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Scaling properties and intermittency of two-dimensional turbulence in pure electron plasmas
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When the cold nonrelativistic guiding center approximation is valid, the transverse dynamics of highly mag-
netized electron plasma columns confined in Penning-Malmberg traps is analogous to that of an incompressible,
inviscid, two-dimensional (2D) fluid whose vorticity corresponds, up to a constant of proportionality, to the axially
averaged electron plasma density. In this work intermittency phenomena in the freely decaying 2D electron plasma
turbulence are investigated through scaling properties of the probability density functions and flatness of spatial
vorticity increments, computed by analyzing the results of experiments performed in the Penning-Malmberg trap
ELTRAP. It is shown that the intermittency properties of the turbulence strongly depends on the initial conditions
and the relation of these results to the dynamics of the system is discussed.
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I. INTRODUCTION

Highly magnetized, pure electron plasmas confined in
Penning-Malmberg traps [1] can be used for experimental
studies of two-dimensional (2D) fluid turbulence.

The electron motion in these traps is characterized by well
separated time scales, i.e., the gyromotion period τc = 1/νc,
with νc = eB/2πm the electron gyrofrequency, the axial
bounce period τb = 2L/vth, the time scale of the transverse
drift motion τd , and the collisional time scale τcoll. Here, m

and −e are the electron mass and charge, respectively, B

is the strength of the magnetic field (uniform and directed
along the axis of the trap), L the trap length, and vth =
(T/m)1/2 the thermal speed of the electrons, with T the plasma
temperature. Under typical conditions of trapped electron
plasma experiments (see next section), the ordering of the
time scales is τc � τb � τd � τcoll. The time average of
the electron motion over cyclotron and bounce time scales
corresponds to the 2D transverse dynamics of longitudinal
electron columns.

Thus, operational conditions in such devices can be chosen
in such a way that the cold nonrelativistic guiding center
approximation is valid and the transverse dynamics of the
electron plasma is well described by the drift-Poisson equa-
tions [2,3],

∂n

∂t
+ v · ∇n = 0, (1)

v = −∇φ × B
B2

, (2)

∇2φ = en

ε0
, (3)

where n is the electron density, v the electric drift velocity,
φ the electrostatic potential, and ε0 the vacuum permittivity.
These equations are isomorphic to the Euler equations for
an ideal (incompressible, inviscid) 2D fluid with vorticity
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ζ = en/ε0B and stream function ψ = φ/B. With respect to
other systems used to investigate 2D flows, e.g., rotating tanks
[4], soap films [5], electrolyte layers [6,7], electron plasmas
provide the possibility to significantly reduce nonideal effects,
as no boundary layer exists, free-slip boundary conditions
hold, the velocity field is divergence-free, and viscosity effects
are almost negligible when the plasma is confined under
ultrahigh vacuum conditions (residual gas pressure below
10−8 mbar).

There are, of course, limitations to the 2D fluid analogy.
The most relevant effect is the occurrence of different drifts
near the plasma edge, due to the finite width of the parallel
velocity distribution. This problem has been first analyzed
theoretically and experimentally in Ref. [8]. The result is that
three-dimensional (3D) effects are negligible for all spatial
structures with scales above a certain limit. In its simplest
form this lower limit is λ2

D/L where λD = (ε0T/e2n)1/2 is
the Debye length. For the experiments reported in the present
paper the resulting scale length limit is well below 0.1 mm,
which is lower than the resolution of the optical diagnostics
(see next section).

A further indication of the validity of the 2D approximation
comes from numerical simulations. The transverse dynamics
of a confined non-neutral plasma and in particular the
formation and evolution of vortex structures in the 2D freely
decaying turbulence has been investigated with a variety of
approaches, e.g., particle-in-cell [9–12], fluid-Vlasov [13,14],
contour dynamics [15,16] simulations have been performed,
showing an excellent agreement with experiments. Extensions
of such methods have also been used to investigate the
transition to 3D regimes [17,18].

