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A study of anisotropic heat transport in reversed shear (nonmonotonic q-profile) magnetic fields is presented.
The approach is based on a recently proposed Lagrangian-Green’s function method that allows an efficient and
accurate integration of the parallel (i.e., along the magnetic field) heat transport equation. The magnetic field lines
are described by a nontwist Hamiltonian system, known to exhibit separatrix reconnection and robust shearless
(dq/dr = 0) transport barriers. The changes in the magnetic field topology due to separatrix reconnection lead
to bifurcations in the equilibrium temperature distribution. For perturbations of moderate amplitudes, magnetic
chaos is restricted to bands flanking the shearless region. As a result, the temperature flattens in the chaotic bands
and develops a very sharp radial gradient at the shearless region. For perturbations with larger amplitude, shearless
Cantori (i.e., critical magnetic surfaces located at the minimum of the q profile) give rise to anomalous temperature
relaxation involving widely different time scales. The first stage consists of the relatively fast flattening of the
radial temperature profile in the chaotic bands with negligible flux across the shearless region that, for practical
purposes, on a short time scale acts as an effective transport barrier despite the lack of magnetic flux surfaces.
In the long-time scale, heat starts to flow across the shearless region, albeit at a comparatively low rate. The
transport of a narrow temperature pulse centered at the reversed shear region exhibits weak self-similar scaling
with non-Gaussian scaling functions indicating that transport at this scale cannot be modeled as a diffusive
process with a constant diffusivity. Evidence of nonlocal effective radial transport is provided by the existence of
regions with nonzero heat flux and zero temperature gradient. Parametric flux-gradient plots exhibit multivalued
loops that question the applicability of the Fourier-Fick’s prescription even in the presence of a finite pinch velocity.
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I. INTRODUCTION

Magnetic fields play a critical role in laboratory and
astrophysical plasmas. In particular, the use of magnetic fields
to confine high temperature plasmas is considered the most
promising mechanism for achieving controlled nuclear fusion.
Because of this, understanding heat transport in magnetized
plasmas is a current open problem in plasma physics research.
This problem is particularly challenging because, in general,
magnetic fields in three dimensions can have complex struc-
ture, including the possibility of being chaotic. Even in two
dimensions, where chaos is precluded in the time independent
case, the problem can be difficult due to the existence of non-
trivial magnetic field topologies involving the reconnection of
separatrices linking the hyperbolic points of the field. Beyond
the complications brought by the structure of the field lines,
the problem is difficult because heat transport in magnetized
plasmas is strongly anisotropic; typically, the parallel (i.e.,
along the field line) heat flux q‖ is many orders of magnitude
larger than the perpendicular heat flux q⊥. To make things
worse, in the low collisionality plasmas of interest to controlled
fusion, the closure relation of the parallel heat flux typically
involves nonlocal operators along the field line, turning the
parallel heat transport equation into an integero-differential
equation. To circumvent these difficulties, Refs. [1,2] proposed
a Lagrangian-Green’s (LG) function method that provides an
efficient and accurate algorithm for the solution of the heat
transport equation in the extreme anisotropic (q⊥ = 0) case.

The goal of this paper is to apply the LG method to the case
of reversed shear magnetic field configurations.

Reversed shear magnetic field configurations in toroidal
devices are characterized by a nonmonotonic poloidal rate of
rotation of the magnetic field as function of the minor radius
of the torus. These configurations are interesting for at least
two reasons. The first one has to do with the experimental
observation that these types of configurations typically exhibit
very robust transport barriers in toroidal plasma confinement
devices [3,4]. The second reason touches a fundamental aspect
of the connection between Hamiltonian dynamical systems
and magnetic field lines. As it is well known, the symmetry
of toroidal confinement devices, along with the divergence
condition ∇ · B = 0, imply that the equations describing
the field lines orbits are a 1 degree of freedom, possible
nonautonomous, Hamiltonian system in which the minor
radius and the poloidal angle of the torus correspond to the
canonical conjugate variables, and the toroidal angle plays
the role of “time.” Within this analogy, magnetic field lines
that foliate well-defined magnetic flux surfaces correspond to
integrable orbits, and chaotic field lines correspond to non-
integrable orbits of the Hamiltonian. Of particular theoretical
and practical interest is to understand when, why, and how the
transition from integrability to chaos takes place. Answering
these questions is the goal of Hamiltonian perturbation theory
of which the celebrated KAM (Kolmogorov-Arnold-Moser)
theorem is one of the main results [5]. However, it turns
out that this theorem, as well as other powerful results,

063106-11539-3755/2013/87(6)/063106(15) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.87.063106


DANIEL BLAZEVSKI AND DIEGO DEL-CASTILLO-NEGRETE PHYSICAL REVIEW E 87, 063106 (2013)

cannot be applied in the case of reversed shear magnetic
field configurations because the corresponding Hamiltonian
perturbation problem is degenerate at the shearless (dq/dr =
0) region where the Hamiltonian violates the twist condition.
This brings us back to the second reason why the reversed shear
problem is interesting. Namely, the destruction of magnetic
flux surfaces in the regions where the magnetic shear vanishes
is fundamentally different to what happens in regions where
the magnetic shear is finite. This result, which goes beyond the
specific plasma physics application, was originally discussed
in the more general context of area preserving Hamiltonian
nontwist maps in Refs. [6,7] where the resilience of shearless
KAM curves was numerically found and the transition to chaos
was shown to belong to a universality class different to the one
of the nondegenerate Hamiltonian systems. Application of this
generic Hamiltonian dynamics result to magnetically confined
plasmas include the early works in Refs. [8,9], and the more
recent studies reported in Refs. [10,11].

