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Synchronous equilibrium model for the diffusion of mutually exclusive particles in a heterogeneous
lattice of adsorption sites
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Tecnologia dei Materiali (INSTM), Unità di Ricerca di Sassari, via Vienna, 2, I-07100 Sassari, Italy
(Received 16 April 2013; published 21 June 2013)

Through straight synchronization and proper manipulation of a sequential Monte Carlo glass-forming rule
introduced by Fröbose and Jäckle [J. Stat. Phys. 42, 551 (1986)], we constructed a synchronous, non-glass-forming
rule for diffusion of mutually exclusive particles in a lattice of adsorption sites. The rule satisfies detailed balance
in the presence of both homogeneous and heterogeneous adsorption energies. Our model differs from the usual
lattice-gas cellular automata diffusion rules in that the mutual exclusion holds on the lattice sites rather than
on the channels which connect neighboring sites, and from the mass-conserving cellular automata rules in the
use of a no-partitioning scheme. The first aim of this work is to show that, although some prescriptions in the
synchronous rule are introduced just to allow that both detailed balance and mutual exclusion can coexist with
synchronicity, the diffusion process produced by the rule is not anomalous so that the rule can be regarded as
a diffusion model. We then compare the diffusion isotherms of several test systems with the ones obtained by
means of sequential Monte Carlo simulations of Arrhenius jumps of particles on a lattice. Finally, we apply the
rule to the case of a (100) fcc model surface and estimate the amount of time correlation in the migration process,
and show that the synchronous rule produces higher correlations and slightly lower diffusivity than the sequential
Monte Carlo counterpart.
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I. INTRODUCTION

Since the late 1940s cellular automata (CA) have been
developed in various directions, ranging from the construction
of machines able to imitate the human brain’s behavior to
the solution of partial differential equations and the modeling
of chemical and physical phenomena by means of fictitious,
discrete microscopic evolution rules which, averaged in space
and time, provide a realistic picture of the emulated phenomena
at the meso- and the macroscale [1]. In particular, lattice-gas
cellular automata (LGCA) models of particles propagating
and colliding in a discrete grid of sites are devoted to the
solution of problems in hydrodynamics [2–6] (where collisions
do preserve momentum) and diffusion theory [1,7,8] (where
collisions do not need to preserve momentum). In the models
referenced above, the particles use channels to travel from site
to site in the lattice: if from each site there are ν possible
directions of motion then there will be exactly ν channels at
each site. The moving particles are subjected to an exclusion
criterion such that every channel can host at most one particle,
not more, so that each site holds at most ν particles.

If there is need to impose mutual exclusion on sites rather
than on channels, then fully synchronous CA rules are probably
not the best choice, due to the conflicts that arise when
the particles’ positions are updated in parallel. Giving up
some synchronicity, the use of Margolus neighborhoods and
partitioning techniques can be of remarkable help in solving
such conflicts and allows the implementation of conservation
laws [9,10] and general restraints (e.g., the form of the
stationary distribution of states [11]), producing a so-called
block cellular automaton.
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Although partitioning strategies make the production of
a cellular automaton with conserved quantities easier, it is
legitimate to ask whether or not it is possible to produce
a fully synchronous LGCA of mutually exclusive particles
whose evolution rule satisfies detailed balance. Whereas in
a sequential Monte Carlo update the implementation of the
detailed balance criterion in the state-to-state transitions is
straightforward [12–16], doing the same when the rule is
parallel can turn out to be quite a hard task—on the one
hand, the node states in a lattice require a certain degree of
mutual independence in order to be updated synchronously;
on the other hand, mutual exclusion (and all kinds of mutual
interaction of course) introduces dependencies in the evolution
rule to avoid superposition of particles on the same node.

In this work we present a synchronous model, satisfying
detailed balance, of particles traveling on a lattice of sites
where each site can bear one particle at most. Our work does
not claim the present rule as the best method for simulating
diffusion on a lattice. It is however, to our knowledge, the first
successful attempt in the construction of a fully synchronous
CA rule for particle diffusion where mass conservation,
detailed balance, and mutual exclusion on sites coexist without
conflicting with each other. This task is achieved by means of
a nontrivial acceptance and rejection criterion applied on the
trial displacements, selected synchronously at each time step
by all the particles in the system, which involves the first
neighbors of each site plus some second neighbors.

The paper is organized as follows. In Sec. II we describe
how the rule is structured and how we derived it by manip-
ulating the original sequential rule proposed by Fröbose and
Jäckle [17]. In Sec. III we derive the mathematical form of
the equilibrium distribution of configuration. In Secs. IV A
and IV B we show that the macroscopic diffusion equations
derived formally through standard techniques are Fickian, and
that the numerical simulation of the rule over several test
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systems leads to Gaussian propagators, linear mean-square
displacements in the long-time limit (except for the case
of single-file diffusion, where as expected they increase
proportionally to

√
t), no glassy behavior, and generally

smaller diffusivities than the Arrhenius-jump Monte Carlo
counterpart. Finally, in Sec. IV C we apply the synchronous
rule to the case of surface diffusion on a (100) fcc lattice, and
discuss the importance of time correlations in the migration
process through comparison between the numerical values and
a mean-field formulation (whose details are provided in the
Appendix) of the self-diffusion coefficient.

II. DESCRIPTION OF THE RULE

The starting point for the construction of the proper
evolution algorithm was a (serial) Monte Carlo (MC) extended
exclusion principle rule introduced by Fröbose and Jäckle, [17]
prescribing that a particle jump from a lattice site, say r ,
to any neighboring site, say r ′, is accepted if and only if
(i) the destination site r ′ is empty, and (ii) the neighbors of
site r ′ (except r of course) are empty as well. Noticeably,
this rule can be applied synchronously to all the particles
in the lattice with no occurrence of multiple occupancies.
As a drawback, however, when switching from sequential to
synchronous evolution, the lattice configuration space changes
and the detailed balance is lost, with the result that the system
converges to a stationary distribution of configurations that
cannot be expressed in a closed form. In particular, several
conflicts prevent the model from satisfying detailed balance,
by making some transformations, say A → B (where both
A and B appear with nonzero probability in the stationary
distribution), irreversible. In those cases, one or several
intermediate steps are needed to get back from B to A, i.e.,
B → C1 → · · · → Cn → A. In a one-dimensional string of
sites, for example, such a conflict can be schematized as
follows:

���
1
�
2
��

�

�
�′

���
1

��
2

�,
� = P (P0 + P ),
�′ = 0,

(1)

where occupied and empty sites are represented with black
and empty squares, respectively, and numbers under each
site are particle identities. � and �′ are respectively the
probability of the direct and of the reverse transformation,
with P = P← = P→ as the probability of a particle to point
toward the left or the right direction, and P0 as the probability
of a particle to point toward the same site it occupies. The
configuration in the right-hand side (RHS) of (1) is produced
when both particles in the LHS are attempting a displacement
to the right, or when particle 2 (the probability associated
with this event is P 2) is pointing to the right and particle 1
is attempting no displacement (the probability associated is
P0P ). The reverse transformation is not possible since particle
2 cannot jump into the empty site at its left due to the presence
of particle 1 in the target neighborhood. In order to recover
the starting configuration, it is required to pass through the
intermediate configuration ������ (obtained by moving
particle 1 to the left), since from such a configuration particle
1 and particle 2 can point to the right and to the left,
respectively, thus producing exactly the starting configuration
in the LHS of (1). Unfortunately, one can readily check that the