The free evolution of the system is typically characterized
by the rapid formation of a high number of small vortices,
which then interact through close encounters resulting in
merger events and emission of vorticity filaments, leading
eventually to the formation of a diffuse background. The
plasma tends to reach an equilibrium state, characterized by
a monotonically decreasing radial density profile, in which
all the small-scale structures are smeared out. This typical
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relaxation is sometimes halted when individual strong vortices
settle into a stable, rotating “crystal-like” pattern [19–21],
with a lifetime of hundreds of periods of the azimuthal
plasma rotation. A final azimuthally symmetric equilibrium
state is eventually reached through dissipative processes
on a collisional time scale. Different theories have been
developed in order to characterize the free relaxation of 2D
turbulence. Variational principles based on either minimization
of enstrophy (see, e.g., [22–24]) or maximization of entropy
(see, e.g., [14,25–27]) have been used to describe the evolution
towards relaxed states. In the so-called punctuated scaling
theory [28,29], the turbulent flow is assumed to be dominated
by well-separated strong vortices (following the Hamiltonian
dynamics of point vortices), “punctuated” by occasional
mergers of like-sign vortices. In order to characterize the
vortex crystal states, Jin and Dubin [30,31] developed the
so-called “regional” maximum fluid entropy theory. According
to this theory, the strong coherent vortices present in the flow
ergodically mix the background, which in turn affects the
dynamics of the strong vortices, “cooling” their chaotic motion
and driving them into an equilibrium pattern.

The scaling properties of 2D turbulence in electron plasmas
have been investigated in the last years through different
approaches. Kawai et al. [32] performed a spectral analysis
based on the Fourier transform and confirmed the inverse
energy and direct enstrophy cascades expected from classical
theories [33,34]. They also reported power law spectra E(k) ∝
k−α in the enstrophy cascade range with exponents between
3.5 and 5.2, larger than the expected value α = 3 and attributed
this discrepancy to the effect of the long persistence of high-
vorticity patches. Kawai and Kiwamoto [35] applied wavelet
transforms [36] to show that this allows one to effectively
discriminate the instrumental noise and to analyze the scaling
behavior of the electron density fluctuations. In [37] the
wavelet spectra for the coherent and the incoherent parts of the
flow of both enstrophy and energy were obtained. It was found
that the incoherent component does not contribute significantly
to the dynamical properties of the 2D electron plasma flow,
and is characterized by a near Gaussian probability density
function (PDF) of the vorticity and by an increasing spatial
wave-number spectrum. The wavelet spectral analysis of the
coherent part of the flow instead evidenced that most of the
enstrophy is contained at spatial scales of the order of �5 mm,
corresponding to the typical size of the persistent vortices in
the flow.

The dynamics of the freely decaying 2D turbulence in
electron plasmas has been recently studied [38] by applying
the proper orthogonal decomposition (POD) [39] to the results
of experiments performed in the Penning-Malmberg device
ELTRAP [40]. The POD is generally used to identify coherent
structures and describe their contribution to the dynamics
of the system. The technique provides a basis of functions
for the mode decomposition of an ensemble of observations
obtained from experiments (or numerical simulations). The
POD analysis of electron plasma 2D turbulence enabled one
to identify the coherent structures which give the dominant
contribution to the plasma turbulent evolution, starting from
different initial conditions for the electron density.

This work focuses on the intermittency phenomena as-
sociated with the 2D turbulence in pure electron plasmas.
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FIG. 1. Schematic of the Penning-Malmberg trap ELTRAP. The
inner cylinders are grounded, while a (negative) potential Vplug is
applied to the end plugs. A uniform magnetic field B is directed
along the axis of the trap. The electron source (S) on the left is a spiral
thermionic cathode, biased at a negative voltage Vb with respect to a
grounded grid (G). The voltage drop across the filament is denoted
by Vf . The optical diagnostics on the right comprises a phosphor
screen (P) biased at a high positive potential Vph and a CCD camera
(activated by an external trigger synchronized with the dump of the
plasma).