Going beyond these previous studies that limited attention
to the dynamics of the magnetic field, here we compute how
heat is actually transported when the Hamiltonian describing
the field lines is degenerate. In particular, we present the
first study on the role of separatrix reconnection and the
resilience of shearless barriers (two key signatures of nontwist
Hamiltonian systems) on heat transport in reversed shear
configurations. As mentioned before, our approach is based
on the LG method which allow the uses of general parallel
flux closures. Here we consider two cases. The first one is a
diffusive closure in which the parallel heat flux is proportional
to the local temperature gradient along the field line. The
second case corresponds to a nonlocal closure in which the
heat flux depends on the global temperature distribution along
the whole field line. This regimen is of importance in the
study of high temperature, low collisionality plasmas [12]. The
mathematical model adopted here to study this case is based on
fractional diffusion operators. These operators provide a uni-
fying framework to describe nondiffusive transport in plasmas
when the standard Fourier-Fick’s law fails to apply [13].

The specific problems that we address in the present
paper are: (i) The role of separatrix reconnection on heat
transport; (ii) the role of shearless Cantori on the relaxation
of the radial temperature profile; and (iii) nonlocal effective
radial transport. Separatrix reconnection is an ubiquitous
global bifurcation in nontwist Hamiltonian systems, see for
example [6,14–16] and references therein. Here we study how
the resulting changes in the magnetic field topology lead to
bifurcations in the steady state radial temperature profile. At
the threshold of the transition to chaos, magnetic field lines
trace Cantor-like fractal sets in the Poincare section. Following
the dynamical systems terminology [17], we refer to these
structures as “Cantori.” Our goal here is to study the role of
these partial barriers on the equilibration of the temperature
across the reversed shear region. Finally, regarding nonlocal
effective transport, we provide numerical evidence of the
violation of the Fourier-Fick’s prescription for the radial
transport of temperature.

The rest of this article is organized as follows. The next
section presents a review of the Lagrangian Green’s function
(LG) method. The reversed shear magnetic field model is
presented in Sec. III along with a discussion of the connection

with nontwist Hamiltonian systems. The core of the numerical
results are presented in Sec. IV. Section V contains the
conclusions.

II. LG METHOD FOR DIFFUSIVE AND NONLOCAL
FRACTIONAL PARALLEL TRANSPORT

In this section we review the method to compute heat
transport along magnetic field lines developed in Refs. [1,2].
The starting point is the heat transport equation

∂tT = −∇ · q + S, (1)

where q is the heat flux and S is a source. The flux is
decomposed into a parallel (along the magnetic field) and a
perpendicular component q = q‖b̂ + q⊥, where b̂ = B/|B|
is the unit magnetic field vector. Motivated by the strong
anisotropy typically encountered in magnetized plasmas (e.g.,
χ‖/χ⊥ ∼ 1010 in fusion plasmas, where χ‖ and χ⊥ denote the
parallel and perpendicular conductives) we limit attention to
parallel heat transport in the extreme anisotropic regime, i.e.,
we assume q⊥ = 0. To close the system, Eq. (1) needs to be
complemented with a relationship between the parallel heat
flux and the temperature,

q‖ = χ‖Q[T ], (2)

where Q denotes a general differential or integro-differential,
possibly nonlinear, operator. Substituting Eq. (2) into Eq. (1)
gives

∂tT + χ‖(∇ · b̂)Q = −χ‖∂sQ + S, (3)

where ∇ · b̂ = −(∂sB)/B, and ∂s = b̂ · ∇ denotes the direc-
tional derivative along the magnetic field line with s the
arc-length parameter. In deriving Eq. (3), we have assumed
that the parallel diffusivity is constant along the field line, i.e.,
∂sχ‖ = 0. Throughout this paper we neglect the second term on
the left-hand side of Eq. (3). That is, we assume |(∂sB)/B| �
|(∂sQ)/Q|, and write the parallel transport equation as

∂tT = −χ‖∂sQ + S. (4)

This approximation (known as toroidal ordering in fusion
plasmas) is commonly used in the study of magnetically
confined plasmas in the presence of a strong guiding field. In
particular, it is a good approximation in cylindrical geometry,
B = B0 + εB1, where B0 is a helical field for which ∂sB0 = 0,
and εB1 � B0. In the calculations presented here, ε ∼ 10−4

and |(∂sB)/B| ∼ 10−3.
The specific form of the operator Q depends on the physics

of the closure relating the heat flux and the temperature.
For high collisionality plasmas, parallel transport is typically
dominated by diffusion and a Fourier-Fick’s type local flux-
gradient relation of the form

Q[T ] = −∂sT (5)

is assumed. Substituting Eq. (5) into Eq. (1), leads to the
standard diffusion equation

∂tT = χ‖∂2
s T + S, (6)

for collisional transport along magnetic field lines.
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However, for low collisionality plasmas, the parallel flux
closure is in general nonlocal [12]. That is, the heat flux
at a point depends not only on the local properties of
the temperature (i.e., its gradient) but on the temperature
distribution along the whole magnetic field line. As a tractable
model to study nonlocal heat transport along magnetic field
lines, following [13], we consider the fractional diffusion
equation

∂tT = χ‖∂α
|s|T + S, (7)

where ∂α
|s| denotes the symmetric fractional derivative of order

α along the field line, defined in Fourier space as

∂̂α
|s|T = −|k|αT̂ , (8)

where T̂ = ∫ ∞
−∞ eiksT (s)ds denotes the Fourier transform. For

α = 2, ∂α
|s|T formally reduces to the diffusion operator ∂2

xT .
For 1 � α < 2, the nonlocal flux closure corresponding to the
fractional diffusion model in Eq. (7) is

Q[T ] = −λα

π

∫ ∞

0

T (s + z) − T (s − z)

zα
dz, (9)

with λα = −π (α − 1)/[2�(2 − α) cos(απ/2)], where � de-
notes the Gamma function. For α = 1, the fractional flux
closure in Eq. (9) reduces to the free streaming case [12].

