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Inverse bremsstrahlung in relativistic quantum plasmas
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We study the absorption of an intense electromagnetic wave in a plasma by inverse bremsstrahlung, in the
relativistic quantum regime, by using the Klein-Gordon (KG) equation. We examine the following points:
(1) the solutions of the KG equation in the absence of collisions; (2) the transition probabilities between electron
momentum states, and (3) the effective collision frequency in the weak and strong field limits.
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I. INTRODUCTION

Relativistic quantum plasmas are relevant to a large range
of applications, from astrophysics to intense laser plasma
experiments to be performed in the near future [1–3]. Quantum
plasmas have also recently been reviewed by Haas [4]. In
such a wide field, some progress has recently been made, by
extending the well-known Volkov solutions, determining the
electron (and positron) states in a plane electromagnetic wave
in vacuum [5,6], to the case of particle-wave interaction in
a plasma, and by deriving approximate Dirac solutions for
both electrostatic and electromagnetic waves [7]. Dispersion
relations for isotropic quantum relativistic plasmas have
also been derived, using both Klein-Gordon [8] and Dirac
formulations [9]. Another important area of application is that
of free electron lasers in the quantum regime [10].

Here we propose to study the problem of wave absorp-
tion for intense waves in a plasma, due to the inverse
bremsstrahlung process. The electrons are forced to oscillate
in the field of the incident wave. This oscillatory motion is
reversible and cannot lead to a net energy absorption. However,
dissipation of the incident wave energy can occur when the
oscillating electrons collide with the plasma ions. Inverse
bremsstrahlung is considered one of the main processes of
laser energy absorption for plasma heating and compression in
laser fusion schemes [11], and has been approached by several
authors in the past. Relevance should be given to the classical
work by Silin [12], and Zel’dovich and Raiser [13], with further
extensions by Seely and Harris and others [14–17]. Here we
treat the problem for a generic relativistic quantum plasma,
where electron recoil effects are retained and the usual dipole
approximation is not possible. Quantum relativistic models
of inverse bremsstrahlung in vacuum are known for many
years [18–20], and the validity of the dipole approximation
was discussed by [21]. In our present formulation, plasma
dispersion effects in the electron quantum states will also be
included.

For simplicity, we use the Klein-Gordon (KG) equation to
determine the quantum electron states in the field of the intense
wave in a plasma. With such a description we retain plasma

dispersion but neglect spin effects, which can be assumed
negligible for unmagnetized plasmas. We are also unable to
describe the coupling between the electron and positron fields,
but this is irrelevant in most laser plasma interactions. The
same procedure can easily be extended to the Dirac solutions,
which are formally similar and available.

A complete understanding of the relativistic quantum
effects associated with intense laser plasma interaction should
necessarily include spin and electron-positron coupling. How-
ever, it is known that both effects only become significant
if the incident laser photons have an energy close to twice
the electron rest energy, or h̄ω ∼ 2mc2. It is also known that
creation of electron-positron pairs from vacuum will occur for
ultrahigh laser intensities, when the laser electric field becomes
close to the Schwinger limit, Ecr = 1.3 × 1018 V/m. This
means that the present approach based on the KG equation
will stay approximately valid for laser frequencies and field
amplitudes well below these two limits, which is compatible
with the existing intense laser sources, and to those foreseen
in a near future. A detailed analysis of the various aspects
associated with relativistic quantum plasmas can be found in
a recent review [3].