These phenomena are investigated by analyzing the results
of experimental sequences obtained in ELTRAP, similar to
those used for the POD analysis. The characterization of the
intermittency is performed by analyzing the scaling properties
of vorticity increments’ statistics by means of the PDFs and
the flatness. The dependence of the intermittency properties
of the 2D electron plasma turbulence on the initial conditions
has not been previously studied in the literature.

The article is organized as follows. The experiments are
described in Sec. II. The data analysis techniques and the
results are presented in Sec. III. Section IV is devoted to
conclusions.

II. EXPERIMENTS

The experimental results reported in the present paper on
the formation and the evolution of coherent structures in an
electron plasma have been obtained in the Penning-Malmberg
trap ELTRAP. A scheme of the experimental apparatus is
shown in Fig. 1. The electrons are contained in a set of
cylindrical electrodes, with internal radius RW = 4.5 cm.
Eight electrodes have a length of 9 cm and two electrodes

FIG. 2. Snapshots of the plasma density for the two analyzed
sequences. (Top row) Experimental sequence with an annular initial
density profile. The potentials of the cathode source are Vb = 0.8 V
and Vf = −4.1 V. (Bottom row) Experimental sequence with a spiral
initial density profile. The potentials of the cathode source are Vb =
−15 V and Vf = −3.6 V. The trapping time is indicated at the bottom
left corner of each frame. For both sequences the magnetic field
is B = 0.117 T and the residual neutral gas pressure is p � 3 ×
10−9 mbar.
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FIG. 3. Contour plots of the vorticity increments �ζ
(x)
l (x,y) (grayscale bars, arbitrary units) for annular initial conditions, trapping times of

t = 2 μs (first row), t = 80 μs (second row), t = 240 μs (third row), t = 400 μs (fourth row), and for different spatial separations l: l = 0.98 mm
(left column), l = 4.9 mm (center column), l = 9.8 mm (right column). The coordinates of the trap axis are x = 35 mm and y = 24 mm.

with length 15 cm are divided into two and four electrically
isolated azimuthal sectors, respectively. They can be used
for active manipulation and control of plasma rotation and
shape [41–43].

A strong uniform magnetic field (up to 0.2 T) provides
the Lorentz force for radial confinement of the plasma, while
the axial confinement is provided by a suitable negative
potential (typical value −100 V) applied on two cylinders. The
apparatus is operated in an inject–hold-and-manipulate–dump
cycle, and the time evolution of the system is monitored by
means of an optical diagnostic system. During the injection
stage the cylinder close to the electron source (plug-in
electrode) is briefly grounded, allowing electrons emitted
from the source to enter into the trap. The electrons are
axially repelled by a potential applied to a second cylinder

(plug-out electrode). The plasma is then separated from
the source by means of a potential applied to the plug-in
electrode.

The confined plasma is diagnosed by detecting the time
evolution of the charge induced on different cylindrical
electrodes between the end plugs [44]. Plasma columns with
a length LP = 10–80 cm, and a radius RP � 2.0 cm can be
confined, with an electron density n = 106–107 cm−3 and a
temperature T = 1–10 eV. The characteristic length scales
of the system are the gyroradius ρL = vth/ωc ≈ 50–500 μm
and the Debye length λD ≈ 0.25–1 cm. The characteristic
frequencies are the cyclotron frequency νc ≈ 0.5–5 GHz, the
plasma frequency ωp/2π = (ne2/ε0m)1/2/2π ≈ 10–25 MHz,
the axial bounce frequency νb ≈ 0.5–5 MHz, and the az-
imuthal rotation frequency of the plasma νd ≈ 10–200 kHz.

