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The social force model of Helbing and Molnár is one of the best known approaches to simulate pedestrian
motion, a collective phenomenon with nonlinear dynamics. It is based on the idea that the Newtonian laws of
motion mostly carry over to pedestrian motion so that human trajectories can be computed by solving a set
of ordinary differential equations for velocity and acceleration. The beauty and simplicity of this ansatz are
strong reasons for its wide spread. However, the numerical implementation is not without pitfalls. Oscillations,
collisions, and instabilities occur even for very small step sizes. Classic solution ideas from molecular dynamics
do not apply to the problem because the system is not Hamiltonian despite its source of inspiration. Looking at
the model through the eyes of a mathematician, however, we realize that the right hand side of the differential
equation is nondifferentiable and even discontinuous at critical locations. This produces undesirable behavior
in the exact solution and, at best, severe loss of accuracy in efficient numerical schemes even in short range
simulations. We suggest a very simple mollified version of the social force model that conserves the desired
dynamic properties of the original many-body system but elegantly and cost efficiently resolves several of the
issues concerning stability and numerical resolution.
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I. INTRODUCTION

There are many approaches to modeling pedestrian dynam-
ics [1–4]. Among them social force models are well established
[5,6]. Their proximity to equations derived from Newton’s
laws of motion allow direct application of standard numerical
methods, such as Euler’s method, to solve the equations that
are available through toolboxes such as Matlab, Mathematica,
or numerical libraries. Nonetheless, scientists and tool users
continue to run into trouble when implementing or employing
the model [7,8].

While the physical properties of the model that do not
match human behavior, such as inertia, have been discussed
to some extent [8], very little attention has yet been paid to
the mathematical properties and the resulting effects on the
stability of the supposed exact solution and numerical solution
attempts. In fact, the authors are not aware of a general proof
of existence for the solution. Discussions of stability refer to
strongly simplified one-dimensional problems [9].

The social force model resembles a Newtonian system
without being Hamiltonian itself. Energy conservation is
destroyed by friction and an upper limit for pedestrian speed.
See [10,11] for extensive discussions of Hamiltonian systems.
Hence, classic methods from molecular dynamics that make
use of the Hamiltonian form do not target the problem and we
need to look for other solution options.

In this work, we point out several mathematical properties
of the right hand side of the social force model’s set of
differential equations that lead to oscillations in the solution
and loss of accuracy in the numerical approximation. As
a matter of fact, the discrete difference equations that the
numerical schemes correspond to have solutions that do not
only quantitatively differ from the supposed solution of the
social force model, but also qualitatively. This background
analysis is described in Sec. II. In Sec. III, we suggest
ways to mollify the right hand side so that the difficulties
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disappear, while the desired properties of the original model
are conserved. In Sec. IV, we demonstrate the success of
our ideas by comparing numerical solutions of both models
at strategically important locations in very simple simulation
scenarios that allow isolating the underlying problems.

Finally, in Sec. V, we compare results for the classic and
the mollified model in a typical bottleneck scenario taken
from [12]. We use numerical schemes with step sizes that
produce errors of comparable size as long as no singularity is
encountered. Not only do the results for the mollified model
prove to be more natural but, in addition, we are able to utilize
a much more efficient fifth order Runge-Kutta scheme saving
considerable simulation time.

II. PROBLEM ANALYSIS

A. Original social force model of Helbing and Molnár

This work is built upon the original equations as they
were presented in [5] and in Molnár’s dissertation [13]. We
are aware that most simulation tools based on the social force
model (SFM) use variations of the base model. But, these
variations still have the essential properties of the original and
hence will experience similar difficulties.

We look at vectors x,v ∈ R2×m that denote the location and
velocity of pedestrians 1, . . . ,m in two-dimensional Euclidean
space. Vertical movement is neglected. To make sure that
the speed of an individual j does not exceed an acceptable
upper limit vmax,j , we need the auxiliary velocity w in the
mathematical formulation. Note that imposing a limit on
pedestrian speed introduces a first deviation from Newtonian
mechanics. When the speed is cut off without compensation,
energy is lost. Following [5], we set vmax,j = 1.3 v0,j where
v0,j is each pedestrian’s individual free-flow velocity. Hence,
pedestrians can accelerate but will not sprint. For the j th
pedestrian, we have

ẋj = vj (wj ) :=
{

wj if ‖wj‖ < vmax,j

v0,j

‖wj ‖wj otherwise.
(1)
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The following set of equations for x and w forms the actual
social force model:

ẋ = v(w),
(2)

ẇ = F (x,w) = Ftarget(x,w) + Fped(x,w) + Fob(x,w).

Ftarget, Fped, and Fob stand for forces acting on each pedestrian
from the attracting target(s), repelling fellow pedestrians, and
repelling obstacles. Forces are assumed to obey a superposition
principle. Since there are usually several interacting pedestri-
ans and several obstacles, Fped and Fob are sums of force terms
Fped,i,j and Fob,k . Fped and Fob are expressed as the gradients
(in x) of suitable potentials, but not Ftarget as we will discuss
in Sec. II B.