The structure of the paper is the following. In Sec. II, we
derive the KG solutions for the electron wave functions in a
plasma, in the field of an intense wave, and in the absence of
collisions. These solutions are then used, in Sec. III, to derive
an expression for the transition probabilities between electron
momentum states, induced by the presence of electron-ion
collisions. The interaction potential is treated as a perturbation.
The Yukawa potential is used, where the purely Coulomb
interactions are modified by the Debye screening. Such a
screening effect could be important for intense laser fields,
leading to a significant amplitude of the driven electron
oscillations. The transition probabilities are then used, in
Sec. IV, to derive a general expression for the effective
collision frequency, which characterizes the bremsstrahlung
process. Our results are discussed in the nonrelativistic or low
intensity, and the ultrarelativistic or high intensity wave limits,
and comparison is made with previous results known in the
literature. Finally, in Sec. V, we state some conclusions.
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II. ELECTRON STATES IN A WAVE

In contrast with the usual approach, we consider plasma
dispersive effects, by following the method developed in
Ref. [7]. For simplicity, the electron quantum states are
described by using the Klein-Gordon (KG) equation. This
implies the neglect of spin effects and electron-positron
coupling, which is valid for isotropic plasmas and laser
intensities well below the Schwinger limit. We start by writing
the KG equation in natural units (h̄ = 1, c = 1), describing the
space time evolution of the electron wave function ψ , as

(i∂t + eV )2ψ = [(i∇ − eA)2 + m2]ψ, (1)

where −e and m are the electron charge and mass, V and A
are the scalar and vector potentials. We consider the electron
in an electromagnetic wave pulse, with frequency ω and wave
number k, such that

V = 0, A ≡ A(τ ) = A0f (τ ), (2)

where A0 is the wave amplitude and f (τ ) is a given function
to be defined later, which only depends on the variable τ =
t − (k · r)/ω. This is an useful and generic description of the
wave pulse, which is valid if the pulse shape is not strongly
deformed along propagation, and if the phase slippage inside
the pulse is small [22]. We can solve the KG equation for such
a field by assuming a solution of the form

ψ(r,t) = ϕ(τ ) exp(iq · r − iωqt), (3)

where q and ωq are constants, to be specified later. Replacing
Eqs. (2) and (3) in the wave equation (1), we obtain

−�2
pϕ′′ + 2i�qϕ

′ − [2e(A · q) + e2A2]ϕ = 0, (4)

where we have introduced the auxiliary quantities,

�2
p =

(
k2

ω2
− 1

)
, �q =

(
ωq − q · k

ω

)
. (5)

We notice that, in vacuum, the first term in (4) is absent,
because we have ω = k and �2

p = 0. But, in a plasma, we
have the dispersion relation [8],

ω2 = k2 + ω2
p

γa

, γa =
√

1 + a2, (6)

where ωp is the electron plasma frequency, γa is the relativistic
gamma factor in the wave field, and a = e|A0|/m is the
normalized wave amplitude. In this dispersion relation we
have retained the effect of self-induced transparency, which
is relevant for intense laser pulses, such that a � 1. It means
that we have �2

p = (ω2
p/γaω

2). In deriving Eq. (4) we have
also taken the advantage of the fact that q and ωq are arbitrary
constants, and have taken the particular choice,

ω2
q = q2 + m2. (7)

This allowed us to drop the mass term. In order to find a
simple analytical solution for Eq. (4), we can use an envelope
approximation, by assuming that

�2
p|ϕ′′| � |�qϕ

′|. (8)

This is less stringent than the usual envelope approximation
of nonlinear optics, where the additional factor �2

p < 1 is
missing, and can easily be justified for intense electromagnetic

wave pulses, due to the additional relativistic factor γa � 1.
Using an iterative approach where we first neglect the second
derivative term in (4), we can obtain ϕ(τ ) by integration. The
resulting wave-function solution can then be written in the
form,

ψ(r,t) = ψ0 exp[iS(τ ) + i(q · r − ωqt)], (9)

where the phase function S(τ ) resulting from such an integra-
tion is defined by

S(τ ) = −
∫ τ

{
F (τ ′) − �2

p

2�0
[F 2(τ ′) + iF ′(τ ′)]

}
dτ ′. (10)

where we have used the auxiliary function,

F (τ ) = 1

�q

[
e(A · q) + 1

2
e2A2

]
. (11)

This KG solution should be compared with the generalized
Volkov solutions of the Dirac equation, valid for electrons in
a plasma, and recently discussed by [7], in the limit �p → 0.
In this case, the above wave function ψ will be replaced by a bi-
spinor, which contains information on both the spin effect and
the electron-positron coupling. Spin contributions to the phase
function S(τ ) will also appear. But, apart from these important
qualitative changes, the present KG solution is formally similar
to the Volkov solutions, but generalizes it to include plasma
dispersion effects. A detailed comparison between the two
types of solutions is outside the scope of the present work.