063110-3



F. LEPRETI et al. PHYSICAL REVIEW E 87, 063110 (2013)

FIG. 4. The same as in Fig. 3 for spiral initial conditions.

After a given confinement time, the plug-out electrode is
grounded and the electrons are dumped onto a phosphor screen
kept at a high positive voltage (10–15 kV). The resulting
light is imaged with a triggered CCD camera. The intensity
of the light in each point on the snapshot is proportional
to the axially averaged plasma density n(x,y,t), with (x,y)
Cartesian coordinates in the plane transverse to the magnetic
field. The CCD camera has a resolution of 1376 × 1035 pixels
and a signal-to-noise ratio of 63 dB. In all images reported
in this paper the spatial resolution is �50 μm/pixel. The
optical measurement destroys the plasma, so that each image
is actually obtained with a different plasma. However, the
shot-to-shot reproducibility of the initial conditions is very
high (the maximum relative variation of the measured charge at
a given time is typically less than 0.1%), so that the transverse
dynamics of the plasma can be accurately reconstructed by
keeping the injection parameters fixed and increasing the
trapping (hold) time.

The electrons are thermally emitted by a spirally wound
thoriated tungsten filament (with a diameter of 2.54 cm) [45],
heated with a constant current and biased with respect to a
grounded grid (see Fig. 1). The potential varies as Vk(r) =
Vb + Vf (r/Rk)2, where Rk is the radius of the cathode, Vb

is the bias potential applied to the center of the cathode, and
Vf is the potential drop between the ends of the cathode [1]
(see Fig. 1). By adjusting Vb and Vf , different initial spatial
distributions of the electrons can be obtained.

The experimental sequences consist of N = 250 frames
with a trapping time step of 2 μs. The total duration
is much smaller than the electron-electron and electron-
neutral collision times, which are both a few tens of ms
for the experimental parameters used here. The plasma
density evolution for the sequences considered in the rest
of the paper is shown in Fig. 2. The first frame in both
sequences (corresponding to a trapping time τ = 2 μs) reflects
the shape of the initial density distribution. The diocotron
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FIG. 5. (Color online) PDFs of the normalized vorticity increments �ζl,st along the x (red dashed lines) and y (blue dash-dotted lines)
directions for annular initial conditions, trapping times of t = 2 μs (first row), t = 80 μs (second row), t = 240 μs (third row), t = 400 μs
(fourth row), and for different spatial separations l: l = 0.98 mm (left column), l = 4.9 mm (center column), l = 9.8 mm (right column). The
Gaussian PDFs with zero mean and σ = 1 are also shown for comparison (dotted curves).

(Kelvin-Helmholtz) instability rapidly leads to a nonlinear
evolution of the flow and to the development of turbulence.
Two types of initial conditions for the electron density, namely
annular and spiral configurations, have been considered (the
former case corresponds to −Vf > Vb > 0).

III. DATA ANALYSIS AND RESULTS

One of the fundamental tools to study the properties
of turbulent flows is the analysis of the statistics of field
increments (also field differences) calculated across different
scale separations. This provides information about intermit-

tency phenomena and presence of coherent structures such as
vortices, filaments, and shocks. For a turbulent field u(r,t)
the increments across a scale separation l are defined as
�ul (r,t) = u(r + l,t) − u(r,t). In this work, the properties of
the 2D vorticity ζ (x,y,t) are of interest. The spatial increments
of vorticity �ζ

(x)
l (x,y,t) and �ζ

(y)
l (x,y,t) in both x and y

directions are considered, namely

�ζ
(x)
l (x,y,t) = ζ (x + l,y,t) − ζ (x,y,t), (4)

�ζ
(y)
l (x,y,t) = ζ (x,y + l,t) − ζ (x,y,t). (5)
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The vorticity increments �ζ
(x)
l (x,y) along the x direction for

three values of the separation l and at four time instants during
the plasma evolution (the same as those considered in Fig. 2)
are shown in Fig. 3 for the annular initial condition and in Fig. 4
for the spiral initial condition. The increments �ζ

(y)
l (x,y) are

not shown as they have similar patterns.
In order to investigate the scaling properties of the statistics

of vorticity increments, the PDFs and the flatness function
are computed. These statistical methods have been applied
extensively to analyze turbulence in fluids (see, e.g., [46]
and references therein) and in plasmas (see, e.g., [47,48] and
references therein).