FIG. 1. (Color online) The evolution rule, sketched for a particle
traveling in a square lattice where the neighborhood of each site is
made by the first-neighboring sites only. In the present figure we
display the case of the jump attempt of a particle (red square) into the
site at its right (the pointing direction is represented by the red arrow).
The cases of jump attempts in the up, the left, and the down directions
can be obtained by simple rotation of the figure. The targeted site,
called r ′, will be reached by the particle if it is empty, and if neither r ′

nor the particle is pointed to by any other particle. The latter condition
is represented by the half-filled sites (around the red particle and
the targeted site) equipped with arrows pointing toward any allowed
direction but the one leading to the red particle or to the targeted
site. Every half-filled square with arrows represents a site which can
be empty or occupied by a particle pointing in any of the directions
indicated by the arrows. The red particle is blind to the sites above
the red dotted line.

probability resulting from the two-step reverse transformation
does not equal �. In other words, a straight synchronization
of the Fröbose and Jäckle rule produces a model where the
particles are mutually exclusive but the forward and backward
transformation probabilities are unbalanced, whereas we are
looking for a rule satisfying detailed balance in such a way
that at equilibrium, when the lattice is homogeneous (i.e.,
the sites all have the same binding energy) and the particles
interact solely by mutual exclusion, every one of all possible
combinations of the particles in the lattice sites is sampled with
the same probability. Such a rule can be obtained if conflicts
like the one we described above are solved by means of the
following three prescriptions, summarized graphically in Fig. 1
(when a particle makes a trial displacement toward some site,
we will say that it points or alternatively points to that site):

(i) Empty sites can be pointed to and reached by a particle
in a neighboring site, whereas occupied sites can be pointed to
but cannot be reached.

(ii) If two or more particles point to the same site, no one
of them will be allowed to reach it.

(iii) If one or more particles are pointing to a site occupied
by another particle, that particle must stay at rest.

Prescription (i) is identical to mutual exclusion in sequential
algorithms, and (ii) could be viewed, as usual in lattice-gas
modeling, as particles attempting to reach the same site and
bouncing back to their original positions. Prescription (iii)
instead is something different, that can hardly be ascribed
to some physical microdynamics. Since classical LGCA are
constructed in such a way that the macroscopic properties arise
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as a consequence of the conserved quantities and symmetries in
the underlying microscopic rule, to make sure that the behavior
on larger scales is actually diffusive, is a necessary step. As
we will show later on, prescription (iii), besides allowing
detailed balance to be preserved, does not prevent the model
from exhibiting well-behaved self- and collective diffusion
properties.

By means of prescriptions (ii) and (iii), in the absence
of interactions besides mutual exclusion (which is realized
by assuming that the probability of a particle to attempt a
jump does not depend on the occupied site, and there are
no preferred directions of motion) the transition probability
matrix � turns out to be symmetrized. In other words, if
we let n(r) and n′(r) represent the occupancies of site r

according to the configurations η = ∪rn(r) and η′ = ∪rn
′(r),

respectively [mutual exclusion applies to the occupancies
so that n(r) can be either 0 or 1 depending on whether
the site r is respectively empty or occupied], then �(η →
η′) = �(η′ → η). This makes the system microcanonical and
the configuration space equal to the set of all the possible
arrangements of N particles in L sites.

We now translate into a formula the three prescriptions
above. First of all, we need to define the neighborhood of each
site, along with the particle probability to attempt a jump into
a neighboring site.

Let us indicate as r (with r ∈ L) a generic site of the lattice
L. Every site is connected to a finite number ν(r) (called
the connectivity of site r) of different sites, listed in the set
I(r) and called neighbors of r . In order to define I(r), we
introduce p(r,r ′) (with r �= r ′) as the probability of a lone
particle, located in the site r , to attempt a jump into the site r ′.
Then the set of neighbors of r can be defined as I(r) := {r ′ ∈
L|p(r,r ′) > 0, r �= r ′}. A suitable choice for p(r,r ′) is

p(r,r ′) = eβ[ε(r)−ψ(r,r ′)]

νmax
, r �= r ′, (2)

where ε(r) � 0 is the adsorption energy at the site r , the
term ψ(r,r ′) � 0 [satisfying the symmetry relation ψ(r,r ′) =
ψ(r ′,r)] is the energy barrier between the sites r and r ′, and
νmax = supr∈L ν(r) is the highest connectivity in the lattice.
The probability p(r,r) of the particle choosing not to move
from where it is is defined then as

p(r,r) = 1 −
∑

r ′∈I(r)

p(r,r ′). (3)

At each time step, at every site (independently of the
other sites), say r , if the site is occupied by a par-
ticle we choose which destination site the particle can
attempt a jump into. We consider ν(r) + 1 Booleans
ξ (r,r),ξ (r,r1),ξ (r,r2), . . . ,ξ (r,rν(r)), one for the site r itself
and one for each of the neighbors of r , such that only one of
those has value 1 while the others are zero, and we say that if r ′
is the neighbor of r for which ξ (r,r ′) = 1 then the particle will
attempt a jump from r to r ′. We assume a random selection
criterion by picking ξ (r,r ′) = 1 with probability p(r,r ′). Once
this selection is performed at every occupied site of the lattice
(the selections are independent from site to site, and thus they
can be performed in parallel) on the basis of the trial directions
of all the particles we apply the three acceptance criteria listed
above to determine which jump attempts are to be confirmed

and which ones are to be rejected (again, these operations
can be performed in parallel). The evolution rule for the site
occupancies reads then

nt+τ (r) − nt (r) = ωt
+1(r)[1 − nt (r)] − ωt

−1(r)nt (r), (4)

where t is the discrete time (t = 0,τ,2τ, . . . ), and τ is the
duration (in seconds) of a time step. The quantities ω+1 and
ω−1 in Eq. (4) determine respectively the creation and the
destruction of particles in the lattice sites. They depend on
the configuration of the neighborhood around each site, and
are structured in such a way that, for every site in which ω+1

created a particle, there is another site in the neighborhood of
the first one where ω−1 destroyed another particle:

ωt
+1(r) =

∑
r ′∈I(r)

ξ t (r ′,r)nt (r ′)χ (r,ηt ),

(5)
ωt

−1(r) =
∑

r ′∈I(r)

ξ t (r,r ′)
[
1 − nt (r ′)

]
χ (r,ηt ),

where the term χ (r,η), which reads

χ (r,ηt ) =
∏

r ′′ ∈ I(r ′)
r ′′ �= r

[1 − ξ t (r ′′,r ′)nt (r ′′)]

×
∏

r ′′′ ∈ I(r)
r ′′′ �= r ′

[1 − ξ t (r ′′′,r)nt (r ′′′)], (6)

implements prescriptions (ii) and (iii) in the rule. Equations (4)
to (6) will be used in Sec. IV for the derivation of the
macroscopic evolution equation of nodes.

The same algorithm can be obviously cast into a form
that describe the motion of N distinguishable particles i =
1, . . . ,N :

rt+τ
i = rt

i +
∑

r ′∈I(r)

(
r ′ − rt

i

)
ξ t

(
rt
i ,r

′) [1 − nt (r ′)]χ (rt
i ,η

t ),

(7)

acting independently, at time t , on every particle i. The evolu-
tion of the model under the representation of distinguishable
particles will be used in Sec. III to derive the equilibrium
distribution of configurations.