As an example, let us consider the simple case of a linearly
polarized sinusoidal wave, such that A = A0e, where e is the
unit polarization vector, and f (τ ) = cos(ωτ ). In this case,
and retaining the dominant plasma dispersion corrections, the
phase function S(τ ) can be written as

S(τ ) 	 η
[
ωτ + 1

2 sin(ωτ )
] + ζ sin[ω(τ − τ0)] , (12)

where we have used τ0 = �2
p/2�0, and defined

ζ = e

�q

A0

ω
(q · e), η = e2

4�q

A2
0

ω
− �2

p

4�0
ζ 2ω. (13)

Performing the integration, and using Bessel expansions, we
obtain

exp[iS(τ )] = eiηθ
∑
n,m

Jn(ζ )Jm(η/2)ei(n+2m)θ , (14)

with θ ≡ θ (r, t) = (k · r − ωt). For simplicity, we neglect the
small correction associated with τ0. Similarly, we can consider
a circularly polarized wave. In this case, the result is

exp[iS(τ )] = e2iηθ
∑

n

Jn(ζ )einθ . (15)

These solutions for the electron wave function in the field of
an intense wave can now be used to calculate the transition
probabilities between different electron momentum states,
induced by collisions with the ions, as shown in the next
section.

III. TRANSITION PROBABILITIES

We have seen that, in the absence of collisions, the electron
quantum states in the field of an intense laser pulse with

063112-2



INVERSE BREMSSTRAHLUNG IN RELATIVISTIC . . . PHYSICAL REVIEW E 87, 063112 (2013)

frequency ω can be given by

ψq(r,t) = ψ̃qe
iθq eiSq (τ ), (16)

where ψ̃q is a normalization constant, and θq = (q · r − ωqt).
For circularly polarized light, this can be written in a more
explicit form as

ψq(r,t) = ψ̃qe
i(θq+2ηqθ)

∑
n

Jn(ζq)einθ . (17)

These wave-function solutions satisfy the orthogonality
relation,

〈ψq |ψq ′ 〉 ≡
∫

ψ∗
q (r,t)ψq ′(r,t)dr

= ψ̃∗
q ψ̃q ′

∑
n,n′

Jn(ζq)Jn′(ζ ∗
q ′ )In,n′ (q,q′), (18)

where we have introduced the integral,

In,n′ (q,q′) =
∫

e−i(θq−θq′ )e−2i(ηq−ηq′ )θ e−i(n−n′)θdr. (19)

At this point, it should be noticed that, in the usual dipole
approximation corresponding to k · r → 0, this would reduce
to

In,n′ (q,q′) = 2πei(n−n′)ωtδ(q − q′). (20)

If we now impose a time averaging over a time interval T �
1/ω much larger than the wave period, use the Bessel functions
addition theorem, and choose an appropriate value for the
normalization constant |ψ̃q |2, we obtain

|〈ψq |ψq ′ 〉| = δ(q − q′). (21)

We can easily verify that this normalization condition stays
valid for the general case, where k · r = 0. The general solution
for the electron wave equation is then a linear superposition
of these orthonormal quantum states. Let us now assume the
presence of a scalar potential, due to an ion located at r = 0,
as described by the Yukawa potential,

V (r) = Ze2

4πε0r
exp

(
− r

λD

)
, (22)

where Ze is the charge of the ion, λD = vthe/ωp is the electron
Debye length, and vthe the electron thermal velocity. The
electron quantum states become coupled by this collision
potential, and the electron wave function can be represented
by a superposition of quantum states, with time-dependent
amplitude coefficients Cq(t), as given by