Most of our observations are best presented when the
system is reduced to the bare essentials. Hence, we will
assume one target, one or two pedestrians depending on the
scenario, and no obstacle, all unless otherwise stated. The
resulting mathematical claims can easily be carried over to
more complex situations.

B. Behavior at the target: Discontinuity of the right hand side

In this section, we will look at the seemingly trivial situation
of one pedestrian moving towards one target in a space free of
obstacles. We may drop the index for the pedestrian and force
types. We also neglect, for the moment, that the velocity is
bounded but will come back to the implications of the cutoff
function in Sec. II D. We consider the simplified equations

(ẋ1,ẋ2) = (v1,v2),
(3)

(v̇1,v̇2) = F ((x1,x2),(v1,v2)).

Without loss of generality, we set the target location to (0,0).
Force F then has the form

F (x,v) = 1

τ

(
− x

‖x‖v0 − v

)
. (4)

The free-flow velocity v0 is the presumed walking velocity of
an individual across an open space. In practical applications,
the free-flow velocities are usually assumed to be normally
distributed about a measured mean [14]. Negative free-flow
velocities and free-flow velocities above the sprint world
record should be excluded. The influence of the reaction time
τ modeled by prefactor 1

τ
is not relevant for our investigations

at the moment and τ is set to 0.5 (seconds) as suggested
in [5] throughout the paper. Again, in practical simulations,
the reaction time should be individually set.

Stating a problem in dimensionless form often makes it
easier to focus. In the case of a single pedestrian with just one
target, this can be achieved by the transformations t̃ = 1

τ
t for

a dimensionless speed, x̃ = x
τv0

for a dimensionless pedestrian
position leading to ṽ = v

v0
as dimensionless speed. For the

equations we return to x and v as variables. The dimensionless
system is

ẋ = v, v̇ =
(

− x

‖x‖ − v

)
. (5)

The simplified model versions in Eqs. (3) and (5) highlight
that, while inspiration for the social force model stems from
molecular dynamics, it is not, in itself, a Hamiltonian system.
That is, there is no Hamiltonian function H (x,v) to rewrite the
system in the form

ẋ = ∇vH (x,v), v̇ = −∇xH (x,v) (6)

and to represent energy. From (6) follows that the Hamiltonian
must have the form

H (x,v) = 1
2 〈v,v〉 + G(x) (7)

for some G. See [10] for a longer discussion. With this, the
term − 1

τ
v in (4) can not be produced. In fact, term − 1

τ
v

introduces “friction” and destroys energy conservation; so
does the speed cutoff in Eq. (1). This means that the wealth
of methods developed to conserve physical quantities that
are characteristic for the Hamiltonian systems of molecular
dynamics do not target the social force model. In fact, they
very often explicitly use the separable form of the Hamilton
function (7). Prominent examples are symplectic splitting
methods that conserve the volume in phase space. They are
described in [10] or [11].

So, instead of trying to reproduce physical conservation
laws that do not apply for pedestrian motion, we turn our
attention to a straightforward analysis of the mathematical
properties of the system: unit vectors −x/‖x‖ point in the
direction of the the target for all locations x �= (0,0). However,
the function F has a singularity at the target x = (0,0). The
right hand side displays a jump (see Fig. 1).
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FIG. 1. (Color online) Discontinuity in the right hand side of the social force model at the target. Left: vector plot. Right: cut with the
plane x2 = 0.
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Singularities in an equation do not necessarily shock
the practical user nor do they keep a model from being
useful. However, they do have consequences, some of them
undesirable. In our case, the disadvantages are twofold:

Loss of smoothness. A jump in the derivative means that
the solution, if it exists, is at best continuous, certainly not
differentiable. Such a solution can only exist in a weak sense.

Loss of accuracy and speed of convergence. More important
to the practical user is the loss of accuracy, in fact of
convergence, of numerical schemes near discontinuities. This
means that, whenever a virtual person in the social force
model comes close to an intermediate target, or any other
point with insufficient smoothness in F , the trajectories and
the velocities will no longer be well resolved even with very
small step sizes �t . Oscillations and even collisions in the
numerical approximation of the supposed true trajectories are
the result. This happens even at a very short range. It also
means that higher order, fast converging schemes, such as the
Runge-Kutta methods, can not unfold their potential and one is
stuck with slow converging schemes such as Euler’s method.
We demonstrate this in Sec. IV. In the worst case, numerical
error or, more likely, the force of another pedestrian may cause
a virtual person to stumble right on the target point, or very
close to it. This would lead to numerical division by zero. In
a practical simulation, one observes wild oscillations in the
pedestrian trajectories or even that one virtual pedestrian is
“blown away” from the target. In fact, it is not difficult to
construct a “pathological” example using the Euler scheme
for the numerical solution as we see in Sec. II B1.