A first picture of how the vorticity increments’ statistics
change with the scale l can be obtained by looking at the
increments’ PDFs for different l values. In fact, one of
the signatures of intermittency is the change of the PDF shape
with the scale l. In order to compare in an effective way the
shape of the PDFs at different scales, normalized increments
are used, defined as

�ζl,st = �ζl − 〈�ζl〉
σ�ζl

, (6)

where 〈�ζl〉 and σ�ζl
are the mean value and the standard

deviation of �ζl , respectively.
More quantitative information about the scaling properties

of field increments in turbulent flows can be obtained from
the analysis of the so-called structure functions Sp(l), which
are defined as the moments of field increments, that is,
Sp(l) = 〈�ζ

p

l 〉, where 〈·〉 denotes in this case spatial averages.
Intermittency may be quantified by means of the flatness F (l),
which is defined as the ratio of the fourth-order moment to the
square of the second-order moment,

F (l) = S4(l)

[S2(l)]2
. (7)

The flatness is 3 for Gaussian PDFs, while in the presence of
intermittency F (l) increases as l decreases [46].

In the rest of this section the results obtained by the
application of these statistical methods to both sequences
shown in Fig. 2 are described. Several experimental sequences
have been recorded for both sets of initial conditions. The
data analysis yields results very close to those reported
here.

The PDFs of the vorticity increments for the annular initial
condition are shown in Fig. 5 for three values of the separation
l and at four time instants during the plasma evolution. Already
at t = 2 μs, i.e., very close to the initial condition, the PDFs
show a central core and large increment tails at all spatial
separations. It has been verified that the core, which is nearly
Gaussian, corresponds to background fluctuations, while the
tails are due to differences between high density values in the
structures and low density values in the background. The PDFs
show very little evolution over time. The only somewhat clear
change occurs at small scales (l = 0.98 mm) and it consists in
a slight broadening of the central core.

The flatness of the vorticity increments along the x and y

directions for the annular initial condition is shown in Fig. 6
for different trapping times. F (l) grows as l decreases down
to l ≈ 2 mm, but it does not change significantly with time, as

FIG. 6. (Color online) Flatness of the vorticity increments along
the x (top) and y (bottom) directions for the annular initial condition
and for different trapping times: 2 μs (red dotted lines), 80 μs (green
dashed lines), 240 μs (blue dash-dotted lines), 400 μs (black solid
lines).

already seen for the PDFs. Therefore, the growth of F (l) is not
due to the intermittency produced by the turbulent dynamics,
but can be attributed to the shape of the initial condition.
The noise of the optical diagnostics (see previous section)
may affect the statistical analysis of the field increments at
small spatial scales. This explains the decrease of F (l) to the
Gaussian value 3 observed for l < 2 mm. In [35] the statistics
of vorticity fluctuations for a sequence with annular initial
condition was analyzed by means of wavelet transforms. It was
found that the wavelet coefficients’ flatness shows only slight
systematic changes during the plasma evolution, in qualitative
agreement with the results shown here.

The results are quite different for the case of spiral initial
conditions. The PDFs (see Fig. 7) are nearly Gaussian at all the
considered separations for t = 2 μs. However, in contrast with
the previous case, a clear PDF evolution is found. As the time
increases, tails at large increments appear and become stronger
and stronger, especially at small spatial separations. The
deviation from the Gaussian shape increases going from large
to small scales, which indicates the occurrence of intermittency
in the turbulent dynamics.

