.
Analytic constructions based on groups, codes, and laminated
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lattices have been successful in producing very dense lattice
sphere packings in dimensions up to d = 24 and in certain
dimensions above [3]. While these methods have certainly
proved remarkably effective, they give little reason, on their
own, to believe that they have, in fact, produced the densest
possible structures.

For the latter purpose, in the absence of rigorous proofs
(as in d = 24) or tight bounds, we rely on numerical methods
that attempt to discover these structures de novo: without a
priori knowledge of their existence. It is only recently that
such methods were introduced that could tackle moderately
high dimensions. A method based on the “divide and concur”
framework for constraint satisfaction problems was used in
Ref. [5] to discover de novo the densest known lattices in
d � 14. In Ref. [6], Andreanov and Scardicchio implemented
a random walk on Voronoi’s graph, yielding a random sample
of perfect lattices. While their method was designed to explore
random perfect lattices and their statistics, they were also able
to use it for de novo discovery of the densest lattice packing.
In dimensions 8 � d � 12, their random sample included the
densest known lattice packing, while in dimensions 13 � d �
19, they had to bias their random steps toward higher density
configuration to recover the densest known packing. In d = 19,
only some of these biased walks ended up visiting the densest
known lattice. In Ref. [7], Marcotte and Torquato used a
sequential linear programming (SLP) approach to iteratively
compress a lattice configuration until it reaches a configuration
that cannot be compressed any more—an extreme lattice. This
procedure, starting from random initial conditions, reproduced
the densest known lattice in an appreciable portion of the runs
in each dimension d � 16. The percentage of runs yielding
the densest known lattice declines sharply starting at d = 17.
However, because each run can still be computed rapidly,
the procedure can be repeated many times and the densest
known lattice is produced at a decent rate for d � 19 (see
below for a direct comparison with the present method). Other
methods have been used for de novo searches in closely related
problems, such as the Gaussian-core soft-sphere ground-state
problem [8] and the lattice quantizer problem [9].

In this paper, we report on a Monte Carlo (MC) method
for studying the lattice sphere packing problem. Our method
is completely different from the references above, but some of
our results are surprisingly similar to the results of Refs. [6,7].
In particular, in each dimension d � 19, a simulated quasistatic
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compression discovers de novo the densest known lattice in
at least 30% of the runs. In 20 dimensions, only 1 of 50
quasistatic compression runs yielded the densest known lattice.
However, with a slight change in protocol, we were able to
reproduce the lattice in 7 of 50 runs. That three such disparate
methods all seem to start having serious difficulties in the
same dimensions raises the possibility that the lattice sphere
packing problem becomes intrinsically harder around d = 20.
We suggest possible reasons for such a scenario. Moreover,
because of the statistical mechanical nature of our method, we
are able to quantitatively characterize the intrinsic nature of
the lattice sphere packing problem apart from the behavior of
any specific method or algorithm for its solution.

A lattice can be specified by its generating matrix: the set
of all sphere centers is given by MTZd = {MT n : n ∈ Zd},
where M is a d × d matrix and its rows are generating vectors
(primitive vectors) of the lattice. While a generating matrix
uniquely specifies a lattice, a lattice has multiple generating
matrices: whenever Q is a unimodular integer matrix, M ′ =
QM generates the same lattice as M . A lattice is a packing
of radius-1/2 spheres (that is, its spheres do not overlap) if
||MT n||2 � 1 for all n ∈ Zd \ {0}. If this is the case, we say the
lattice is admissible. The number density of spheres is given by
1/v = 1/| det M|, where v denotes the unit cell volume. Any
lattice, generated by M , can be rotated so that its generating
matrix MU , where U is a rotation matrix, becomes lower-
triangular. Therefore, the space of lattices, modulo rotation,
can be parameterized by lower-triangular generating matrices.