One may argue that a virtual person can be removed from
the simulation in time before he or she reaches the target.
This means that the set of differential equations must be
reinitialized with one less person. In fact, after reinitialization,
we have a new and slightly different set of equations with
a different solution. This constitutes a drawback, but may
work from a practical perspective as long as one does not
use intermediate targets to guide the virtual pedestrians along
a desired path and around obstacles. However, intermediate
targets are almost indispensable in practical applications. An
early handover to the next target as soon as it is within sight,
which is equivalent to another reinitialization and switch to a
slightly altered initial value problem, helps. It is also natural
from a modeling point of view: Pedestrians like to navigate
along a graph where the points of orientation are connected
by a direct line of sight [15]. However, this is still tricky
to handle. A lot of manual calibration for each intermediate
target may become necessary to get just the right handover
moment: On the one hand, one strives to avoid the numerically
difficult close vicinity of the target. On the other hand, the
risk of losing sight of the new intermediate target increases
with early handover. Another person might “push” the virtual
pedestrian out of the direct line of sight and he or she becomes
trapped. Thus, once several pedestrians are competing for
space at the intermediate target exerting forces on each other,
the calibration may become dysfunctional. We show a situation
where this happens in Sec. V.

1. Explicit Euler scheme: Stable orbits around the target

The solution of the difference equations that stems from
discretizing a differential equation through a numerical scheme

need not conserve the behavioral properties of the original
equation. This happens to be the case when one applies Euler’s
explicit method on (3). Applying a k-step numerical scheme
on a differential equation

ẏ = F(y) (8)

means to discretize the equation in time. In the case of Euler’s
method, the result simply is

yn = yn−1 + �tF(yn−1), (9)

where yn is the solution one step ahead in time from yn−1 and
�t is the step size in time.

Even with a consistent numerical scheme, such as Euler’s
method, there is no guarantee that the solution of the difference
equation has the same properties as the (supposed) solution
of the differential equation, unless a number of restricting
conditions on the smoothness of the right hand side are
satisfied. In the case of the social force model with its
discontinuity in the right hand side at the target point, and
nondifferentiability at several other locations, we do not profit
from such a comfortable situation.

Indeed, the explicit Euler scheme which is widely popular
in the social force community, despite its poor speed of con-
vergence, reveals very undesirable behavior. The trajectories
of the corresponding difference equation show a stable orbit
around the target. They do not, as required, approach the
target when time goes to infinity. A particularly bad case
is easily constructed with with τ = 0.5, free-flow velocity
v0 = 1, step size �t = 0.5, and initial values x = (0.25,0) and
v = (1,0). The Euler scheme produces alternating values with
x1 ∈ {−0.75,−0.25,0.25,0.75}, v1 ∈ {−1,1} and x2 = 0 and
v2 = 0 for all iterations. Since the pedestrians keep moving
at full speed, that is 1 m/s, each step in time corresponds to
a stride with fixed length 0.5 m. Obviously, the pedestrians
will never get close to the target. Even worse, with (x,v) =
[(0.5,0),(−1,0)] as starting point, the second iteration lands
exactly on the target x = (0,0) leading to division by zero and
abortion of the simulation run. The step sizes in these bad case
examples are admittedly coarse but serve to demonstrate the
principle, namely, that the numerical solution may never get
close to the target but may oscillate around it at considerable
speed or, even worse, that division by zero is quite possible.

Figures 2 and 3 show other orbits for step sizes �t = 0.5
(seconds) and 0.1 (seconds). The latter would be a reasonable
step size corresponding to a spatial resolution of roughly 10 cm
for each time step, or about 1

8 of a typical stride length [4], in
a simulation with a realistic free-flow velocity of about 1 m/s.
However, the orbits keep the pedestrians at a distance of about
67 and 13 cm, respectively, from the target, a lack of aiming
accuracy that does not seem negligible. An orbit sufficiently
close to the target would remedy this shortcoming, at least
from a practical point of view. Unfortunately, this is only true
for smaller step sizes in time, which increase the simulation
time. Also, even with smaller step size �t , the pedestrian keeps
moving at a fast speed.

C. Singularity of the repulsive forces when pedestrians collide

Following the suggestion in [5] for a suitable potential, the
repulsive force between two pedestrians i and j , as seen from
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FIG. 2. (Color online) Euler’s scheme to solve the SFM develops a stable orbit around the target, never reaching the target and never
slowing down. With step size in time �t = 0.5 s and free-flow velocity 1.34 m/s, the person remains about 0.67 m off target and keeps moving
at full speed.

pedestrian i, is given by

Fped,i,j = xi − xj

‖xi − xj‖
V 0

σ
e− ‖xi−xj ‖

σ , (10)

where xi denotes the position of pedestrian i.
For simplicity, we stick to a circular shape of the pedestri-

ans. Parameters V 0 and σ vary the strength and reach of the
force. Calibration should ensure that pedestrians do not overlap
in standard situations. Unfortunately, this is a delicate task that
has yet to be completed to full satisfaction [8]. Calibration,
however, is not the goal of this paper. So, we use the parameter
choices V 0 = 2.1 m2/s2 and σ = 0.3 m from [5] despite
the fact that we observe overlapping in simple situations
(see Sec. IV).