In order for detailed balance to be satisfied, we must have
ψ(r,r ′) = ψ(r ′,r), i.e., the absence of any kind of drift, such
that the height of the barrier between two connected sites,
say ra and rb, is the same for a particle moving from ra

to rb or from rb to ra . If this is the case, then the motion
of the particles will be purely diffusive and the model will
converge to equilibrium; otherwise, the existence of preferred
directions of motion will cause convection to add to diffusion
and the system to converge to a stationary state rather than an
equilibrium state. Note that if the adsorption energy ε is the
same everywhere in the lattice then �(η → η′) = �(η′ → η),
causing the system to be microcanonical as in the example we
made above; otherwise f (η)�(η → η′) = f (η′)�(η′ → η),
where f (η) is the equilibrium probability of configuration η

and the equilibrium state of the system will be described by
the canonical ensemble statistics, as we will show in Sec. III.
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III. EQUILIBRIUM DISTRIBUTION
OF CONFIGURATIONS

For convenience, without loss of generality we will describe
the system in terms of configurations of distinguishable
particles i = 1, . . . ,N with coordinates rN = {r1, . . . ,rN }. We
will then consider the case of a transformation from the
configuration of distinguishable particles rN to r′N (in short,
rN → r′N ), that is, particle 1 moving from r1 to r ′

1, particle 2
moving from r2 to r ′

2, and so on. Correspondingly, the global
configuration of site occupancies will change from η → η′,
i.e., occupancies will change from n(r) to n′(r) for every
site r ∈ L. Then we factorize the transition probability into
two contributions, respectively from the moving and from the
resting particles:

�(rN → r′N ) = �mov(rN → r′N )�rest(rN → r′N ). (8)

Evaluation of the first term in the RHS of Eq. (8) is
straightforward if we consider that if a particle, say i, is actually
moving from ri to r ′

i during the transition rN → r′N , then this
means that when the system was described by the configuration
rN the site pointed at, r ′

i , was empty, and no other particles
were pointing to it nor to ri . Then the contribution of particle
i to the transition probability is p(ri,r

′
i ), and the transition

probabilities in the two directions are

�mov(rN → r′N ) =
∏

i,moving

p(ri,r
′
i ), (9)

�mov(r′N → rN ) =
∏

i,moving

p(r ′
i ,ri). (10)

We can obtain Eqs. (9) and (10) also through a more detailed
reasoning. Let us consider again the particle i, moving from
r to r ′ during the transformation rN → r′N . We now imagine
that, when the system configuration is rN , we choose to select
the trial direction for every particle sequentially rather than
synchronously. We stress that we do not imagine sequential
update of the particles’ position, but simply assign the trial
displacements to one particle at a time. This does not change
the result of the global operation, since the particles select
their respective trial directions independently of each other.
Now, let us assume that the last particle we invoke is particle
i, so that all the ξ (r,r ′), with r ′ ∈ I(r) and r �= ri , are already
known. Thus, the probability of the particle to actually move
from ri to r ′

i is

p(ri,r
′
i )n(r ′

i )χ (ri,η(ri)),

where n(·) is a shorthand notation for 1 − n(·). Now, since
we are assuming that during the transformation rN → r′N
the particle i does move from ri to r ′

i , we have (1) that
n(r ′

i ) = 0 (i.e., the occupancy of the site targeted by i when the
system is configured as rN ) and consequently 1 − n(r ′

i ) = 1,
and (2) that χ (ri,η(ri)) = 1. Therefore, the probability above
is simplified to p(ri,r

′
i ). The same can be done to calculate

the contribution of particle i to the backward transformation
r′N → rN , where the particle moves from r ′

i to ri , obtaining
p(r ′

i ,ri). We could equally assume also any other particle in
the system to be the last one invoked to select its trial direction,
since such selections are independent from particle to particle,
thus getting Eqs. (9) and (10).

We can express the resting particles’ contribution to the
forward transition as

�rest(rN → r′N ) =
∏

i,resting

[
p(ri,ri) +

∑
r ′′
i ∈I(ri )

∗
p(ri,r

′′
i )

]
, (11)

where the asterisk on the summation sign indicates the
following restriction: The probability p(ri,r

′′
i ) enters the

summation if the target site is such that:
(1) Due to the selection (performed by the operators

ω±1) of the allowed displacements, the position of particle
i actually does not change during the transformation rN to r′N
(otherwise, i would enter the set of moving particles instead
of that of the resting particles), and if

(2) none of the effective displacements performed by the
moving particles are affected by the fact that particle i chose
r ′′
i as target site (otherwise, such moving particles would no

longer belong to the set of moving particles but they would
enter the set of resting particles).

However, this is possible only if in the contributions from
the resting particles there are no trial directions pointing
toward neighbors whose occupancies change during the
transformation. The latter condition for the site r ′′

i , neighbor of
ri , is n(r ′′

i )n′(r ′′
i ) + n(r ′′

i )n′(r ′′
i ) = 1. Therefore we can write∑

r ′′
i ∈I(ri )

∗
p(ri,r

′′
i ) =

∑
r ′′
i ∈I(ri )

[p(ri,r
′′
i )]n(r ′′

i )n′(r ′′
i )+n(r ′′

i )n′(r ′′
i ).

We can do the same for the backward transition. Then
one can check that �rest(rN → r′N ) = �rest(r′N → rN ).
Now we can check whether the detailed balance equa-
tion f (rN )�(rN → r′N ) = f (r′N )�(r′N → rN ) [implying
f (η)�(η → η′) = f (η′)�(η′ → η)] with f as the equilibrium
probability distribution of configurations, is verified:

f (rN )
∏

i,moving

p(ri,r
′
i ) = f (r′N )

∏
i,moving

p(r ′
i ,ri), (12)

which can be written as

f (rN )
∏

i,moving

eβε(ri ) = f (r′N )
∏

i,moving

eβε(r ′
i ), (13)

since ψ(r,r ′) = ψ(r ′,r). Now, if we consider that, for a generic
function g of the configuration,∏

i,moving

[g(ri,η)] =
∏
r∈L

[g(r,η)]n(r)n′(r),

and that ∏
i,resting

[g(ri,η)] =
∏
r∈L

[g(r,η)]n(r)n′(r), (14)

and multiply both sides of Eq. (13) by
∏

r [eβε(r)]n(r)n′(r), we
can switch from the distinguishable to the indistinguishable
particle representation:

f (η)
∏
r∈L

eβn(r)ε(r) = f (η′)
∏
r∈L

eβn′(r)ε(r). (15)

Thus the detailed balance relation is verified if the equilibrium
distribution of the model has the form

f (η) ∝
∏
r∈L

e−βn(r)ε(r). (16)
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If we put the RHS of the relation (16) in the form of e−βH(η),
where H(η) is the lattice Hamiltonian, we get

H(η) =
∑

r

n(r)ε(r). (17)

IV. DIFFUSIVE BEHAVIOR

Once we know the form of the equilibrium distribution, we
want to check whether the prescriptions inserted in the rule
to make it fully parallel without creating any conflict with
mutual exclusion and detailed balance cause the diffusion to
be either normal or anomalous. We do it through inspection of
the behavior of relevant time-correlation functions calculated
over data obtained from numerical simulations, and through
simple theoretical considerations over several one- and two-
dimensional test systems. We anticipate that although the
evolution rule is derived from a glass-forming algorithm and
the prescriptions necessary to achieve the full synchronicity
of the rule (especially the third one) are particularly strict, in
all the numerical simulations we perform to test the model we
will find both the single-particle motion and the motion of the
center of mass to be normally diffusive.