ψ(r,t) =
∫

Cq(t)ψ̃qe
iθq eiSq (τ ) dq

(2π )3
. (23)

In order to determine the coefficients Cq(t), we replace this
general solution in the KG equation (1), where the electrostatic
potential V is determined by Eq. (22), and describes the Debye
screened electron-ion collision process. For very intense laser
fields, we can consider the potential V as a small perturbation,
and use a perturbative approach. The result is

i
dCq

dt
= −e

∫
dr

∫
dq′

(2π )3
V (r)Cq ′(t)e−i(θq−θq′ )−i(Sq−Sq′ ).

(24)

Let us now consider the explicit dependence of the exponents
in this equation on r and t . Assuming a circularly polarized
laser pulse and integrating in time, we obtain a result, valid for
long time scales as compared with the wave period, such that

Cq(t) = iπ
∑

n

δ(ωq ′ − ω′′
n)

∫
Cq ′ (t)Hn(q,q′)

dq′

(2π )3
, (25)

where we have introduced the interaction matrix elements
associated with the electron-ion collisions, as

Hn(q,q′) = eV (q′′
n)Jn(ζ ), (26)

with ζ = ζq + ζ ∗
q ′ . Here, V (q′′

n) is the Fourier transform of the
Yukawa potential,

V (q) =
∫

V (r)e−iq·rdr, (27)

calculated for the particular value q = q′′
n. The expression for

V (q) is well known and will not be explicitly written here. We
have also introduced the definitions:

ω′′
n = ωq + nω + 2(ηq − ηq ′)ω,

(28)
q′′

n = (q − q′) + nk + 2(ηq − ηq ′ )k.

For initial conditions such that, at t = 0, the electron momen-
tum state is well defined and Cq ′ = δ(q′ − qi), we can define
a transition probability between the initial state qi and a final
state q, as equal to T (q′ → q) ≡ |Cq(t)|2, or in a more explicit
form,

T (q′ → q) =
∑

n

T (n,q′ → q),

(29)
T (n,q′ → q) = π2|Hn(q,q′)|2δ(ωq ′ − ω′′

n),

where T (n,q′ → q) are the transition probabilities between
the two momentum states by absorption or emission of n laser
photons. This expression is one of the main results of the
present work, and it generalizes previously obtained transition
probabilities in many respects. In particular, they take into
account the recoil effects due to photon absorption, as well as
the Debye screening and rest mass effects.

Notice that, in the dipole approximation, the dependence of
Hn on the photon momentum would vanish, and the quantity q′′

n

would imply reduce to q′′ = (q − q′). As a result, the relevant
Fourier component of the Yukawa potential would reduce to
V (q′′), and would be independent of the number of absorbed or
emitted photons. The recoil effects associated with the inverse
bremsstrahlung process would vanish in this limit, and the
transition probability would be reduced to

T (n,q′ → q) = π2|V (q′′)|2J 2
n (ζ )δ(ωq ′ − ω′′

n). (30)

Even taken in this dipole approximation, the present results
still generalize those of [17], by retaining the Debye screening
and electron rest mass effects in the interaction.

IV. EFFECTIVE COLLISION FREQUENCY

An important feature of the inverse bremsstrahlung process
is that it can be characterized by an effective collision
frequency. This quantity determines the rate at which the
energy of the incoming laser pulse is dissipated by electron-ion
collisions. In order to derive such a quantity, we first introduce
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the electron kinetic equation with the collision terms associated
with the laser-induced electron-ion collisions. Using a detailed
balance equation for the electron momentum states, we can
easily get a kinetic equation of the form [17],

∂

∂t
fe(q) =

∑
n=0

∫
dq′

(2π )3
[T (n,q′ → q)fe(q′)

− T (n,q → q′)fe(q)]. (31)

Here we have a Boltzmann type of collision integral, due to
absorption or emission of n = 0 laser photons, with transition
probabilities determined by Eq. (30). Notice that, in general,
we have T (n,q′ → q) = T (n,q → q′), because the Fourier
transform of the Yukawa potential, V (q′′), is not symmetric
with respect to the exchange of q and q′. However, symmetry
is recovered in the dipole approximation.