The force contains the term
xi − xj

‖xi − xj‖ (11)

that becomes singular whenever xi = xj . However, unlike
before, there is no attraction pointing towards the singularity.
Quite the contrary, the repulsive forces increase with decreas-
ing distance between the torsos’ midpoints. Thus, only total
collision would have a numerical impact on a simulation run.

D. Loss of differentiability at the desired speed

The speed cutoff in (2) means that the right hand side of (2)
is not differentiable for all velocities w with ‖w‖ = vmax.
Following we show an example of a numerical experiment with
speed cutoffs. We let a pedestrian start from position x = (1,0)
with velocity w = (1,1) while the target is at (0,0) (see Fig. 4).
The maximum acceptable speed is set to 1.3vi,0 with free-flow
velocity vi,0 = 1.34 m/s as suggested in [5]. Using a fifth order
Runge-Kutta scheme with a step size �t = 0.5, we observe
speed cutoffs when approaching the target. Note that this step
size is not coarse for the fast converging Runge-Kutta method
applied on the social force model as long as no singularities
are encountered (see Sec. IV). We did not often observe speed
cutoffs in our numerical experiments, but they can not be
excluded. Hence, if one wishes to successfully use a high
performing numerical scheme, one needs to deal with the
situation.

E. Loss of differentiability at obstacle corners

The obstacle potential perceived by each virtual pedestrian
as suggested in [5] depends on the distance of the pedestrian
from the obstacle. If the boundary of the obstacle is not smooth,
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FIG. 3. (Color online) Euler’s scheme to solve the SFM develops a stable orbit around the target, never reaching the target and never
slowing down. With step size in time �t = 0.1 s and free-flow velocity 1.34 m/s, the person remains about 0.13 m off target and keeps moving
at about half speed.
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The solid (blue) curves show results entirely without speed cutoff. The dashed (red) curves are with speed cutoff. As soon as the speed reduction
takes place for the first time the equations and hence the solutions no longer coincide.

the resulting distance function and hence the obstacle potential
and right hand side of the differential equation (2) will not be
smooth. Again, this leads to increased errors in the numerical
solution and loss of convergence especially with higher order
schemes.

III. MOLLIFIED MODEL

In this section, we introduce mollifications of the classic
social force model (2) for each area where the continuity
or differentiability was lost. The resulting mollified social
force model (MFSM) has a smooth right hand side and
thus a solution for each time interval [t s,tend] for each
initial value (xs,vs). The Jacobian matrix is bounded so
that a solution exists for t → ∞. The solution has an
asymptotically stable steady state in (x,v) = 0, at least in
the case when a single person approaches the target. Last
but not least, the differentiability remedies the numerical
problems.

There are also methods to detect discontinuities and restart
the solution algorithm after the discontinuity that might be
successfully employed (see [16]). In this work, we do not
follow this approach because we think that the model itself
becomes a better approximation to reality after mollification.

A. Mollification at the target

We look at the simplified formulation of the social force
model with a single pedestrian and only one target: Eq. (3)
[or (5) in the the dimensionless form]. The arguments in this
section are identical for both formulations. The cause for the
stability and convergence issues close to the target is the loss
of continuity at the target point. We replace the directional
vector − x

‖x‖ by

− x√
x2

1 + x2
2 + ε2

(12)

in Eq. (4). Clearly, this mollified version of the model is
continuous and infinitely often differentiable at the target.
Thus, we know from the theory of initial value problems
that there exists a unique solution for each initial value
u := (xs,vs). Also, the target point with zero speed is a steady
state solution. The eigenvalues of the Jacobian matrix all have
negative real parts (− 1

2 ) so that we immediately get local
asymptotic stability. Nonzero imaginary parts, which are the
rule, produce spiraling orbits towards the target.

In other words, provided the starting value is sufficiently
close to the steady state, the solution converges asymptotically
to the steady state: the pedestrian moves towards the target
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FIG. 5. (Color online) Mollification of speed cutoff: The figure on the left compares ‖v‖ of the hard cutoff (solid black line) with
mollifications for p = 2 (solid, blue), 8 (dashed, green), 64 (dotted-dashed, red). The last is hardly visible on top of the hard cutoff. The figure
on the right displays the maximum difference between the speed ‖v‖ of the original and the mollified versions for p = 2 (solid, blue), 8 (dashed,
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while steadily decreasing the speed. This behavior is desirable
in itself, but it also leads to a much better numerical
performance as we demonstrate in Sec. IV. The eigenvalues
show that the mollified equation is not stiff so that the Euler
scheme and the Runge-Kutta scheme used in Sec. IV are
suitable numerical solvers.

We even get global asymptotic stability using Lyapunov’s
method and La Salle’s stability theorem [11,17]. We get a weak
Lyapunov function with

L(x,v) :=
√

x2
1 + x2

2 + ε2 + 1
2 〈v,v〉 − ε (13)

with ‖L(x,v)‖ → ∞ for ‖(x,v)‖ → ∞. Lasalle’s theorem
ensures global asymptotic stability. Hence, whatever initial
position and initial velocity a person has, he or she will be
drawn to the target point and never escape. Close to the target,
the velocity becomes infinitesimally small.