Figure 1 illustrates the LG method proposed in Refs. [1,2]
for the solution of the anisotropic heat transport equation for
a time-independent magnetic field in the limit q⊥ = 0. Given
an initial temperature distribution T0(r) = T (r,t = 0), and a
source S(r,t), the temperature at a given point in space r0, at
a time t , is obtained by summing all the contributions of the

T0 r ( )

S r , t( )

r 0

S s,t( )s,t T0 s( )

s2s1 s = 0

FIG. 1. (Color online) Schematics of Lagrangian-Green’s func-
tion (LG) method [1,2]. When q⊥ = 0, the temperature at point r0,
at time t , depends only on the heat transported along the unique
magnetic field line passing through r0. The problem then reduces
to the solution of a 1D transport problem with initial condition
T0(r(s)) and source S(r(s),t), where r = r(s) is the magnetic field
line trajectory parametrized by the arc length, with r(s = 0) = r0.
If Gα is the Green’s function of the transport operator, T (r0,t) is
computed directly by evaluating the integrals in Eq. (10).

initial condition and the source along the magnetic field line
path:

T (r0,t) =
∫ ∞

−∞
T0[r(s ′)]Gα(s ′,t)ds ′

+
∫ t

0
dt ′

∫ ∞

−∞
ds ′S[r(s ′),t ′]Gα(s ′,t − t ′), (10)

where Gα is the Green’s function of the parallel transport
equation, and r(s) denotes the magnetic field line trajectory
obtained from the solution of the initial value problem

dr
ds

= b̂, r(0) = r0, (11)

where s is the arc length.
As it is well known, in an unbounded domain, for α = 2,

G2 is given by the Green’s function of the diffusion Eq. (6),

G2(s,t) = 1√
2π

(χ‖t)−1/2 exp

(
− s2

4χ‖t

)
, (12)

and for general α, Gα is given by the Green’s function of the
fractional diffusion Eq. (7),

Gα = 1

(χ‖t)
1
α

Lα

[
s

(χ‖t)
1
α

]
, (13)

where

Lα(η) = 1

2π

∫ ∞

−∞
e−|k|α−iηkdk (14)

is the symmetric α-stable Levy distribution. The case α =
1, which corresponds to the commonly used nonlocal free
streaming closure, has the analytically simple expression

G1(s,t) = (χ‖t)−1

π

1

1 + (s/χ‖t)2
. (15)

The numerical implementation of the LG method requires
three elements: an ODE integrator for solving the field line tra-
jectories in Eq. (11), an interpolation procedure of the function
T0(r) on the field line, and a numerical quadrature to evaluate
the Green’s function integral in Eq. (10). These elements are
relatively straightforward to implement numerically, making
the LG algorithm a versatile, efficient, and accurate method
for the computation of heat transport in magnetized plasmas.
By construction, the method preserves the positivity of the
temperature evolution and avoids completely the pollution
issues encountered in grid-based algorithms. Also, because
of the parallel nature of the Lagrangian calculation, the
formulation naturally leads to a massively parallel implemen-
tation. In particular, the computation of T at r0 at time t

does not require the computation of T in the neighborhood
of r0, as it is the case in finite different methods, or the
computation of T at previous times. Further details on the
method and the numerical implementation can be found in
Refs. [1,2].

As mentioned before, throughout this paper we limit
attention to purely parallel transport. However, as discussed
in Ref. [18], the LG method can be extended to include
finite perpendicular transport, i.e., χ⊥ 
= 0. The key idea is
to formally include the perpendicular transport channel as
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part of an effective source S∗ = S + χ⊥∇⊥T in Eq. (7), and
use the formal LG solution in Eq. (10) to transform the heat
transport equation into an integro-differential equation. The
numerical solution of the integro-differential equation is based
on a semi-Lagrangian operator-splitting algorithm consisting
of two steps. The first step is the Eulerian solution of the
perpendicular transport equation, and the second step is the
solution of the parallel transport equation with source using
the LG method.

III. REVERSED SHEAR MAGNETIC FIELD MODEL AND
NONTWIST HAMILTONIAN SYSTEMS

We assume a periodic straight cylindrical domain with
period L = 2πR, and use cylindrical coordinates (r,θ,z). The
magnetic field is given by

B(r,θ,z) = B0(r) + B1(r,θ,z), (16)

where

B0 =
[

r

R

B0

q(r)

]
êθ + B0êz (17)

is a helical field with B0 constant, and B1(r,θ,z) is a
perturbation. The function q(r) in Eq. (17), known as the
safety factor, determines the shear of the helical magnetic
field, i.e., the dependence of the azimuthal rotation of the field
as function of the radius. In the present paper we assume

q(r) = q0

[
1 + λ2

(
r − 1√

2

)2]
, (18)

which, as shown in Fig. 2, is nonmonotonic in r and has
a minimum at r = rsl = 1√

2
. This implies a reversal of the

magnetic field shear which is positive for r < rsl , negative
for r > rsl , and vanishes at the shearless point r = rsl . For
the value of the model parameters, we take R = 5, B0 =1,
q0 =0.64, and λ = 3.0. The functional form of the q profile
and the parameter values were chosen to have the reversed
shear region in the middle of the computational domain (in

0 0.1 0.2 0.3 0.4 0.5
0.5

1

1.5

2

2.5

3

3.5

4

R2ψ

q

(a)

(b)

(c)

FIG. 2. (Color online) q profile in Eq. (18) as a function of radial
flux coordinate R2ψ in the reversed shear magnetic field configuration
used in the calculations. For a given m/n, resonances are located
where q(R2ψ) = m/n. For the values corresponding to (a), (b), and
(c) in the plot, there are two, one, and zero resonances, respectively.