Let us assume that the plasma is nearly in equilibrium at
a given temperature T , and that we can use the relativistic
Maxwell distribution,

fe(q) = Ce exp[−(ωq − m)/T ]. (32)

For simplicity we use Ce = 1 in our discussion, and drop the
Boltzmann constant kB by writing the temperature in energy
units. Noting the existence of delta functions δ(ωq ′ − ω′′

n) in
the expression of the transition probabilities, we can write

fe(q′) = fe(q)δn(q,q′),
(33)

δn(q,q′) = exp

{
−ω

T
[n + 2(ηq − ηq ′)]

}
.

Replacing this in the above kinetic equation, we can transform
it in

∂

∂t
fe(q) = fe(q)

∫
dq′

(2π )3
νcoll(q,q′), (34)

where we have introduced an effective collision frequency
determined by

νcoll(q,q′) =
∑

n

[δn(q,q′) T (n,q′ → q) − T (n,q → q′)].

(35)

An average collision frequency could then be defined from
here, as

〈νcoll〉 =
∫

dq
(2π )3

∫
dq′

(2π )3
νcoll(q,q′)fe(q). (36)

However, a slightly different definition has already been
introduced in the literature, related to the electron energy gain
in the laser field, which is given by

d

dt
〈ε〉 = 〈ε〉νeff, (37)

where 〈ε〉 	 mγa is the electron energy in the laser field. The
evolution of this quantity can be determined by using

d

dt
〈ε〉 =

∫
dq

(2π )3
ωq

∂

∂t
fe(q). (38)

Using Eq. (37), we can then define the effective collision
frequency as

νeff = 1

〈ε〉
∫

dq
(2π )3

∫
dq′

(2π )3
ωνcoll(q,q′)fe(q). (39)

Comparing with (36), we can see that νeff 	 〈νcoll〉. In order
to get a more explicit expression for the effective collision
frequency νeff , let us go back to the expression for the
transition probabilities T (n,q′ → q). Noting that they are
nonsymmetrical with respect to the exchange between q and
q′, we are led to the following result:

νcoll(q,q′) = π2e2
∑

n

{δn(q,q′) − Rn}|V (q ′′
n )|2

× J 2
n (η)δ(ωq ′ − ω′′

n), (40)

where we have used the Fourier transform of the Yukawa
potential V (q ′′

n ), and the asymmetry factor Rn is determined
by

|V (q ′′
n )|2 =

(
Ze

ε0

)2
λ4

D(
λ2

Dq ′′2
n + 1

)2 ,

(41)

Rn = (q − q′) + nk + 2(ηq − ηq ′)k
(q′ − q) + nk − 2(ηq ′ − ηq)k

.

This completely determines the inverse bremsstrahlung pro-
cess. In order to illustrate the importance of this result, let
us now discuss the nonrelativistic and ultrarelativistic limits.
First we consider the nonrelativistic case, which corresponds
to weak incident laser fields, such that a < 1. In this case, we
can use ωq 	 m + q2/2m, and

(ηq − ηq ′) 	 a2

4

[
m

ω2
k · (q − q′) − (q2 − q

′2)

2mω

]
. (42)

We can see that these terms can only be neglected in the limit
of very weak laser amplitudes, a2 � 1. On the other hand, an
estimate of the parameter ζ ≡ ζq + ζ ∗

q ′ leads to

ζ = λ

ω
, λ = a�p⊥, (43)

where �p⊥ is the variation in the perpendicular atomic
momentum due to the inverse bremsstrahlung process. It
can also be easily realized that, for weak laser fields, only
single-photon transitions are important. Assuming that ζ � 1,
we can then use the asymptotic expression for the Bessel
functions, J 2