Even with very small ε in the denominator of (12), the
speed is reduced compared to the original speed in the social
force model. In this paper, we chose ε2 = 0.1 to demonstrate
the effect. This would introduce a speed reduction of about 5%
at a velocity of about 1 m/s, which might be still a little high
to neglect.

The arguments above can not be applied to the the original
social force model because its right hand side is discontinuous.
Particular solutions are known in special cases, but the authors
are not aware of a general proof of existence for a weak solution
of the social force model. A typical method to prove existence
is to look for a limit function of the solution of the mollified
model for ε → 0. If such a limit exists, it is a candidate for a
weak solution of the original equations.

B. Mollification for pedestrians competing for space

Unlike the singularity at the target, the singularities in the
forces acting between pedestrians are unlikely to have an
impact on the numerical performance. Still, to get rid of the
singularity, one may introduce a mollifying term εinteraction as
in (12) replacing (11) by

xi − xj√
(xi,1 − xj,1)2 − (xi,2 − xj,2)2 + ε2

interaction

. (14)

Unfortunately, this has a severe drawback: The repulsive
force between pedestrians is no longer strongest when the
pedestrians completely overlap, but decreases when the pedes-
trians’ centers become very close. In fact, with ε2

interaction = 0.1,
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Relaxation time τ = 0.5 s. Mollification parameter ε2 = 0.1. Focus on time t > 6 where the solution trajectory starts to go back and forth
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total collisions can be easily observed. To avoid this, and
nonetheless ensure numerical peace of mind, we suggest to use
extremely small values for ε2

interaction, some order of magnitude
smaller than the numerical error one may reasonably aim for.
When experimenting with the relatively big ε2

interaction = 10−3,
we neither observed numerical problems from collisions nor
complete overlapping among the colliding pedestrians.

Another feasible way to deal with the problem is to set
the repulsive force to zero if the centers of two pedestrians
coincide, truly or numerically. This can be justified by multi-
plying the original repulsive force (11) by an infinitesimally
smooth function that is equal to 1, except in a very small sphere
around the repelling pedestrian’s midpoint, and vanishes at the
midpoint xj . The result is a repulsive force that is almost
identical to (11), but zero where the original force is infinite.
Such a mollifying function can be constructed from the test
function on compact support that we need in the next section
[see Eq. (15)]. Knowing the exact function is unnecessary for
the application of a numerical scheme.

C. Mollification of the speed cutoff

The velocity ẋ = v(w) in Eq. (2) is not differentiable
because it is cut off at ‖w‖ = vmax > 0. We suggest to replace
the cutoff by an infinitely smooth ram-up function and thus to

get rid of any numerical difficulties that the singularity in the
social force model might cause. We get our inspiration from
the theory of distributions: We slightly generalize the kernel
of the Friedrichs’ mollifier, an infinitely smooth function with
compact support [18]. For p ∈ N,

fm(w,p) :=
⎧⎨
⎩ ee

(
− 1

1−( ‖w‖
vmax )2p

)
if ||w|| < vmax,

0 else.
(15)

A mollified version of v(w) is given by

v(w,p) := fm(w,p)w + [1 − fm(w,p)]vmax

× w√
w2

1 + w2
2 + ε̃2

. (16)

Function v is smooth and never exceeds vmax, but slightly
overestimates the velocity of (2). That is, deceleration is
slightly delayed compared with the hard cutoff. The impact
of this can be made negligible by choosing parameter p large
enough. The term ε̃2 is necessary to avoid numerical division
by zero at or close to w = (0,0) (see Fig. 5).
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FIG. 9. (Color online) Error comparison for the mollified and classic social force model using Euler’s method with step size 2−10 = 0.001.
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FIG. 10. (Color online) Error comparison for the mollified and classic social force model using a fifth order Runge-Kutta scheme with step
size 2−1 = 0.5.

D. Mollification of the obstacle force

Realistic obstacles in a simulation scenario have corners
that make the distance function from positions in the scenario
a continuous but nondifferentiable function (see Fig. 6). There
are three principal ways to mitigate this problem:

(i) Mollification of the obstacle boundaries. This is rel-
atively easy to achieve using mollification techniques as in
Sec. III C. However, smoothing corners will make the scenario
unrealistic, if the smoothing is pronounced. Real objects have
sharp corners. Nonetheless, for simplicity, we follow this
approach when presenting an evacuation scenario in Sec. V.

(ii) Mollification of the obstacle force function. Mollifica-
tion of the obstacle force function is a viable approach except
at the corner points. A degradation of convergence in the close
vicinity of corners will remain visible for coarser step sizes.

(iii) Detection algorithms for discontinuities. Discontinu-
ities in the right hand side of an ordinary differential equation
can be detected by a suitable numerical scheme and the
solution scheme can be restarted after the discontinuity
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FIG. 11. (Color online) Computation time per step size. For a
performance comparison, step sizes that produce comparable errors
in the resolution of the trajectories and the velocity must be compared:
e.g., �t = 2−1 = 0.5 for the Runge-Kutta scheme compared to
�t = 2−10 = 0.00098 for Euler’s method.