The test systems are constructed by replicating along the
available directions a unit cell made of P and Q sites,
characterized respectively by the adsorption energy εP and
εQ and arranged differently from system to system. Since
our aim was to study the isotropic diffusion of particles at
equilibrium (i.e., without convection), we chose the symmetric
arrangements sketched in Fig. 2. According to Fig. 2, from
now on we will refer to such systems as (a), (b), (c), and (d),
respectively.

For theoretical arguments, the systems were supposed to
be infinite. For numerical simulations, periodic boundary
conditions were applied.

The physical time step duration τ is assumed to be the
same for all the simulations, as well as constant throughout
each simulation. For the purpose of the present study, which
is to assess the suitability of our evolution rule as a diffusion
rule, there is no need to assign it an explicit value. However,
any future application of the model would require an explicit
connection between τ and some characteristic time extracted
from experiments or atomistic simulation over the system
investigated [18].

A. Macroscopic equations

It is usual in the presentation of CA algorithms to derive,
under convenient simplifying assumptions, the macroscopic

equations governing some relevant local observables, e.g., the
local density [1]. The problem to deal with in such derivations
is represented by the noise introduced by correlations in space
and time [1,19–21]. CA evolution rules are discrete, and
therefore the evolution of such systems is noisy by default.
In practice, the noise in CA trajectories can be mitigated by
averaging the occupancies over relatively large portions of a
very large system (and in time as well) [1,8], making possible
the definition of a proper “local density,” or by relaxing
the exclusion principle, thus allowing an arbitrary number
of particles to occupy the same site [1,22]. Theoretically,
if the CA rule is very simple one can attempt to derive
the macroscopic evolution equations by writing the rule in
the form of a discrete master equation, and then associating
a continuous field with it and using the concepts of field
theory to obtain an equation equipped with noise terms.
The procedure is technically complex, and applying it to the
analysis of complicated rules can turn out to be a difficult
task. Assumptions like the Boltzmann chaos hypothesis and
the slowly varying density in space and/or time are often made
to simplify the problem. Although simplifying assumptions
can lead to erroneous results, they are of help in the first stage
of construction of a CA rule since they allow the realization
that, even though correlations are discarded (either totally
or partially), the macroscopic behavior thus derived at least
formally resembles the one we wish it had (a diffusion equation
in this case). In such a case, one can proceed with a more
detailed statistical analysis of the trajectories obtained through
numerical simulation to check whether they show a normal
diffusion behavior.

This is exactly the route we follow to assess the dif-
fusion behavior of the present model. Strong correlations
are expected, due to the fact that (i) an exclusion principle
holds, (ii) prescriptions are introduced that prevent a par-
ticle from moving depending on the configuration of the
trial displacement of the particles in its neighborhood, and
(iii) many terms are involved in Eqs. (4) to (6), from the first
as well as from the second neighborhood of a site. Therefore,
as usual in the derivation of macroscopic equations from the
microscopic evolution rules of cellular automata [1], some
simplifying assumptions are needed as necessary technical
steps to get from micro to macro, even though it could turn out
to be quite difficult to rigorously prove their validity.

We will derive the formal macroscopic equation for our
evolution rule applied to the case of a square lattice [system (b)
of Fig. 2], where a particle can point toward its first neighbors
only. The same steps can be straightforwardly applied to
the one- and the three-dimensional cases to get analogous
results.

FIG. 2. Sketch of four systems we describe in the paper. In each subfigure, the sites constituting the unit cell, repeating in one dimension
for the system in (a) and in two dimensions in (b), (c), and (d), are enclosed within a rectangle.
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The lattice is assumed homogeneous and of infinite size.
The evolution of the occupancy of the site of coordinates
(x,y) depends on the occupation and trial direction at sites
{(x + qλ,y + wλ)|q,w = −2, . . . ,2}. The state of the system
is assumed to fluctuate dynamically around the equilibrium
state by which it is described in the long-time limit.

We represent the four directions of motion as ←, →, ↓,
and ↑. The change in the occupancy of site (x,y) during one
time step (of duration τ ) is

�τnx,y = �τn
→
x,y + �τn

←
x,y + �τn

↑
x,y + �τn

↓
x,y, (18)

where �τn
→
x,y is the contribution to the occupation change of

(x,y) coming from the exchange with (x + λ,y), �τn
←
x,y is the

contribution to the occupation change of (x,y) coming from
the exchange with (x − λ,y), and so on:

�τn
→
x,y = [(1 − nx,y)nx+λ,yξ

←
x+λ,y − nx,yξ

→
x,y(1 − nx+λ,y)]

×(1 − nx+2λ,yξ
←
x+2λ,y)(1 − nx+λ,y+λξ

↓
x+λ,y+λ)

×(1 − nx+λ,y−λξ
↑
x+λ,y−λ)(1 − nx−λ,yξ

→
x−λ,y)

×(1 − nx,y+λξ
↓
x,y+λ)(1 − nx,y−λξ

↑
x,y−λ), (19)

�τn
←
x,y = [(1 − nx,y)nx−λ,yξ

→
x−λ,y − nx,yξ

←
x,y(1 − nx−λ,y)]

×(1 − nx−2λ,yξ
→
x−2λ,y)(1 − nx−λ,y+λξ

↓
x−λ,y+λ)

×(1 − nx−λ,y−λξ
↑
x−λ,y−λ)(1 − nx+λ,yξ

←
x+λ,y)

×(1 − nx,y+λξ
↓
x,y+λ)(1 − nx,y−λξ

↑
x,y−λ), (20)

�τn
↑
x,y = [(1 − nx,y)nx,y+λξ

↓
x,y+λ − nx,yξ

↑
x,y(1 − nx,y+λ)]

×(1 − nx+λ,y+λξ
←
x+λ,y+λ)(1 − nx−λ,y+λξ

→
x−λ,y+λ)

×(1 − nx,y+2λξ
↓
x,y+2λ)(1 − nx+λ,yξ

←
x+λ,y)

×(1 − nx−λ,yξ
→
x−λ,y)(1 − nx,y−λξ

↑
x,y−λ), (21)

�τn
↓
x,y = [(1 − nx,y)nx,y−λξ

↑
x,y−λ − nx,yξ

↓
x,y(1 − nx,y−λ)]

×(1 − nx+λ,y−λξ
←
x+λ,y−λ)(1 − nx−λ,y−λξ

→
x−λ,y−λ)

×(1 − nx,y−2λξ
↑
x,y−2λ)(1 − nx+λ,yξ

←
x+λ,y)

×(1 − nx−λ,yξ
→
x−λ,y)(1 − nx,y+λξ

↓
x,y+λ). (22)

We dropped the time superscript t for better readability.
Now, since the Boolean ξ ◦

x+qλ,y+wλ (with ◦ =→ , ← , ↑ , ↓) is
picked randomly at every site (x + qλ,y + wλ), its ensemble
average corresponds to the following probabilities:

〈ξ←
x+qλ,y+wλ〉 = 〈ξ→

x+qλ,y+wλ〉 = 1
4e−βψx eβε,

(23)
〈ξ↓

x+qλ,y+wλ〉 = 〈ξ↑
x+qλ,y+wλ〉 = 1

4e−βψy eβε,

where q and w are integers in the interval −2 � q,w � 2,
ε is the site adsorption energy, and ψx,ψy � 0 are migration
barriers along the x and the y directions, respectively. We then
average both sides of Eq. (18) over an ensemble of equivalent
systems [1] to get