We can define an isobaric ensemble on the space of
admissible lattices by weighting the probability of each lattice
by a factor exp(−pv), where p = NP/kBT is a reduced
pressure variable (cf. Ref. [10] for definitions of related
ensembles). If v is thought of as the energy associated with a
particular lattice, we can think of p as the inverse-temperature
(cf. Ref. [6], where log v is used as the energy). We can sample
this ensemble using a standard Metropolis algorithm: a random
element of the lower-triangular generating matrix is randomly
changed by a small amount; the step is rejected always if it
yields an inadmissible lattice and is rejected with probability
exp(−p�v) if the unit cell volume is increased by �v.
However, we find instead that it is more efficient to build the
detailed balance directly into the proposed steps instead of the
acceptance probability. Note that changes to the off-diagonal
elements of the matrix do not change the volume. Therefore,
these moves are always accepted if they produce admissible
lattices. For the diagonal elements, we propose changes

mii ←
(

1 + εx − 1
2ε2p

v

)
mii ,

where v = ∏d
j=1 mjj is the current volume, ε is a measure

of the typical move size, and x is drawn from a normal
distribution of unit variance. As with the off-diagonal moves,
the proposed moves are always accepted if they produce
admissible lattices. Note that the change in volume is given
by �v = �miiv/mii = εx − 1

2ε2p and is distributed with a
probability density of

1

ε
√

2π
exp

[
−

(
�v + 1

2ε2p
)2

2ε2

]
.

Therefore, an accepted move changing the volume by �v > 0
is less likely by a factor of exp(p�v) than the reverse move,
as required by detailed balance.

A crucial step in this MC algorithm is checking whether
a lattice is admissible. This is known to be an NP-complete
problem [11], and in fact it takes up most of the computational
time in our simulations. The complexity of this problem is
sensitive to the choice of generating matrix for a given lattice.
Generally speaking, the shorter and more orthogonal to each
other the generating vectors are, the easier the problem is of
determining admissibility of the lattice they generate. There
are many nonequivalent criteria for determining how well-
suited, or reduced, a certain set of generating vectors is. We
use Korkine-Zolotareff (KZ) reduction, which is one of the
most stringent of these criteria [12]. Such a stringent criterion is
warranted because of the large number of times we are required
to decide the admissibility of similar lattices. Therefore, during
our simulation we periodically perform KZ reduction, and thus
all the generating matrices we consider are either KZ-reduced
or nearly so. Detailed balance is violated by these reductions,
but we find that the reductions are rare enough in the key
stages of the simulations that they do not significantly hinder
thermalization.

Using our MC technique, we perform a simulated qua-
sistatic compression (a simulated annealing where pressure
takes the role of temperature). We start the system in a simple
hypercubic lattice Zd and equilibrate at a constant pressure.
We then start to increase the pressure by a constant factor after
each proposed move. We vary the typical move size inversely
with the pressure: ε = ε0/p. We use different move sizes for
off-diagonal and diagonal moves, and for both we pick ε0 so as
to achieve an average move acceptance rate of roughly 30%.
The length of the equilibration period is 4% of the length of
the compression period. The Gram matrix G = MMT of the
final matrix obtained in nearly all runs consists, up to small
errors, of small-denominator rational numbers. Therefore, we
can easily round off its entries to obtain the infinite pressure
limit of the simulation.

For each dimension d = 9, . . . ,19, we performed 20 simu-
lation runs. In each of these dimensions, our simulations dis-
cover the densest known lattice packing in at least 30% of the
runs. Table I summarizes the results of these simulations. The
compression rate used represents a trade-off between longer
computation time and decreased likelihood of reproducing the
densest lattice. We did not attempt to quantify this trade-off
in this paper or determine the optimal compression rate as a
function of dimension. In terms of the average computational
time needed to reproduce the densest known lattice once, the
present method is much less efficient than the SLP method of
Ref. [7] in all lower dimensions. For the highest dimensions,
d = 17,18, and 19, respectively, this average time is 3 × 103s,
8 × 104s, and 2 × 106s with the SLP method, compared to
2 × 105s, 3 × 105s, and 8 × 105s with the present method.