(see [16]). This might be an elegant way to avoid negative
effects of sharp obstacle corners.

E. Mollification for polygonial targets

It makes sense to use line targets or polygon targets, e.g.,
when approaching a door to make the virtual pedestrians use
the full width of the bottleneck. Molnár defines an attractive
force for a line target in his thesis [13]. The resulting force
is continuous outside the target, but not differentiable. Hence,
the same problems arise as for polygon obstacles in Sec. III D
above. They can also be dealt with in the same way. In
addition, it makes sense in many scenarios to replace the target
polygon by objects with a smooth boundary, e.g., circles or
ellipsoids.

IV. ACCURACY AND CONVERGENCE OF NUMERICAL
SCHEMES FOR THE CLASSIC AND MOLLIFIED

SOCIAL FORCE MODEL

Numerical schemes to solve differential equations require,
in order to work properly, a level of smoothness in the solution
of the equation that matches the order of the scheme. For
example, a first order scheme needs a twice differentiable
solution. If this is not the case, accuracy is usually lost. The
right hand side of the social force equation is the first derivative
of the solution. It is not differentiable in several places and
discontinuous at the target. Hence, the solution of the social
force equations can not be smooth. It is at best continuous
and any solution is a solution in the weak sense only. We
must expect severe loss of accuracy in any of the nonsmooth
locations. This is best demonstrated by computing the order
of convergence of the numerical schemes when approaching
critical locations. We select the popular, if slow converging,
explicit Euler scheme and the highly efficient fifth order
Runge-Kutta scheme that is the fifth order part of the default
solver ode45 in Matlab, the Dormand-Prince scheme [19].

A. Comparison of trajectories near the target

In the following scenario, a single person moves towards a
target where force F has its singularity in the original social
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FIG. 12. (Color online) Order of convergence and absolute error for the mollified SFM with ε2 = 0.1 using Euler’s method. Left: order of
convergence (read from right to left). Right: absolute error.

force model. The initial velocity is set to vstart = (0,0) so that
the problem can be reduced to a one-dimensional problem,
independently of the starting point, by rotating the coordinate
system. We look at the absolute values of the solution
components (x1,x2) and (w1,w2) and observe, as expected, that
the oscillations in the mollified model version are significantly
attenuated (see Figs. 7 and 8). Since oscillations do not
match human behavior, this outcome seems highly desirable
independently of numerical effects.

B. Accuracy and numerical convergence
comparison near the target

1. Comparison of the absolute error when approaching the target

We look at the global truncation error of the numerical
solution at time t . It is given by the difference between the
numerical solution y�t (t) and the exact solution y(t). One can
either look at the Euclidean norm of the error or at the absolute
values of the components of etr:

etr(t) = y(t) − y�t (t). (17)

In our case, we have not computed the exact solution. Instead,
a numerical solution with very small step size �tsmall is used.
Note that this only works if one can expect a significantly

improved approximation when decreasing the step size. In the
case of the original social force model, this means that one has
to stay clear of the target.

We use the step sizes �t = 2−1 = 0.5 for the fifth order
Runge-Kutta scheme and �t = 2−5 = 0.03125 for the Euler
scheme to get approximately the same absolute error for both
methods at a safe distance from the target. To compute the
errors, each numerical solution is compared to a much finer
approximation computed with the same scheme and �t =
2−15 = 3.05 × 10−5. Then, we increase the simulated time
t thus approaching the target until tend = 10 (s). Computing
the numerical solution at tend = 10 took 1.16 s with Euler’s
method, but only 0.01 s with the fifth order Runge-Kutta
scheme, that is, the Runge-Kutta method was 116 times faster.
The advantage becomes even more pronounced with longer
time periods and more pedestrians or, when step size control
is used to restrict the use of small step sizes to the areas with
fast changes in the solution.

In Figs. 9 and 10, we compare the absolute error of the
social force model to its mollified version with ε2 = 0.1 as the
pedestrian is getting closer to the target. For the original social
force model, there is a pronounced jump in the error at about
t = 6.5 when the solution trajectory (x1,x2) starts to circle
around the target. Both methods experience a dramatic loss
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FIG. 13. (Color online) Order of convergence and absolute error for the mollified SFM with ε2 = 0.1 using the Runge-Kutta scheme. Left:
order of convergence (read from right to left). Right: absolute error.
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TABLE I. Absolute error and order of convergence for the mollified social force model with ε2 = 0.1 using Euler’s first order method. The
order of convergence for x1 and x2 as well as v1 and v2 coincide up to the accuracy considered here.