1 (λ/ω) 	 (λ/2ω)2, and neglect the terms n � 1.
Finally, the quantities (28) become

ω′′
n 	 ωq + nω , q′′

n 	 (q − q′) + nk. (44)

These simplifications allow us to write the effective collision
frequency (40) in the low laser intensity limit, as

νcoll(q,q′) 	 π2e2

(
λ

2ω

)2

|V (q
′′
1)|2

{(
e−ω/T − R1

)
δ(� + ω)

−
(

eω/T − 1

R1

)
δ(� − ω)

}
, (45)

where � ≡ (ωq − ωq ′). This result strongly contrasts with
previous results obtained for a low intensity laser field. In
our case, even for a weak laser field, Debye shielding and
purely quantum effects associated with the electron recoil are
retained. Only in the extreme situation where we can ignore
the electron recoil and screening, ω � � and λ2

Dq
′′2
1 � 1,

we recover the well-known results of Silin [12,17]. The
corrections included in Eq. (45) for low intensities could be
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important, for instance, in the creation of plasmas by low or
moderate intensity x-ray beams [24].

To complete our discussion, let us also discuss the ultrarel-
ativistic limit of a very strong laser field, such that a � 1. In
this case, (42) is replaced by

(ηq − ηq ′) 	 a2

4

m2

ω2q2
k · (q − q′). (46)

It is clear that, in this limit, such a quantity cannot be neglected.
In what concerns the parameter ζ , we now have

ζ = λ′

ω
, λ′ = a

m

q
. (47)

It is now useful to take the limit λ′ � ω. In the case of intense
fields, the multiphoton processes with n � 1 will dominate. In
this limit, we can take Rn = 1 and use the development [17],
∑

n

J 2
n

(
λ′

ω

)
δ(� − nω) 	 J 2

x

(
λ′

ω

) ∑
n

δ(� − nω)

	 1

2
[δ(� − λ′) − δ(� + λ′)], (48)

where x = �/ω, and J 2
x is maximum for � = ±λ′. This is

formally identical to the result of [17] for the high intensity
laser pulse, if we replace in their results � by �, and λ by λ′,
respectively.

V. CONCLUSIONS

In this work, we have examined the loss of energy of a
laser pulse in a plasma by inverse bremsstrahlung, under the
relativistic quantum regime. This effect could be the dominant
absorption mechanism for intense laser plasma interaction.
Our approach is valid for a relativistic quantum plasma, if spin
effects and electron-positron pair production can be neglected.
This could be valid for most experimental situations using the
present state of the art laser systems. Our results are based on

solutions of the KG equation for the electron wave functions,
and can be easily generalized to take spin and pair effects by
using the generalized Volkov solutions recently derived for
electrons in a plasma [7].

General expressions for the transition probabilities between
different electron momentum states due to the existence
of a Yukawa potential describing electron-ion collisions in
the presence of Debye screening, and for the corresponding
effective collision frequency were obtained. In contrast with
the classical results by [12,17], our results retain Debye
screening and quantum recoil effects even in the low intensity
limit. For these reasons they could be appropriate for the
description of plasma creation by x-rays [23], where high-
energy photons are absorbed. Other possible applications of
the approach proposed here are high-harmonic generation [24]
and the generation of gamma rays by laser backscattering of
relativistic electron bunches [25]. The same methods can also
be extended to the case of inverse bremsstrahlung by two laser
fields, and to turbulence-induced laser absorption, as discussed
in a future work.

Finally, it should be noticed that intrinsic relativistic
quantum effects, such as those associated with spin and with
electron-positron coupling, were ignored in the present work.
They can only be understood by replacing the Klein-Gordon
description used here by a more complete Dirac description.
However, given the formal similarities between the present
KG solutions and generalized Volkov solutions of the Dirac
equation, as those defining for electron quantum states in a
plasma [7], it is not very difficult to envisage an upgrade of the
present model, rewriting it in terms of the appropriate Volkov
solutions.
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