〈�τnx,y〉 = 1
4eβε{−〈nx,y〉(2e−βψx + 2e−βψy )

+e−βψx [〈nx+λ,y〉 + 〈nx−λ,y〉] + e−βψy [〈nx,y+λ〉
+〈nx,y−λ〉] + C1e

−βψx + C2e
−βψy + · · · }, (24)

where the coefficients C1,C2, . . . are sums of several two-
up to seven-body static correlation functions of the form
〈nx1,y1nx2,y2 · · · nxk,yk

· · · 〉. Due to the very large number of
terms, we do not report formulas for them. We neglect time
correlations. We further assume that local densities fluctuate
closely around stationarity, and that a general symmetry
criterion holds such that the correlation between two nodes ra

and rb depends only on their distance |ra − rb|, and similarly
for the correlation among three nodes and more: Let us
consider two different sets of sites A = {u1, . . . ,uK} and
B = {v1, . . . ,vK}. For a square lattice, the coordinates of site
u1 are (u1x,u1y), the coordinates of site u2 are (u2x,u2y), and
so on, and similarly for sites v1, v2, etc. For the sake of clarity,
with a slight temporary change in notation we let n(u1) be the
occupation state of site u1, n(u2) the occupation state of u2,
and so on. Now we indicate as

〈nA〉 =
〈

K∏
k=1

n(uk)

〉
and 〈nB〉 =

〈
K∏

k=1

n(vk)

〉
(25)

the static correlation functions involving the sets of sites A

and B. We then construct the two sets SA and SB , given by the
collection of the absolute distances between all the different
site pairs obtainable from sets A and B, respectively:

SA =
K−1⋃
k=1

K⋃
k′=k+1

|uk − uk′ |, SB =
K−1⋃
k=1

K⋃
k′=k+1

|vk − vk′ |.

(26)

Since ψx and ψy do not vary from site to site, if SA = SB then
also 〈nA〉 = 〈nB〉. We put 〈ni,j 〉 = ρ and Taylor expand the
terms in the RHS of Eq. (24):

〈ni±1,j 〉 = ρ ± λ∂xρ + λ2

2
∂2
xρ + O(λ3),

(27)

〈ni,j±1〉 = ρ ± λ∂yρ + λ2

2
∂2
yρ + O(λ3),

to get

τ∂tρ + τ 2

2
∂2
t ρ + O(τ 3)

= λ2

4
eβε

{
e−βψx ∂2

xρ + e−βψy ∂2
yρ

} + O(λ3). (28)

Now, as usual in a diffusion process [1], we take the limit
λ → 0, τ → 0 with λ2/τ → const to get the diffusion equation

∂tρ = Dx∂
2
xρ + Dy∂

2
yρ, (29)

where

Dx = λ2

4τ
eβ(ε−ψx ), Dy = λ2

4τ
eβ(ε−ψy ) (30)

are Fickian diffusivities in the two directions of motion.
As we can see, once we assume correlations to be distance

dependent, we obtain that the multibody correlation terms
cancel out, providing the same result we would obtain by
simply neglecting the noise terms C1,C2, . . . in Eq. (24). As
a result, mutual exclusion and correlations do not enter the
macroscopic equation, and the Fickian diffusion coefficients
turn out to be simply proportional to the ability of the particle
to move along the respective directions.

063306-6



SYNCHRONOUS EQUILIBRIUM MODEL FOR THE . . . PHYSICAL REVIEW E 87, 063306 (2013)

Although in Eqs. (29) and (30) the lattice directions are
made “visible” by the fact that ψx − ψy �= 0 [1], still the
relation ψ(r,r ′) = ψ(r ′,r) holds, so that in the long-time
limit the system will fluctuate around the same equilibrium
state described by the lattice Hamiltonian (17). If we put
ψ = ψx = ψy , then the mobilities are simply rescaled and
we get ∂tρ = D∇2ρ, with a diffusion coefficient

D = λ2

4τ
eβ(ε−ψ). (31)

Similar results are found for heterogeneous lattices. Let us
consider the system with unit cells sketched in Figs. 2(c) and
2(d), with infinite size and homogeneous site-to-site barrier
ψ . To get the macroscopic evolution equation of the local
densities as we did for the previous case, analogously to
Eq. (18) we write down the evolution equation for the discrete
occupancy rates �τnx,y (the site at the center of the unit cell),
�τnx+λ,y , �τnx,y−λ, �τnx−λ,y , �τnx,y+λ (the rates at the
first neighbors), and �τnx+λ,y+λ, �τnx+λ,y−λ, �τnx−λ,y−λ,
�τnx−λ,y+λ (the rates at the second neighbors within the same
unit cell). Now the quantities 〈ξ ◦

x+qλ,y+wλ〉 are no longer site
independent, since the adsorption energy can be either εP or
εQ depending on the site. We sum up those equations, and
again we assume that 〈nA〉 = 〈nB〉 if SA = SB but this time
we need to slightly modify the formulas in (26) to take account
of the heterogeneity of the sites. Our choice is

SA =
K−1⋃
k=1

K⋃
k′=k+1

w(uk)w(u′
k)|uk − uk′ |,

(32)

SB =
K−1⋃
k=1

K⋃
k′=k+1

w(vk)w(v′
k)|vk − vk′ |,

where the w(·)’s are arbitrary weights assigned to the sites in
such a way that all the P sites have the same weight, say wP ,
all the Q sites have the weight wQ, and wP �= wQ. We obtain
a diffusion equation where the diffusivity has the following
form:

D = λ2

τ

fP ρP P + fQρQQ

Kρ
, (33)

where P = 1
4eβ(εP −ψ) and Q = 1

4eβ(εQ−ψ) represent the escape
probabilities of a free particle from a P and a Q site,
respectively, K is the total number of sites in one unit cell,
and ρP and ρQ are respectively the average occupancies of a
P and of a Q site, satisfying the relation

KP ρP + KQρQ = Kρ,

with KP and KQ as the numbers of P and Q sites in one unit
cell, respectively, for which KP + KQ = K . Moreover, since
there are no site-site interactions other than mutual exclusion,
due to the lattice Hamiltonian (17) ρP and ρQ obey Fermi-
Dirac statistics, so that ρX = eβ(μ−εX)/[1 + eβ(μ−εX)], where
X = P,Q and μ is the chemical potential. Finally, fP and
fQ denote respectively the numbers of P and of Q sites of
a unit cell at the interface with one of the (in this case, four)
neighboring cells. In the case of the system of Fig. 2(c), fP =
3, fQ = 0, and K = 9 so that D = λ2

3τ
P (ρP /ρ). For a unit cell

like the one sketched in Fig. 2(d), instead, fP = 1, fQ = 2,

and K = 9 so that D = λ2

9τ
[P (ρP /ρ) + 2Q(ρQ/ρ)].

The only relevant quantities in the macroscopic diffusivity
of Eq. (33) are the relative site densities and the fraction of sites
of each type at the interface with neighboring cells. Similarly
to the case of homogeneous lattices, Eq. (33) contains neither
mutual exclusion nor correlation terms. However, as we can see
from Eq. (33), heterogeneity causes macroscopic diffusivity
to depend on both concentration and temperature, whereas the
Fickian diffusivity in Eq. (31), referring to a homogeneous
lattice, shows only a dependence on temperature.