Assuming our MC simulations accurately sampled the
isobaric ensemble at each pressure, we would recover from
the simulation the equation of state: the average volume 〈v〉
as a function of the reduced pressure p. Plotting the traces
of 〈v〉 as a function of p for different runs in dimension
d = 11, for example (Fig. 1), we see that at a certain pressure
the different traces diverge and the simulations fall out of
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TABLE I. For each dimension d , the table gives the following: the name (as per Refs. [3,13]) of the lattice � that achieves the greatest
density known among all admissible lattices; the unit cell volume v of this lattice (normalized by 2d ); the reduced pressure pi used in the
equilibration period and at the beginning of the compression period of our simulations; the reduced pressure pf at which we terminated the
compression; the compression rate k, such that the pressure at each proposed move is 1 + k times the pressure at the previous proposed move;
the average computational time T per run of the simulation; and the rate at which the lattice � is reproduced, that is, the percentage of runs
whose final configuration, after rounding off the Gram matrix, is �.

d � 2dv pi pf k T (sec.) Rate

9 �9 16
√

2 20 2 × 104 1.4 × 10−6 60 1
10 �10 16

√
3 60 6 × 104 1.4 × 10−6 1.2 × 102 1

11 K11 18
√

3 2 × 102 2 × 105 4.6 × 10−7 7.8 × 102 0.55
12 K12 27 3 × 102 3 × 105 6.9 × 10−7 1.1 × 103 1
13 K13 18

√
3 6 × 102 6 × 105 3.5 × 10−7 3.0 × 103 0.70

14 �14 16
√

3 2 × 103 2 × 106 1.8 × 10−7 9.4 × 103 0.60
15 �15 16

√
2 3 × 103 3 × 106 3.5 × 10−7 9.1 × 103 0.90

16 �16 16 5 × 103 5 × 106 1.8 × 10−7 2.9 × 104 0.95
17 �17 16 1.5 × 104 1.5 × 107 6.9 × 10−8 1.2 × 105 0.8
18 �18 8

√
3 7 × 104 1.8 × 107 5.5 × 10−8 1.9 × 105 0.6

19 �19 8
√

2 9 × 104 2.2 × 107 4.6 × 10−8 2.4 × 105 0.3
20 �20 8 3 × 105 8.2 × 106 3.5 × 10−8 3.3 × 105 0.14

equilibrium. The traces belonging to runs that terminate at the
same configuration do not diverge, so we may infer that at this
pressure the system goes from exploring the attraction basins
of many different extreme lattices to exploring only a single
basin. The situation becomes more complicated in higher
dimensions, where we see significant hysteresis effects. For
example, in dimension d = 16, all 20 runs end up in the basin
of the densest known lattice �16 (Fig. 1), but different runs
experience the transition at different pressures. Figure 2 shows,
for each dimension, the volume as a function of pressure
averaged over all the runs that yielded the densest known
packing.

For any fixed d, as there is no thermodynamic limit, strictly
speaking, there cannot be a phase transition. However, as is
clear from Figs. 1 and 2, the system shifts as the pressure
increases from a state where many basins of attraction are
explored to a state where the system is confined to a single
basin. In any finite dimension there should be a range of pres-
sure where these two states coexist with significant probability
for the system to be in either state. The traces we obtain
from the simulations are consistent with a situation where
the transition rate between these two states in the coexistence
region becomes smaller and smaller with increased dimension,
so that in lower dimensions the trace of each run remains
close to the equation of state, while in higher dimensions
each run stays in one state until transitioning irreversibly into
the other. This crystallization transition is accompanied by a
discontinuity in the density, which depends on the extreme
lattice the system crystallizes into.

We may interpret d → ∞ as the thermodynamic limit of
the lattice sphere packing problem and speculate that the
coexistence region in this limit shrinks to a single critical
pressure. Parisi considers the partition function of a closely
related ensemble of lattices in the limit d → ∞ and points
out that the lattice sphere packing problem in this limit shares
many formal similarities with the nonlattice problem [10].
Parisi does not determine whether a glass transition exists in

the lattice sphere packing problem as it does in nonlattice
hard sphere system and leaves open the possibility of either
a glass transition or a crystallization transition. The behavior
we observe in our simulations in dimensions 9 � d � 19 is
indicative of a first-order crystallization transition. However,
it is hard to tell whether the behavior is controlled by the
thermodynamic limit or mostly by details specific to the
moderate dimensions we explore.

In dimension d = 20, out of 50 runs at the slowest
compression rate attempted, only one yielded the densest
known lattice. In fact, only ten runs show a discontinuity in
the density at all, with most runs remaining in the fluid state
throughout. In another set of 50 runs, we compressed to an
intermediate pressure, where we expect the crystallization rate
to be higher, and maintained that pressure until we observed a
rapid increase in density. With this new protocol, the densest
lattice is reproduced in seven runs.