the R2ψ variables) and to guarantee that modes with m/n < 1
exhibit two resonances. We assume that the perturbation B1

has no z component and write it as

B1 = ∇ × [Az(r,θ,z)êz], (19)

where the magnetic potential Az has the form

Az(r,θ,z) =
∑
m,n

Amn(r) cos

(
mθ − nz

R
+ ζmn

)
. (20)

To explain the connection of the reversed shear model with
nontwist Hamiltonian systems, recall that the magnetic field
line trajectories parametrized by λ, λ → r(λ), are determined
by the solution of the equations dr/dλ = Br , rdθ/dλ = Bθ ,
dz/dλ = Bz. For the magnetic field model in Eqs. (17)–(20)
this implies

dr

dλ
= 1

r

∂Az

∂θ
,

dθ

dλ
= B0

Rq(r)
− 1

r

∂Az

∂r
,

dz

dλ
= B0. (21)

Since B0 is assumed constant, the dynamics in the z direction
is trivial, and z = B0λ can be used to parametrize the field line
orbits. Doing this and defining

ψ = r2

2R2
, H (ψ,θ,z) = H0(ψ) + H1(ψ,θ,z), (22)

where

H0 = 1

R

∫
dψ

q(ψ)
, H1 = − 1

B0R2
Az(ψ,θ,z), (23)

the equations for the magnetic field lines for the nontrivial r

and θ components can be written as the canonical Hamiltonian
system

dθ

dz
= ∂H

∂ψ
,

dψ

dz
= −∂H

∂θ
. (24)

In the absence of a perturbation, B1 = H1 = 0, Eqs. (24)
are trivially integrable and

θ = θ0 + (ψ0)
z

R
, ψ = ψ0, (25)

where (θ0,ψ0) denotes the initial condition and

(ψ) = ∂2H0

∂ψ2
= 1

q(ψ)
(26)

is the unperturbed rotation frequency. The study of the fate
of these integrable orbits in the presence of the perturbation
H1 is the subject matter of Hamiltonian perturbation theory.
As it is well known, whereas some of the integrable orbits are
just slightly deformed when H1 
= 0, others are fundamentally
altered and can become chaotic. Determining how and when
the transition from integrability to chaotic behavior happens is
a highly nontrivial dynamical systems problem of key interest
to controlled fusion because of the favorable confinement
properties of nonchaotic magnetic fields. However, what
makes this problem particularly challenging in the case studied
in the present paper is that the nonmonotonicity of the q

profile in Eq. (18) implies that there is a value of ψ = ψsl

for which the shear of the rotation frequency vanishes, i.e.,
d/dψ = 0 at ψ = ψsl . Because of this, the nondegeneracy
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condition

∂2H0

∂ψ2

∣∣∣∣
ψsl


= 0, (27)

that is a cornerstone in the justification of key dynami-
cal systems results including the celebrated standard KAM
(Kolmogorov-Arnol-Moser) theorem [5], does not hold. As
originally discussed in Refs. [6,7], one of the main conse-
quences of the breakdown of the nondegeneracy condition
is the remarkable resilience of integrable orbits in shearless
regions which implies that transport barriers typically exist in
these regions. In the context of magnetically confined plasmas
this naturally leads to the conclusion that robust magnetic
flux surfaces typically form in reversed shear magnetic field
configurations as pointed out in Refs. [6,8] and subsequent
papers including Refs. [9–11]. In addition to the robustness
of shearless transport barriers, nontwist Hamiltonian systems
[i.e., systems that do not satisfy Eq. (27)] exhibit nontrivial
changes in the phase space topology due to separatrix
reconnection [6,14–16]. As mentioned in the Introduction, one
of the main goals of the present paper is to explore the role
on parallel transport of these two signatures of reversed shear
configurations, namely, the robustness of transport barriers and
separatrix reconnection.

The magnetic field perturbation in Eq. (20) is chosen so
that the function Amn(ψ) is peaked at the resonance(s) for
each (m,n). We recall that a resonance r∗ is defined by the
condition q(r∗) = m/n. Due to the nonmonotonicity of the q

profile, as Fig. 2 indicates, it is possible to have two, one, or no
resonances depending on the value of m/n. In the case when
there are no resonances for (m,n), Amn = 0. When there are
two resonances for a given (m,n), we take

Amn(r) = εa(r)(Amn,1 + Amn,2), (28)

where ε is a small free parameter and

Amn,i = Cmn,ir
m exp

[
−

(
r − r0i√

2σ

)2]
, (29)

for i = 1,2. The width σ controls the overlap of Amn,1 and
Amn,2, which increases near the minimum of the q profile,
where the resonances are close to each other. For the modes
used in the numerical simulations presented here, it was
observed that σ = 0.05 is sufficient to guarantee negligible
overlap. To guarantee the vanishing of the perturbation at
the boundary, and the existence of good flux surfaces there,
we assume a(r) = {1 − tanh[(r − 1)/0.05]}/2, which decays
exponentially fast near r = 1. The prefactor rm is introduced
to ensure the regularity of the perturbation at r = 0. The
constants

r0i = ri∗ − mσ 2

ri∗
,

(30)

Cmn,i =
(

1

r∗i

)m

exp

[(
ri∗ − r0i√

2σ

)]
,

for i = 1,2, are chosen to satisfy the conditions

dAmn,i

dr
(ri∗) = 0, Amn,i(ri∗) = 1, (31)

that guarantee that Amn,i has a maximum with unit amplitude
at the location of the resonance r = ri∗. Finally, in the case
when there is only one resonance for the mode (m,n),

Amn(r) = εa(r)Amn,1, (32)

where Amn,1 is given in Eq. (29) with i = 1.