B. Numerical simulations

Once we found that the macroscopic equations for the
local density, although derived formally neglecting the noise
terms, take the form of diffusion equations, we proceeded
with the investigation of the basic properties related to the
particle mobility to check whether the rule prescriptions lead
to anomalies in the diffusion process or not. We first provide
the necessary technical details of the simulations.

The system sizes were chosen as L = 104 sites for the
one-dimensional systems and L = 90 × 90 sites for the two-
dimensional grids. Such sizes were chosen after verifying that,
with L � 40, the size effect on diffusion is negligible in the
case of a homogeneous lattice (which, as we will show in this
section, is the most sensitive to the rule prescriptions). This
size is more than doubled in order to ensure a good statistical
accuracy.

We set the adsorption energies to the values εP = 0 and
εQ = −10 kJ mol−1, and the temperature T to 300 K. The
starting configuration of each simulation is chosen randomly
with uniform probability over all the possible configurations
in the system (i.e., as if the sites were all equivalent). This
means that homogeneous lattices required no equilibration
steps, whereas heterogeneous lattices required an equilibration
period that we set to 105 steps before starting with the
production of a statistical trajectory in the configuration space.
For both homo- and heterogeneous systems the simulations
were 108 time steps long. We computed the mean-square
displacement (MSD) of the single-particle motion, denoted
σ 2(t) = 〈|rt

i − r0
i |2〉, and the self-propagator, i.e., the self-part

of the van Hove correlation function P (�r,t) = 〈δ(�r − rt
i +

r0
i )〉 [where δ(·) is the delta function], giving the probability

of finding a particle around a distance vector r at time t , given
that the same particle was at the origin at time t = 0. We
report the propagator along the x direction in Fig. 3 for several
densities after 104 time steps (the histogram bins have size 3λ,
i.e., the side of the unit cell), whereas the MSDs up to 106

steps are reported in Fig. 4. For all the systems we studied,
the propagator along each direction of motion was well fitted
by a Gaussian distribution with zero mean and variance equal
to the mean-square displacement σ 2(t) (reported in Fig. 3).
As expected, the MSDs of the one-dimensional systems with
N > 1 were all subdiffusive, since σ 2(t) ∼ √

t , a typical
result of single-file diffusion (see Ref. [23] and references
therein). In the long-time limit, the MSD of two-dimensional
systems shows a linear time dependence. The fits (dotted
lines) are shown in Fig. 4 together with simulation data (solid
lines). Slower-diffusing systems take longer to reach the linear
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FIG. 3. (Color online) The propagator of the single-particle
motion along the x coordinate at time t = 104τ for several two-
dimensional systems. In the inset of each plot the unit cell of
each system is reported, with P and Q referring to the different
binding energies εP = 0 and εQ = −10 kJ mol−1. The dots are
simulation data, and the lines are Gaussian propagators related to
the mean-square displacement value along the x coordinate.

regime. For example, in Fig. 4 we can see that system (d) takes
a time to reach the linear regime which is about one order of
magnitude larger than for systems (b) and (c), since two of
the three interfacial sites of the unit cell (d), having adsorption
energy εQ, are more binding than the other ones, whereas in
the unit cells of (b) and (c) only sites with zero adsorption
energy are present at the interface.

The collective motion has been studied as well, by esti-
mating the propagator and mean-square displacement σ 2

c (t) of
the collective coordinate rt

c = ∑
i r

t
i . In the cases we studied,

the collective MSDs were all linear in the long-time regime
(not shown) also for the one-dimensional case (this is also

FIG. 4. (Color online) Mean-square displacement plots for the
same systems reported in Fig. 3 at various densities. The solid lines
are simulation data, and the dotted lines are linear (y ∼ ax) fits for
the two-dimensional systems and square fits (y ∼ a

√
x) for the one-

dimensional case (top).

typical of single-file systems) and the collective propagators
were again Gaussian with zero mean and variance σ 2

c (t).
No anomalies were found in the self-intermediate scattering
functions (SISFs) fs(q,t) = 〈exp{iq · [rt

i − r0
i ]}〉, where q =

(2πnx/L,2πny/L) with nx,y integer. In Fig. 5 we consider the
SISF for the wave vector q = (2(L − 1)π/L,0) for systems
(b), (c), and (d). In all our study cases, the SISF was well fitted
by a single exponential function, i.e., fs(q,t) ∼ exp(−t/τrel),
where τrel is the relaxation time of the system. In Fig. 5
the quantity under consideration is the product τrelDs , which
is of interest since the structural relaxation time scales as
viscosity [24,25]. The constant trend of τrelDs indicates
that the Stokes-Einstein relation is satisfied throughout the
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FIG. 5. (Color online) Self- and collective diffusivity plots for the
same systems reported in Fig. 3. In the case of the one-dimensional
system (top), due to the nonlinearity of the MSD of the single-particle
motion, its slope is expressed in term of mobility Fs rather than
self-diffusivity.

whole density domain 0 < ρ < 1 [26], meaning that the rule
prescriptions cause no dynamical transition, i.e., no critical
density lower than the maximal density exists at which a
structural arrest occurs. With all such evidence we conclude
that the systems we investigated show no glassy behavior.

The self- and collective diffusion coefficients Ds (replaced
by the mobility Fs in the case of the single-file system) and
Dc, derived from the slopes of the MSDs, are reported in
Fig. 6 as functions of the density ρ. As expected, the back-
correlation effect by which a particle, once it has jumped into
a new site, is more likely to jump back to the site it came
from [27–29] is less evident in the collective motion, giving
Dc � Ds . The interesting point is the curvature of the Ds plot
of the homogeneous system (b). In the ideal scenario proposed
by Reed and Erlich [30], in a homogeneous lattice system with
low or no correlations the diffusivity should decrease linearly
with the density. Standard LGCA diffusion rules [1,8], where
the current configuration of particles in each cell is randomized
at each time step, destroying the correlations, behave in that
way when particles are subjected to the further restraint of not
crossing each other when moving from cell to cell [31]. In the
present case instead, no cell randomization occurs at all and
the limitations to the particle movements imposed by the rule
prescriptions cause memory of the previous configurations to
be conserved longer. As a consequence, the reported diffusivity
trend is very far from the linearly decreasing Ds vs ρ plot
that we would have in the case of uncorrelated motion. It
is therefore interesting to compare the diffusion properties
produced by the synchronous rule with the ones obtained by
means of standard MC simulations where particles move along
the lattice sites through Arrhenius jumps [32]. This is done
in Fig. 7, where the relative discrepancies Fs/F

MC
s − 1 (for

the single-file system), Ds/D
MC
s − 1, and Dc/D

MC
c − 1 are

reported. It can be seen clearly that discrepancies are low at low
densities and increase with it, until particle mobilities become
less than half of the MC values at very high densities. This is
an expected trend. Let us take for example the homogeneous
case, system (b) in Fig. 7. Under a mean-field approximation,
neglecting the back-correlation contribution, the probability
of a particle leaving its current adsorption site during a time
step can be estimated as Pesc = (1 − ρ eβε

ν
)2(ν−1)(1 − ρ)eβε,

whereas the corresponding MC quantity is P MC
esc = (1 − ρ)eβε.