Absolute error Order of convergence

�t1 x1 x2 v1 v2 x1,x2 v1,v2

2−2 0.0423165 0.0241808 0.0847043 0.0484025 1.04824 1.04818
2−3 0.0204625 0.0116928 0.0409612 0.0234064 1.02842 1.02838
2−4 0.0100317 0.00573237 0.0200816 0.0114752 1.01474 1.01472
2−5 0.00496486 0.00283706 0.0099389 0.00567937 1.00746 1.00745
2−6 0.00246963 0.00141122 0.00494386 0.00282507 1.00375 1.00374
2−7 0.00123161 0.000703778 0.00246553 0.00140887 1.00188 1.00188
2−8 0.000615005 0.000351432 0.00123116 0.000703522 1.00094 1.00094
2−9 0.000307302 0.000175601 0.000615181 0.000351532 1.00047 1.00047
2−10 0.000153601 8.77721 × 10−5 0.000307491 0.000175709 1.00024 1.00023

of accuracy, but the loss is much worse for the Runge-Kutta
scheme which does not tolerate the loss of differentiability.
This clearly illustrates that singularities at intermediate targets
are prone to ruin the resolution of pedestrian trajectories and
make the use of high performing schemes pointless.

For the mollified model, on the other hand, no jump occurs.
The error still increases for both numerical solutions, as must
be expected when the true trajectories turn around narrow
corners, but this time the error stays comparable. This means
that, once again, the Runge-Kutta scheme can operate with a
much larger step size to achieve the same resolution as the
Euler scheme.

We also computed the L1 and L2 norms of the absolute
error and obtained the same convergence behavior.

2. Comparison of the order of convergence
and computational speed

We compute the order of convergence of Euler’s method and
the Runge-Kutta method for a scenario with a single pedestrian
who stays at a safe distance to the target. As before, the exact
solution is not known. Instead, we take numerical solutions
computed for each scheme with step size �t = 2−15. We look
at the absolute value of each error component.

A single pedestrian moves from position (0,1) towards the
target at (0,0) starting with a speed of 0 m/s. The pedestrian’s
free-flow velocity v0 is set to 1.34 m/s and the relaxation time τ

to 0.5 s. At this distance to the target, the results with the social
force model (SFM) and the mollified version (MSFM) are
almost identical. Therefore, Figs. 11, 12, and 13 and Tables I
and II only show the behavior of the mollified SFM.

3. Computational speed

Euler’s method only needs one function evaluation per
step as opposed to six for the Runge-Kutta scheme. In a
naive comparison, where one only looks at the step size �t

Euler’s method would always appear advantageous in Fig. 11.
However, to get a fair comparison, one must look at the error
and compare the computation time for approximations with
the same accuracy. Also, the scheme should operate with
a step size where the order of convergence can be clearly
observed so that the error estimate derived by comparing
numerical solutions with different step sizes is reliable. The
results in the last section suggested that for our scenario
step sizes �t = 2−1 = 0.5 for the Runge-Kutta method and
�t = 2−10 = 0.00098 for Euler’s method must be compared
to achieve an error of about 10−4 at a safe distance from the
target and of about 10−2, corresponding to 1 cm in spatial
resolution, close to the target. Then, Fig. 11 clearly favors the
Runge-Kutta scheme.

Now, we use various step sizes and compare Euler’s
method and the Runge-Kutta scheme. At a safe distance to
the target, the order of convergence fully develops. When
one neglects round-off errors that are introduced through
the limited machine precision, the order of convergence of
a numerical scheme is given by

p = lim
�t1→0

ln
( ‖etr(ȳ,�t2)‖

‖etr(ȳ,�t1)‖
)

ln
(

�t2
�t1

) with �t2 = 1

2
�t1, (18)

TABLE II. Absolute error and order of convergence for the mollified social force model with ε2 = 0.1 using the fifth order Runge-Kutta
method.

Absolute error Order of convergence

�t1 x1 x2 v1 v2 x1 x2 v1 v2

20 0.0220833 0.012619 0.0441317 0.0252181 6.8289 6.8289 6.82898 6.82898
2−1 0.000194249 0.000111 0.00038817 0.000221812 6.01275 6.01275 6.01236 6.01236
2−2 3.00843 × 10−6 1.7191 × 10−6 6.01343 × 10−6 3.43625 × 10−6 5.54832 5.54832 5.54805 5.54805
2−3 6.42878 × 10−8 3.67359 × 10−8 1.28527 × 10−7 7.34438 × 10−8 5.28923 5.28918 5.28905 5.28906
2−4 1.64404 × 10−9 9.39481 × 10−10 3.28723 × 10−9 1.87841 × 10−9 5.14993 5.14845 5.14895 5.14921
2−5 4.63052 × 10−11 2.64881 × 10−11 9.2649 × 10−11 5.29325 × 10−11 5.10201 5.04635 5.06938 5.0777
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FIG. 14. (Color online) Trajectories for two pedestrians whose paths cross. The pedestrians are trapped in a deadlock. Left: ε2
interaction = 0.

Right: ε2
interaction = 0.001.

where etr(ȳ,�t) is the error for the numerical approximation
ȳ with step size �t and ‖. . .‖ is a suitable norm. We evaluate
formula (18) for a sequence of step size pairs, halving step
size in each iteration. For a convergent scheme, the order p

should emerge clearly with decreasing step sizes until the error
approaches machine precision.