IV. HEAT TRANSPORT IN INTEGRABLE, WEAKLY
CHAOTIC, AND FULLY CHAOTIC REVERSED SHEAR

MAGNETIC FIELDS

In this section we apply the Lagrangian-Green’s function
method to compute parallel transport in the reversed shear
magnetic field model in the integrable, weakly chaotic, and
fully chaotic regimes.

A. Separatrix reconnection and heat transport
in integrable fields

For single-mode perturbations the magnetic field is fully
integrable. However, the magnetic field topology can exhibit
bifurcations due to separatrix reconnection, and in this sub-
section we study the effect of these bifurcations on transport.
We consider a single mode with (m,n) = (2,3). Figure 3
shows the Poincare plots of the magnetic field in this case
for perturbation amplitudes ε = 1 × 10−4, ε = 3.95 × 10−4,
and ε = 9 × 10−4. The initial temperature distribution for
the transport calculation consisted of a linear profile of the
form

T0(ψ) = 1 − 2R2ψ. (33)

Figure 3 shows cuts along θ1 = 2.14 and θ2 = 2.96 of the
computed asymptotic, steady state temperature distribution.
As expected, plateaus in the temperature profile are observed
at the location of the resonant islands. Most importantly,
the separatrix reconnection characteristic of reversed shear
configurations leads to nontrivial bifurcations in the radial
temperature profiles. In particular, at the reconnection thresh-
old the temperature plateaus collide and, after reconnection, a
reverse gradient in the asymptotic temperature profile, due
to the meandering curves wrapping around the islands, is
observed.

B. Weakly chaotic fields and destruction of shearless
temperature transport barrier

When two modes are added the system ceases to be
integrable and chaotic field lines appear in the Poincare plots.
In the calculations we use two modes with the same amplitude
ε, and (m,n) = {(2,3),(7,10)}. As shown in Fig. 4, for ε =
10−4, a banded chaos regime (i.e., well-defined flux surfaces
flanked by chaotic bands) is observed in the Poincare plot. For
the larger amplitude ε = 3.38 × 10−4, the chaotic bands grow,
but a resilient shearless integrable flux surface is observed.
For ε = 5 × 10−4 the shearless flux surface breaks and the
magnetic field exhibits widespread chaos. The steady state
temperature profiles in Fig. 4 reflect the chaotic structure of
the field lines. In particular, for ε = 10−4, the banded chaos
in the magnetic field gives rise to two temperature plateaus,
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FIG. 3. (Color online) Bifurcations in the steady state radial temperature profiles due to separatrix reconnection in the magnetic field
as function of the perturbation amplitude ε and initial temperature distribution in Eq. (33). The left column shows the Poincare plots for
single-mode perturbations with (m,n) = (2,3) and (a) ε = 1 × 10−4, (d) ε = 3.95 × 10−4, and (g) ε = 9 × 10−4. The middle (right) column
shows the corresponding θ1 = 2.14 (θ2 = 2.96) cuts of the asymptotic steady state temperature profiles.

resulting from the strong mixing in the chaotic regions,
separated by a temperature gradient maintained by the flux
surfaces in the reversed shear region. Near the threshold
for the destruction of the shearless flux surface, i.e., for
ε = 3.38 × 10−4, the two chaotic mixing plateaus expand
and approach each other but a very sharp temperature
gradient separating the two regions is observed. For the larger
amplitude ε = 5 × 10−4, the destruction of the shearless flux
surfaces gives rise to the merging of the two temperature
plateaus and to the creation to an extended, albeit noisy,
plateau in the temperature profile.

C. Shearless Cantori and multiscale temperature relaxation

At the threshold of the transition to chaos, magnetic field
lines trace Cantor-like fractal sets in the Poincare section. This
is a generic property of chaotic Hamiltonian systems [17,19].

Following the dynamical systems terminology, we refer to
critical magnetic surfaces at the reversed shear region as
“shearless Cantori.” Cantori are partial barriers in the sense
that although they do not fully confine the magnetic field,
transport across them can be anomalously slow. The goal of
this subsection is to study the role of these structures on the
effective radial transport of heat.

Figure 5 shows the Poincare plot and the corresponding
asymptotic χ‖t = 106 temperature distribution in the presence
of the 17 modes

(m,n) = {(2,3),(7,10),(4,5),(9,10),(13,15),

(12,13),(3,4),(11,12),(14,15),(7,8),(8,9),

(11,13),(6,7),(11,10),(14,17),(5,6),(9,11)}, (34)

with amplitude ε = 3.75 × 10−4. Although for this amplitude
most of the field lines are chaotic, a robust shearless transport
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FIG. 4. (Color online) Heat transport in weakly chaotic and fully chaotic magnetic fields with two modes with (m,n) = {(2,3),(7,10)},
and initial temperature distribution in Eq. (33). The left column shows the Poincare plots, and the right column shows the corresponding
steady state radial temperature profiles. (a) and (b) Correspond to the banded chaos regime with perturbation amplitude ε = 10−4. (c) and (d)
Correspond to the threshold of the destruction of the shearless curve with ε = 3.38 × 10−4. (e) and (f) Correspond to the global chaos regime
with ε = 5 × 10−4.

barrier is still observed in the Poincare plot along with a
sharp temperature gradient in the reversed shear region. In this
case, the initial condition T0 consisted of the superposition
of a positive temperature pulse on the left and a negative
temperature pulse on the right of the q ′ = 0 line. Because
of the shearless barrier, there is no mixing of the positive
and negative temperature distributions. To study the role of
shearless Cantori, the previous calculation was repeated with
a slightly increased amplitude ε = 4.1 × 10−4. The resulting
Poincare section is shown in Fig. 6 for a single field line with

500 crossings (left panel) and for 600 crossings (right panel).
The key point to observe is that, although there are no transport
barriers for this amplitude, the migration of the chaotic field
lines across the reversed shear region is retarded due to the
existence of partial transport barriers. This phenomenon is
related to the anomalous escape rate of magnetic field orbits
discussed in Ref. [20].