The relative discrepancy on this measure is thus

Pesc/P
MC
esc − 1 =

(
1 − ρ

eβε

ν

)2(ν−1)

, (34)

FIG. 6. (Color online) The product τrelDs , where the relaxation
time τrel is taken from the exponential fit of the self-intermediate
scattering function for wave vector q = (2(L − 1)π/L,0), for the
systems (b), (c), and (d) reported in Fig. 3.

which becomes more negative on increasing ν and/or on
making βε closer to zero. As a function of ρ, the shape of
its decay is the same as that of system (b) in Fig. 7.

Unit cells of systems (c) and (d) instead are made of
different arrangements of P and Q sites. Hence, since the
escape probability is heterogeneous the shape of Ds/D

MC
s − 1

vs ρ is expected to change from the homogeneous case,
although still decreasing. In particular, for low densities the
particles will occupy Q sites most of the time. Since the Q

sites are more binding, the overall escape probability will be
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FIG. 7. (Color online) Comparison between synchronous and
serial (MC) simulations of self- and collective diffusivities. The
systems are the same as reported in Fig. 3.

more affected by the adsorption energy εQ than by the rule
prescriptions. In the case of system (d) (bottom of Fig. 7), 5/9
of the sites are Q sites, thus making the effect more evident.

Therefore, our expectation is that for lattices with strong
adsorption energies the diffusivities obtained with the syn-
chronous and with the sequential MC evolutions will be
similar. The confirmation of such expectation is shown in
Fig. 8, where we see that when the adsorption energy of
the homogeneous systems is set to −10 kJ mol−1 rather
than 0, mutual exclusion and the adsorption energy play the
most important role whereas the rule prescriptions produce a
negligible effect.

C. Diffusion on a (100) fcc surface

We performed simulations of the (100) surface of a fcc
crystal (see Fig. 9) with generic lattice spacing λ where two
kinds of sites can be distinguished, i.e., fourfold hollow sites,
named A sites, with adsorption energy εA (squares in Fig. 9),
and twofold bridge sites, named B sites, with adsorption energy
εB (circles in Fig. 9). Although lateral interactions are not
included, besides the theoretical interest this model is adequate
for the study of low-coverage layers and adatoms with weak
interactions such as N on Ru(001) [33].

We compared the self-diffusion isotherms at T = 300 K
obtained by the synchronous rule with those we get by means
of a MC sequence of Arrhenius jumps. The connectivities are
set as in the work of Chvoj et al. [34,35] (see Fig. 9), i.e.,

FIG. 8. (Color online) Comparison between synchronous and
serial (MC) simulations of self- and collective diffusivities for two
homogeneous lattices of sites having a more negative binding energy,
i.e., εQ = −10 kJ mol−1.

an A site leads to four B sites [in the directions (λ,0), (0,λ),
(−λ,0), and (0,−λ)] through a barrier ψAB , whereas a B site
leads to four B sites [in the directions (λ,λ), (−λ,λ), (−λ,−λ),
and (λ,−λ)] through a barrier ψBB and to two A sites [in the
directions (0,λ) and (0,−λ) for half of the B sites and (λ,0)
and (−λ,0) for the other half] through a barrier ψBA = ψAB .
Simulations were carried out for square lattice boxes of size
80 × 80λ2 containing 4800 sites, for a total of 106 steps after
equilibration.

We first investigated two cases with ψBA = ψAB = ψBB =
0., reported in Fig. 10. In the first one, indicated as fcc-a, the
hollow site is deeper than the bridge site (εA = −10 kJ mol−1

and εB = 0). As we can see in Fig. 10 (top left) this causes
particles to remain confined within the hollow sites until they
reach sufficient energy to jump into the bridge sites, from
which they can escape faster. Since in such a case not only are
the bridge sites less binding than the hollow sites, but also they
are connected to other bridge sites, we can say that mobility
from a bridge site is higher. Increasing the overall density
causes the average occupancy of bridge sites to increase as
the number of available hollow sites decreases; therefore
the particle mobility increases as well up to a maximum at

FIG. 9. (Color online) Lattice topology for the model of the
(100) fcc surface. The black squares represent hollow sites (A sites)
with adsorption energy εA, and the red circles are bridge sites with
adsorption energy εB .
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FIG. 10. (Color online) Self-diffusion profiles in the (100) fcc
surface sketched in Fig. 9 at 300 K for two different configurations
of the adsorption energies, together with the relative discrepancy
between the numerical and the mean-field values of the self-diffusivity
for both the synchronous and the MC cases. The dots are results of
numerical simulations, and the solid lines are mean-field diffusivities.
The pair of plots at the top (bottom) refer to the fcc-a (fcc-b)
configuration of the adsorption energies.

intermediate-high densities. Above this threshold the mutual
exclusion causes particles to hinder each other during the
motion, thus lowering the diffusivity.

In the second case, indicated as fcc-b, the bridge sites are
the deepest (εB = −10 kJ mol−1 and εA = 0). Figure 10 (top
right) shows that this causes particles to remain adsorbed in the
bridge sites until they reach sufficient energy to jump into the
hollow sites. In this case, at the very lowest densities the bridge
sites adsorb most of the particles in the system, causing also
a hindering effect during migration due to mutual exclusion,
which becomes more and more important when the system is

FIG. 11. (Color online) Dependence of self-diffusivity on tem-
perature for three (100) fcc lattices with respectively ψBB = 0, 5, and
10 kJ mol−1. In all cases the overall density is ρ = 0.5, εA = εB =
−5 kJ mol−1, and ψAB = ψBA = 0. D∞ = 5.094 × 10−2λ2/τ is the
self-diffusivity for T → ∞.

loaded with more particles. Therefore, the diffusivity decreases
with the overall density.

In Fig. 10 (top), the solid lines refer to a mean-field self-
diffusivity estimation (see the Appendix) made by neglecting
the correlation effects, that is, assuming that the sequence of
particle jumps is a memoryless stochastic process where after
each jump the neighborhood of the moving particle randomizes
completely according to the global densities ρA and ρB . This
is not true in the numerical simulation, where a particle that
just left a site, say r , to enter r ′ has a higher probability to
jump back into r since it is surely empty.

Only for the lowest values of the density is the approx-
imation acceptable (it is exact in the limit of ρ → 0) and
it becomes worse with increasing loading. Nevertheless, the
comparison between the numerical self-diffusivity Ds and the
corresponding mean-field value D̃s is useful to get a measure
of the importance of correlations in the migration process,
as well as for a comparison between the cases in which
prescriptions (ii) and (iii) are present (in the synchronous rule)
or absent (in the sequential MC evolution). To this purpose, in
the bottom of Fig. 10 we reported the quantities D̃s/Ds − 1
and D̃MC

s /DMC
s − 1, i.e., the relative discrepancy between the

mean-field and the numerical values of the self-diffusivity
at several overall densities, for both the synchronous and
the MC cases. As expected, prescriptions (ii) and (iii) cause
correlations to be higher in the synchronous case. Moreover,
we can see that in the fcc-bcase the effect of correlations is less
pronounced. This is due to the fact that the bridge sites, which
in both cases lead to the highest number of directions and thus
can be considered as the most responsible for particle diffusion
along the lattice, are deeper in the fcc-b case. Analogously to
what happened when we lowered the adsorption energy of
the homogeneous square lattice from 0 to −10 kJ mol−1 (see
Fig. 8), the probability of a jump out of every bridge site
is less likely to be affected by the the trial directions of the
neighboring particles due to prescriptions (ii) and (iii).