We find it remarkable that both our method and the methods
of Refs. [6,7] become dramatically less effective at exactly
the same dimension. Whereas a priori we might expect that
the complexity of the lattice sphere packing problem rises
at a more or less constant exponential rate as a function of
dimension, the evidence of the two cited works and the present
paper raises the hypothesis that the complexity experiences a
sharp increase around d = 20. A sharp increase of this kind
might indicate a shift into the glassy regime of the lattice
sphere packing problem. Just as the relaxation time of a fluid
increases sharply as the glass temperature is crossed, it might
be the case here that d ≈ 20 marks the beginning of a glassy
regime, linked to a sharp increase in the inverse compression
rate required to recover the densest lattice.

In addition to discovering de novo the densest known lattice
in dimension d, our method can also be used to discover sub-
optimal, yet very dense, extreme lattices. In some dimensions,
only a portion of runs, even at the slowest compression rate
attempted, yielded the densest known lattices (see Table I).
The identity of the suboptimal lattices produced is in some
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FIG. 1. (Color online) Traces of density as a function of reduced
pressure in different runs in dimensions d = 11 and d = 16. In 11
dimensions, the simulation remains in equilibrium until around p =
4.8 × 103, where different runs continue along different branches,
corresponding to basins of attractions of different extreme lattices. In
16 dimensions, all runs end up in the basin of the same lattice, but
we observe that different runs make the transition into this basin at
different pressures. It appears that at least one of the runs also spends
some time in an intermediate state, presumably the basin of attraction
of a different extreme lattice.

cases unexpected, and the second-most-likely-produced lattice
is not always the second-densest known extreme lattice. For
example, in dimension d = 14, the most frequently produced
lattice after �14 in our simulations is a lattice (denoted
“dim14kis744” in Ref. [13]) of normalized unit cell volume
214v = 361

√
3/16, compared to 214v = 16

√
3 for �14. This is

also the second-densest lattice produced, despite the existence
of many extreme lattice of intermediate density [7]. As was
already observed in the results of Ref. [7], we observe a general
trend wherein among extreme lattices of equal density, those
with lower kissing numbers (number of neighbors in the first
coordination shell) are more frequently produced, though this
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FIG. 2. (Color online) Traces of (normalized) density as a func-
tion of reduced pressure, averaged over all quasistatic compression
runs that yielded the densest known lattice in each dimension
d = 9, . . . ,20.

trend is not without exceptions. In the present context, it makes
sense that at finite pressures the basin of an extreme lattice
with a lower kissing number is stabilized by a greater rattling
entropy over the basin of another extreme lattice of equal
density and higher kissing number.

Many of the lattices discovered by our simulations have not,
to our knowledge, been studied before, and we have submitted
them to be archived in the online catalog of lattices [13]. A
few in particular are definitely worthy of further study. For
example, one of the lattices we discover in dimension d = 11
(denoted “dim11kis422” in Ref. [13]) is equal in density to the
two laminated lattices �

min,max
11 . Remarkably, the lattice does

not include any of the laminated lattices �d for d = 8,9,10 as
sublattices of equal minimum norm. This discovery suggests
a possible extension to the conventional lamination hierarchy
described in Refs. [3,14,15].

While the focus of the present paper is limited to the lattice
sphere packing problem, the method presented can easily
and naturally be extended to study lattices with an n-element
basis for n > 1. The smallest dimension in which the densest
known packing has a nontrivial basis is d = 10, where it has
a 40-element basis [3]. In higher dimensions, there are known
packings with more modest basis sizes (for example n = 4,3 in
dimensions d = 20,22, respectively [16]) that are denser than
the densest known lattices. Extending our capabilities to the
point of being able to discover de novo any of these nonlattice
structures or the densest known lattices up to d = 24 would be
a major accomplishment. Of course, discovering yet unknown
lattice and nonlattice packings denser than those constructed
analytically should be considered the ultimate goal.

I thank Étienne Marcotte and Salvatore Torquato for helpful
comments.
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