Given the nature of the field lines depicted in Fig. 6,
we expect heat flux across the reversed shear region to be
anomalously slow. To study this, we consider the evolution
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FIG. 5. (Color online) Robustness of shearless magnetic flux surface and radial heat transport barrier in the presence of the modes in
Eq. (34) with perturbation amplitude ε = 3.75 × 10−4. (a) The Poincare plot for two magnetic field lines: one started at the left of the reversed
shear region, and the other started at the right of this region. Despite the widespread chaotic behavior exhibited by the two field lines, a
resilient shearless flux surface precludes the crossing between these two regions. As a result, the radial temperature profile at θ = 2.14,
shown in (b), exhibits a sharp gradient. The two vertical lines on (a) indicate the radial region outside which a flat temperature distribution
is observed.

of an initial condition with a linear profile of the form in
Eq. (33), and compute the evolution of the radial temperature
profile averaged in z and θ , 〈T 〉(ψ), and the corresponding
radial flux

〈q · êψ 〉 = − 1√
2ψ

d

dt

∫ ψ

0
〈T 〉dψ ′, (35)

obtained directly from the continuity equation. The evaluation
of the flux in Eq. (35) is numerically challenging because
the radial profile 〈T 〉(ψ) can be noisy in chaotic regions
(e.g., Figs. 4 and 5). For short time scales (relative to the
slow evolution of the mixing) this can give rise to a small
signal to noise ratio in the computation of the time derivative.

For example, the change of the radial temperature in the
time window χ‖t ∈ (107,107 + 105) is practically undistin-
guishable from the noise level. A numerically accessible and
robust way to circumvent this problem is to approximate the
flux 〈q · êψ 〉 at time χ‖t by its average qavg over the interval
[χ‖t − �t,χ‖t + �t],

qavg(χ‖t,�t) = 1

2�t

∫ χ‖t+�t

χ‖t−�t

〈q · êψ 〉(s)ds

= − 1

2�t

1√
2ψ

∫ ψ

0
〈T 〉(χ‖t + �t)

−〈T 〉(χ‖t − �t)dψ ′. (36)
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FIG. 6. (Color online) Slow leak of magnetic field lines across the reversed shear region in the presence of the modes in Eq. (34) with
perturbation amplitude ε = 4.1 × 10−4. (a) The Poincare plot of a single magnetic field that remains confined to the left of the shearless region
by Cantori partial barriers for up to 500 crossings. As (b) shows, for 600 crossings the magnetic field eventually crosses to the right side. The
vertical lines are the same as those shown in Fig. 5.
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FIG. 7. (Color online) Short time behavior of anomalous temperature relaxation in the presence of shearless Cantori for the magnetic field
in Fig. 6. The right column shows the flux averaged over χ‖t ∈ [95,105] in (b), [950,1050] in (d), and [9500,10500] in (f). The left column
shows the corresponding temperature profiles at the endpoints of these intervals, e.g., T (χ‖t = 95,x) and T (χ‖t = 105,x) in (a) and so on.
Note that due to the small change in χ‖t , these profiles are practically undistinguishable. The vertical lines are the same as those shown
in Fig. 5.

The selection of the time interval �t is a subtle issue as it has to
be large enough to increase the signal to noise ratio and small
enough so that the change in time of the profile is captured
accurately. For short time scales, the temperature profiles 〈T 〉
tend to be smooth, but for large time scales they tend to be
noisy. Although this noise can be significantly reduced using

finer grids in (z,θ ), there seems to be an irreducible noise level
due to the nonergodicity of temperature mixing in chaotic
regions.

For relatively small time scales, e.g., χ‖t = 10k,k = 2,3,4,
we have observed that �t/χ‖t = 0.1 gives a good signal-to-
noise ratio in the computation of the flux. Figure 7 shows
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FIG. 8. (Color online) Long time behavior of anomalous temperature relaxation in the presence of shearless Cantori for the magnetic field in
Fig. 6. The right column shows the flux averaged over χ‖t ∈ [4 × 105,6 × 105] in (b), [4 × 106,6 × 106] in (d), and [4 × 107,6 × 107] in (f). The
left column shows the corresponding temperature profiles at the endpoints of these intervals, e.g., T (χ‖t = 4 × 105,x) and T (χ‖t = 6 × 105,x)
in (a) and so on. Note that due to the relatively small change in χ‖t , these profiles are very similar. The vertical lines are the same as those
shown in Fig. 5.

the numerically computed flux in this case along with the
corresponding radial profiles. It is observed that the averaged
flux in the time interval [95,105] is peaked in the chaotic
regions on the left and right of the reversed shear region, and
has a minimum in the middle where the shearless Cantori
are present. For later times, it is observed that, once the
temperature begins to flatten in the left and right chaotic

bands, the radial flux bifurcates and exhibits a maximum in
the reversed shear region.

To account for the increase in the noise level of the profiles at
later times, we use �t/χ‖t = 0.5 to compute qavg(χ‖t,�t) for
χ‖t = 5 × 10k,k = 5,6,7. The results in this case are reported
in Fig. 8. It is observed that, in this time scale, the temperature
profiles are flat in the chaotic bands and the transport is
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FIG. 9. (Color online) Spatio-temporal dynamics of average radial temperature profiles plotted in self-similar variables. The magnetic field
corresponds to the one in Fig. 6, and the initial temperature distribution is in Eq. (37). In (a), which corresponds to the local parallel flux closure
in Eq. (5), γ = 0.5. In (b), which corresponds to the nonlocal parallel flux closure in Eq. (9), with α = 1, γ = 1.

dominated by an anomalously slow erosion of the temperature
gradient in the reversed shear region.