As can be seen from the development in Sec. III, the
individual migration barriers ψAA, ψBB , and ψAB can be
assigned different values, causing the site-to-site mobility
to change without modifying the equilibrium distribution of
configurations. In Fig. 11 we study the fcc lattice when the
barrier for the B-to-B migrations is assigned a nonzero value,
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FIG. 12. (Color online) Normalized self-diffusion isotherms for
the system fcc-a reported in Fig. 10 compared with the corresponding
mean-field isotherms when the adsorption energies are shifted to
lower values. The dots are data from numerical simulations (top,
synchronous model data; bottom, Monte Carlo data), whereas the
solid lines are mean-field data.

while keeping at zero all the other barriers. As expected, the
closer ψBB is to zero, the more the system will be diffusive,
whereas the diffusivities will coincide only if temperature
is very high—obviously the range of temperatures shown in
Fig. 11 is of purely theoretical interest.

In Fig. 12 we compare the sensitivity of the particle mobility
to a rescaling of the site adsorption energies reported in the case
of synchronous and of sequential evolution. It can be seen that
in the synchronous case the shape of the diffusivity vs density
curve is more sensitive, thus indicating that prescriptions
(ii) and (iii) produce a wider spectrum of possible diffusion
profiles for a given system. This can be of remarkable help
in coarse-graining problems, when we need to establish a
good matching between the lattice-gas diffusion properties and
a reference diffusion profile (e.g., experimental or extracted
from an atomistic simulation). Moreover, Fig. 12 shows that
also the shape of the mean-field diffusion isotherm changes
with the site adsorption energies. This implies that the relative
amount of autocorrelations does not change significantly when
the sites are made more strongly binding. In other words,
the synchronous algorithm preserves its natural correlations.
This is an important point in the modeling of diffusion on
a surface with strong adsorption energies, when we do not
want the correlations appearing in the single-particle motion
on the reference system to get lost when we represent it with
a coarse-grained model.

Finally, for strongly adsorbing sites the simulation of
diffusion with the synchronous rule turns out to be less time

consuming than the sequential case. Let us see how. From
Eq. (34) we see that the more negative ε is, the closer the
acceptance of a move in the synchronous rule will get to the
acceptance of the corresponding Arrhenius jump in the MC
algorithm. Equation (34) refers to a homogeneous system, but
if all the sites are strongly adsorbing, that consideration is valid
for a heterogeneous lattice as well. We can observe this fact in
Fig. 12, where the synchronous and the MC versions of the fcc
surface with εA = −20 and εB = −10 kJ mol−1 produce very
similar diffusivities. Since in this case the average number
of accepted moves is comparable between synchronous and
MC rule, we can also compare the two algorithms in terms
of efficiency. For the MC case, at each time step the random
number generator must be called N − 1 times (with N the
number of particles) to establish the sequence by which the
particles will be invoked for a jump attempt, plus N times
needed to select the random directions, for a total of 2N + 1
calls of the random number generator. For the synchronous
case the particles do not need to be invoked randomly; therefore
for each time step only N random generator calls are required.
This means that a run of the synchronous system requires
approximately one-half of the random generator calls needed
by the corresponding MC run.

V. CONCLUSIONS

We have shown that a synchronous rule for particle jumps
on a lattice, although obtained through the manipulation of
a glass-forming sequential rule and containing prescriptions
that are necessary solely to ensure that detailed balance,
mutual exclusion, and fully synchronous update of the lattice
sites coexist without conflicts, produces normal diffusion. We
compared the results with the ones obtained by a sequential
Monte Carlo algorithm and observed that the diffusion
produced in the synchronous rule is generally lower than the
MC counterpart (they are strictly equal only in the limit of
infinite dilution) and with stronger correlations. The shape
of the diffusion isotherms obtained through simulation of the
synchronous rule is shown to be more sensitive to changes
in the parameters than the MC case, and the two methods
produce nearly equivalent results if the lattice sites are strongly
adsorbing. Moreover, in the latter case the simulation of
the synchronous rule is less computationally expensive than
the corresponding MC run. This approach can therefore be
conveniently used for the simulation of strongly correlated mi-
gration processes like the ones observed in confined systems.
Further possible developments of the synchronous rule are the
implementation of lateral interactions in the lattice Hamilto-
nian without violating the detailed balance, the diffusion of
multiple species, the application of the rule to nanoconfined
systems, and the proper modification of the rule to recover a
glassy behavior.
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APPENDIX: MEAN-FIELD UNCORRELATED
SELF-DIFFUSIVITY

Neglecting memory effects in the migration process of
a tagged particle, the self-diffusion coefficient in a two-
dimensional lattice-gas can be approximated as [36]

D̃s = 1

4τ
〈δr0 · δr0〉, (A1)

where δr0 is the displacement performed by the particle
as a consequence of the jump performed at time t = 0,
which is strictly connected to the probability of escaping
an adsorption site. In the case of a (100) fcc surface, the
escape probability varies depending on which kind of site
the particle is adsorbed from time to time. As can be seen in
Fig. 9, there are two kinds of sites with different adsorption
energies and connectivities. From a site of type A (that the
particle occupies with probability ρA/3ρ), the particle will
jump into one out of the four neighboring sites (of type B)
with probability J→

A . Such a jump will cause the square of
the displacement to be δr0 · δr0 = λ2. From a site of type
B (that the particle occupies with probability 2ρB/3ρ), the
particle will jump into one out of the two neighboring sites of
type A with probability J→

B , causing the squared displacement
to be δr0 · δr0 = λ2, or into one out of the four neighboring
sites of type B with probability J

↗
B , causing the squared

displacement to be δr0 · δr0 = 2λ2. Taking into account all
three rule prescriptions, these probabilities read

J→
A = eβ(εA−ψAB )

νmax
(1 − ρB)

(
1 − ρA

eβ(εA−ψAB )

νmax

)
×

(
1 − ρB

eβ(εB−ψBB )

νmax

)2(
1 − ρB

eβ(εB−ψBA)

νmax

)
×

(
1 − ρB

eβ(εB−ψBA) + eβ(εB−ψBB )

νmax

)2

, (A2)

where the last term takes account of the fact that there are two
B sites, in the neighborhood of an A site, which can point
to either the departure or the destination site of the jumping
particle,

J→
B = eβ(εB−ψBA)

νmax
(1 − ρA)

(
1 − ρB

eβ(εB−ψBA)

νmax

)

×
(

1 − ρA

eβ(εA−ψAB )

νmax

)(
1 − ρB

eβ(εB−ψBB )

νmax

)2

×
(

1 − ρB

eβ(εB−ψBA) + eβ(εB−ψBB )

νmax

)2

, (A3)

where, again, the last term is due to the possibility of two B

neighbors of the B-type departure site pointing to either the
departure or the destination site, and

J
↗
B = eβ(εB−ψBB )

νmax
(1 − ρB)

(
1 − ρB

eβ(εB−ψBB )

νmax

)4

×
(

1 − ρA

eβ(εA−ψAB )

νmax

)2(
1 − 2ρA

eβ(εA−ψAB )

νmax

)
.

(A4)

Here, instead, the last term takes account of the fact that one
A neighbor of the B-type departure site can point to either the
departure or the destination site. The mean-field expression
for 〈δr0 · δr0〉 reads then

〈δr0 · δr0〉 = 4λ2

3ρ
[ρAJ→

A + ρB(4J
↗
B + J→

B )], (A5)

which, inserted in Eq. (A1), provides the mean-field diffusivity
plotted in Fig. 10 (top, solid line).
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