This is confirmed by the flatness F (l) of the vorticity
increments (see Fig. 8). F (l) ≈ 3 at all scales for t = 2 μs, i.e.,
the vorticity fluctuations are Gaussian, as it could be expected
from the PDF shapes. As the plasma evolves, the flatness starts
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FIG. 7. (Color online) The same as in Fig. 5 for spiral initial conditions.

to grow going from large to small scales, down to l ≈ 1 mm,
and this growth is found to become stronger and stronger with
time. Therefore, at variance with the annular case, the observed
increase of the flatness at small scales is not a trivial effect
already present in the initial conditions, but it represents the
manifestation of the intermittency arising from the turbulent
dynamics of the plasma. The decrease of the flatness to the
Gaussian value 3 for l < 1 mm can be attributed also in this
case to the instrumental noise fluctuations.

IV. CONCLUSIONS

In this work, the statistical and scaling properties of 2D
turbulence in pure electron plasmas have been investigated

by analyzing the results of experiments carried out with the
Penning-Malmberg device ELTRAP. A comparison between
two types of initial conditions for the electron density, namely
annular and spiral configurations, has been performed. The
study focuses on the intermittency phenomena associated with
the turbulent dynamics and is based on the analysis of scaling
properties of vorticity increments’ statistics by means of PDFs
and flatness.

For the case of annular initial conditions it is found that the
statistics of the vorticity increments does not change signifi-
cantly during the plasma evolution. The scaling behavior of the
increments is basically determined by the initial conditions and
the plasma dynamics does not produce intermittency effects
expected from a developed turbulent cascade.
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FIG. 8. (Color online) The same as in Fig. 6 for spiral initial
conditions.

On the other hand, for the case of spiral initial conditions
the vorticity increments show nearly Gaussian statistics at
all spatial scales during the very early stages of the plasma
evolution, while the appearance of large increment tails in
the PDFs and the growth of the flatness at small scales (both
effects becoming stronger and stronger with time) indicate
the development of intermittency arising from the plasma
turbulent dynamics.

In previous works [32,35,37] the analysis of the char-
acteristics of the turbulent plasma evolution has been

performed starting from well-defined and quite similar initial
conditions (namely, annular). Here we have performed a
quantitative analysis of the intermittency properties, explicitly
highlighting the strong dependence on the initial conditions.
This dependence can be related to the dynamics underlying
the system evolution. It has been suggested that annular initial
conditions may lead to an evolution characterized by a low
turbulence level [49], and this may prevent the occurrence
of intermittency. It can be also useful to consider the POD
analysis performed in [38] for experimental sequences similar
to those studied here. The POD results indicate that for
annular initial conditions the POD modes with the major
enstrophy content are characterized by coherent structures
of size 5–6 mm and time evolution with regular oscillations
which can be attributed to the emergence of the fastest growing
diocotron modes originating from the initial density annulus.
For spiral initial conditions the POD analysis evidenced a more
uniform enstrophy distribution among the POD modes and the
coexistence of large-scale, coherent vortices and a background
of smaller scale vorticity structures in a broader range of
spatial scales. The time evolution of the mode coefficients was
found to be dominated by stochastic fluctuations, indicating the
presence of a fairly developed turbulent cascade process which
gives rise to the intermittency phenomena evidenced in the
present work.

The results of the analysis reported here suggest that a
systematic investigation of the initial density conditions should
be performed in order to characterize the parameters playing
a major role in the early dynamics of the flow and leading
to an evolution dominated either by the presence of coherent
structures (and possibly the formation of vortex crystal-like
states) or by a higher turbulence level. In this context, it
is to be noted that studies concerning the early system
dynamics are outside of the field of investigation of statistical
theories, which typically rely on the presence of global
constraints.
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and M. Romé, Phys. Plasmas 14, 102103 (2007).

[42] G. Bettega, F. Cavaliere, B. Paroli, R. Pozzoli, M. Romé, and
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