D. Self-similarity and strong nonlocal radial
temperature transport

To study the spatio-temporal evolution of the temperature
profile in the reversed shear region in more detail, we consider
the transport of a localized initial temperature profile of the
form

T0 = exp

[
−R4(ψ − ψ0)2

σ 2

]
, (37)

with R2ψ0 = 0.25 and σ = 0.02. Of particular interest is to
compare the evolution of 〈T 〉 in the reversed shear case with
the results reported in Refs. [1,2] that assumed a monotonic q

profile. Also of interest is to explore the departures from the
Fourier-Fick’s diffusion paradigm due to nonlocal transport
processes.

In Refs. [1,2] it was observed that 〈T 〉 exhibits self-similar
evolution of the form

〈T 〉(ψ,t) = (χ‖t)−γ /2L(η), (38)

with scaling variable η = (ψ − ψ̄)/(χ‖t)γ /2, and scaling ex-
ponent γ . Subdiffusive scaling (γ = 1/2) was found for the
parallel diffusion closure in Eq. (5), and diffusive scaling (γ =
1) was found for the parallel fractional closure in Eq. (9) with
α = 1. As Fig. 9 shows, in the reversed shear magnetic field
case studied in the present paper, similar scaling exponents are
found, although the level of self-similarity is weaker as judged
by the poorer level of self-similar collapse of the profiles.

In the intermediate asymptotic regime, where self-
similarity is present, it is interesting to explore the shape
of the self-similarity function L(η). These functions are
shown Fig. 10 for the case of diffusive and α = 1 fractional
diffusive parallel closures. For comparison, we have also
included the corresponding results for the monotonic q-profile

case reported in Refs. [1,2]. As discussed in Refs. [1,2], in
the diffusive closure case, L is well fitted by an stretched
exponential function, whereas in the α = 1 fractional diffusive
parallel closure case, L exhibits algebraic decay. However, as
Fig. 10 shows, in the reversed shear case the behavior of the
scaling functions is different. In particular, clear scaling is only
observed in the reversed shear region where L is well fitted by
an exponential function.

Although as Fig. 9 shows, the scaling in the reversed
shear case is approximately self-similar, there are some
differences with the monotonic q case. One way to explore
these differences is to study the scaling of the fractional
moment

σ1/2 = (ψ − ψ̄)
1/2

, (39)

where f̄ = ∫
f 〈T 〉dψ/

∫ 〈T 〉dψ , that puts more weight on
the peak of the temperature distribution which is centered
in the reversed shear region. Figure 11 compares the time
evolution of the temperature maximum Tmax and σ1/2 for the
monotonic and nonmonotonic q-profile cases. A clear delay
in the decay of Tmax and in the growth of σ1/2 is observed.
This delay is a manifestation of the Cantori that, as discussed
before, slow down the transport process across the revered
shear region. As the algebraic fits in dashed lines indicate,
the self-similar evolution of 〈T 〉 starts around ∼χ‖t = 100 for
the nonmonotonic q profile versus the monotonic q profile
that starts around ∼χ‖t = 10. The fact that the self-similar
regime begins at a later time is expected since the Cantori
slow down the relaxation process, especially when the heat is
initially localized near the shearless region as is the case in
these simulations.

To further compare the nonmonotonic and monotonic q

cases, we compute the delay τ in the temperature evolution
defined by the condition

ft (τ ) = T nm
max(χ‖t + τ ) − T m

max(χ‖t) = 0, (40)
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FIG. 10. (Color online) Comparison between the numerically computed averaged radial temperature profiles (solid blue lines) and
corresponding fits (dashed red lines). The left column corresponds to the magnetic field configuration with monotonic q profile studied
in Refs. [1,2]. The column on the right corresponds to the reversed shear magnetic field case. (a) and (b) Correspond to the diffusive parallel
flux closure in Eq. (5), and (c) and (d) correspond to the nonlocal parallel flux closure in Eq. (9) with α = 1. The vertical lines are the same as
those shown in Fig. 5. In (b), χ‖t = 200, and in (d), χ‖t = 8.

where T m
max (T nm

max) denotes the temperature maximum in the
monotonic (nonmonotonic) q-profile case. To compute τ , we
used Newton’s method to solve Eq. (40). The result, shown in
Fig. 11, indicates that the delay scales approximately linearly
with t . A similar analysis can be applied to the 1/2 moment,
which as Fig. 11 shows, also exhibits a delay τ defined by the
condition

σnm
1/2(χ‖t + τ ) − σm

1/2(χ‖t) = 0, (41)

which scales approximately linearly with t .
To conclude this section we study the relation between the

radial flux in Eq. (35) and the radial temperature gradient

〈∇T · êψ 〉 = 1√
2ψ

∂〈T 〉
∂ψ

. (42)

Of particular interest is to test the applicability of the Fourier-
Fick prescription, according to which these two quantities
exhibit a linear relationship of the form

〈q · êψ 〉 = −χ〈∇T · êψ 〉 + V 〈T 〉, (43)

where χ is the effective diffusivity and V is an effective drift
velocity, know in plasma physics as a “pinch.” As discussed

in Refs. [1,2], one way to study this problem is to plot the
numerically computed flux and the gradient, along with the
flux-gradient parametric curves

C : ψ → [−〈∇T · êψ 〉(ψ),〈q · êψ 〉(ψ)]. (44)