Figure 12 and Table I show the order of convergence and
absolute error for Euler’s method. The first order convergence
is immediately visible and improves further with decreasing
�t . Figure 13 and Table II show the order of convergence and
absolute error for the Runge-Kutta method. Convergence of p

to 5, the order of the Runge-Kutta scheme, is evident. With
�t = 2−1 the error is already extremely small.

C. Performance comparison with and without mollification
of pedestrian repulsion

The high repulsion at the moment where two pedestrians
would overlap completely makes this event highly improbable
in the exact solution. Hence, a complete overlap, and division
by zero, could only be caused by numerical error and hence
faulty resolution of the pedestrian trajectories. This small
danger can be removed by adding a mollification parameter
to the repulsion force denominator as described in Eq. (14).
Otherwise, the results do not change. We illustrate this with

a scenario where two identical pedestrians cross paths. The
two pedestrians start from (−1,−1) and (1,−1), respectively,
towards their targets at (1,1) and (−1,1). The starting velocity
for both is 0, the free-flow velocities are identical at 1.34 m/s.
We use ε2

interaction = 0.001 because with a greater value the
pedestrians would pass through each others’ centers. With
sufficiently small εinteraction, there is no significant difference
between the classic social force model and the version with
mollified pedestrian repulsion.

However, the pedestrians are trapped in a deadlock. Also,
the pedestrians’ centers are only 13 cm apart at the closest
point. That is, they overlap for the parameter choices given in
[5]. In fact, we observe that without careful calibration, partial
collisions where real bodies would overlap are quite common.
The problem becomes much more severe with poor resolution
of the trajectories near nonmollified targets and obstacles
(see Figs. 14 and 15).

V. PERFORMANCE COMPARISON OF THE CLASSIC
AND THE MOLLIFIED SOCIAL FORCE MODEL

AT A BOTTLENECK

In this section, we compare the performance of numerical
schemes that produced similar errors in the solution for the test
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FIG. 15. (Color online) Distance between the two pedestrians trajectories. The pedestrians are trapped in a deadlock. Left: ε2
interaction = 0.

Right: ε2
interaction = 0.001.
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FIG. 16. Benchmark scenario from [12]. An intermediate target
is placed in the middle of the door. The final target is at a safe distance
to the right outside the corridor.

examples in Sec. IV. We look at a typical benchmark example
inspired by [12]. N virtual persons are placed in a room of
length 20 m and width 7 m. At one end of the room is a
centrally placed door of width 1 m that leads to a corridor of
the same width. An intermediate target is placed in the middle
of the door. The final target is at a safe distance to the right
outside the corridor (see Fig. 16).

Handover from the intermediate target to the final target
takes place when a person is no more than 0.4 m away
from the door and the final target is in the direct line of
sight (neglecting other pedestrians that may block the view).
All pedestrians are identical, that is, they have the same
free-flow velocity. This is unrealistic and leads to extremely
symmetric trajectories. Variation of the free-flow velocities
would immediately destroy the symmetry and yield more
realistic trajectories. However, the symmetry is deliberate
because it helps to demonstrate the effects of insufficient
resolution.

Again, we use the explicit Euler scheme for the SFM and
the fifth order Runge-Kutta scheme for the mollified SFM. In
both cases, we set �t = 0.1 so that an acceptable resolution
may be expected for Euler’s method as long as we stay away
from locations with discontinuities of the right hand side or
its derivatives: compare Tables I and II. In the scenario with
one person and one target, the error for Euler’s method was
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FIG. 17. (Color online) Virtual pedestrians move from left to right
through a bottleneck. Numerical solution of the social force equations
with Euler’s method and step size �t = 0.1.
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FIG. 18. (Color online) Virtual pedestrians move from left to right
through a bottleneck. Numerical solution of the mollified social force
equations with the fifth order Runge-Kutta method and step size
�t = 0.1.

below 0.01 m. When the pedestrian gets close to the target,
Euler’s method fails for the classic SFM. The Runge-Kutta
scheme applied on the classic SFM would fare no better.
However, when the discontinuity at the target is removed, the
Runge-Kutta scheme encounters no more difficulties (compare
Figs. 17 and 18).

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we showed how to remove discontinuities
from the social force model’s right hand side and its deriva-
tives and thus defined a mollified model, the MSFM. We
demonstrated that the solution of the mollified model is
almost identical to the solution of the classic model, when
the pedestrians are at a safe distance from the discontinuities.
Hence, the desired dynamic properties of the social force
model are conserved.

But, the new mollified model allows the use of high order
fast converging numerical solvers, such as the Dormand-Prince
scheme, increasing the computational speed, even in a very
simple example, by a factor of 100. In view of future
applications of pedestrian stream simulations that demand
real time computation, e.g., training tools or prediction of
immediate danger, the increase in numerical speed alone is
very useful. In addition, the solution of the mollified model
proved to be much more stable near the former problem
zones, notably near intermediate targets. We observed less
oscillations, less collisions, and no complete failures even for
relatively coarse step sizes.
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