These plots are shown in Fig. 12 for the case of parallel
diffusive closures and α = 1 parallel fractional diffusion
closures. The most striking feature observed is the presence of
a finite flux in regions where the gradient vanishes, something
that is also observed in Figs. 7 and 8. The only way to
make the results in Fig. 12 consistent with Eq. (43) is by
assuming the existence of a nonzero, spatially dependent pinch
velocity, i.e., V (ψ) 
= 0. However, the existence of such an
asymmetric pinch velocity is inconsistent with Fig. 8. This
is because according to Fig. 8, the steady state ∂t 〈T 〉 = 0
solution in R2ψ ∈ (0.05,4.5) is 〈T 〉 = constant, which implies
V 〈T 〉 = 0, i.e., V = 0. Having ruled out the existence of a
pinch velocity, the loops observed in the flux-gradient plots
in Fig. 12 provide further evidence of the inapplicability of
Fourier-Fick prescription unless an ad hoc spatial dependence
of χ is assumed. Although such an spatial dependence might be
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FIG. 11. (Color online) Temperature decay Tmax in (a), and growth of the fractional moment σ1/2 in (b), for monotonic and nonmonotonic
q profiles, corresponding to the simulation in Fig. 9. (c) and (d) The delay time τ of Tmax and σ1/2, respectively.

conceivable, the strongest argument against the Fourier-Fick
prescription is the existence of a finite flux in the presence of
zero gradient.

V. SUMMARY AND CONCLUSIONS

We applied a Lagrangian-Green’s (LG) function method
to solve the anisotropic heat transport equation in reversed
shear magnetic configurations characterized by nonmonotonic
q profiles. From the dynamical systems perspective, these type
of magnetic fields correspond to nontwist (degenerate) Hamil-
tonians known to exhibit robust transport KAM (Kolmogorov-
Arnold-Moser) barriers. As a result, reversed shear magnetic
field configurations typically have barriers to chaotic magnetic
field line transport in the vicinity of the extrema of the q

profile, i.e., shearless regions of the magnetic field. This key
property makes these configurations particularly attractive to
confinement, and an important problem in controlled nuclear
fusion research is to understand the role of magnetic chaos
suppression in shearless regions on heat transport.

Motivated by the extreme anisotropic encounter in fusion
plasmas, we focused on pure parallel transport (χ⊥ = 0).
A particularly challenging aspect of this problem is that

near-collisionless plasmas typically require the use of nonlocal
closures for which the parallel heat flux depends on the global
properties of the temperature distribution on the whole field
line, and not just the local gradient. To model this we used,
in addition to the standard local parallel diffusion equation, a
parallel fractional diffusion equation.

Our main goal was to study the implications to heat
transport of two key aspects of reversed shear magnetic
configurations: separartrix reconnection and robust shearless
flux surfaces. Separatrix reconnection is a generic property
of nontwist Hamiltonian systems leading to bifurcations in
the topology of the magnetic field lines in the reversed
shear region. By solving the anisotropic transport equation
for different parameters, we studied how the changes in the
magnetic field topology lead to bifurcations in the equilibrium
temperature distribution.

Like in the monotonic q case, the addition of several
resonant perturbations to reversed shear equilibria typically
leads to magnetic-field-line chaos through island overlap.
However, there are several key differences. In particular, in
reversed shear configurations, for perturbations of moderate
amplitudes, magnetic chaos is restricted to bands flanking the
shearless region and, before the central shearless magnetic
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FIG. 12. (Color online) Nonlocal effective radial transport corresponding to the simulation in Fig. 9. The left column corresponds to the
local diffusive parallel closure in Eq. (5), at χ‖t = 200 and the right column to the nonlocal free streaming closure in Eq. (9) with α = 1 at
χ‖t = 8. (a) and (b) The profiles of the flux and temperature gradient. (c) and (d) The corresponding flux-gradient parametric curves.

surface breaks, most of the magnetic field is already chaotic.
Here we have shown that, as a result, the temperature exhibits
intense mixing that locally flattens the radial profile in the
chaotic bands, and, at the same time, it exhibits a very sharp
radial gradient in the shearless region.

At the threshold of the transition to chaos, the Poincare
sections of critical magnetic field lines trace Cantor-like fractal
sets known as Cantori. Cantori are partial barriers in the
sense that they do not fully confine the magnetic field but
the transport across them can be anomalously slow. To explore
the role of shearless Cantori (i.e., critical magnetic surfaces
located at minimum of the q profile) on the radial transport of
temperature, we studied the relaxation of a linear temperature
distribution in a reversed shear chaotic magnetic field. We
observed that the relaxation is a multiscale process involving
widely different time scales. The first stage consists of the
relatively fast (χ‖t ∼ 102) flattening of the radial profile in the
chaotic bands flanking the reversed shear region. During this
stage, the flux exhibits two peaks centered in the chaotic bands,
and a minimum in the reversed shear region. This minimum
results from the anomalously slow leakage across this region

due to the presence of shearless Cantori. For practical
proposes, on this time scale, there is an effective temperature
transport barrier despite the fact that there are no magnetic
flux surfaces. However, once the temperature has fully mixed
in the chaotic bands, the flux develops a maximum in the
shearless region on the long time scale χ‖t ∼ 105. During this
second stage, heat starts to flow across the shearless, albeit at
a comparatively low rate. The final fully mixed state in which
the temperature is flat across the whole domain occurs occurs
on a long time scale of the order χ‖t ∼ 107.

To further explore the role of shearless Cantori, we con-
sidered the transport of a narrow temperature pulse centered
at the minimum of the q profile, for diffusive and fractional
diffusive parallel closures. In all cases, we observed that
the radial temperature profiles exhibit weak self-similarity,
with non-Gaussian scaling functions indicating that effective
radial transport at this scale cannot be modeled as a diffusive
process with a constant diffusivity. Related to this, we provided
evidence of nonlocal effective radial transport in reversed
shear chaotic fields. In particular, the numerical results showed
regions where the flux is finite but the gradient is zero. The
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possibility of invoking the existence of a pinch velocity to
describe this anomalous behavior of the flux is not fully
consistent with the data.
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