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Nature of laminar-turbulence intermittency in shear flows
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In pipe, channel, and boundary layer flows turbulence first occurs intermittently in space and time: at moderate
Reynolds numbers domains of disordered turbulent motion are separated by quiescent laminar regions. Based
on direct numerical simulations of pipe flow we argue here that the spatial intermittency has its origin in a
nearest neighbor interaction between turbulent regions. We further show that in this regime turbulent flows are
intrinsically intermittent with a well-defined equilibrium turbulent fraction but without ever assuming a steady
pattern. This transition scenario is analogous to that found in simple models such as coupled map lattices. The
scaling observed implies that laminar intermissions of the turbulent flow will persist to arbitrarily large Reynolds
numbers.
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I. INTRODUCTION

In fluid flow inertia has in general a destabilizing effect,
whereas viscous forces tend to quickly restore smooth motion.
The balance between the two is expressed in the dimen-
sionless Reynolds number Re = LU/ν, where L and U are
a characteristic length and velocity, respectively, and ν the
kinematic viscosity of the fluid. As Re is increased laminar
flows tend to be unstable, and in some special cases it is
even possible to determine a critical Reynolds number by
linearizing the governing equations. However, in shear flows
such as pipe, channel, and Couette flows turbulence occurs
in experiments for sufficiently strong perturbations [1–4] in
parameter regimes where the steady laminar flow is stable to
infinitesimal disturbances.

One of the striking features of linearly stable flows, first
recognized by Osborne Reynolds, is that disordered and
smooth motion can coexist [1]. Here turbulence is at onset
restricted to localized patches (called puffs in pipe flow)
embedded in a laminar background. Recently streamwise-
localized solutions of the Navier–Stokes equations that share
key spatial properties with puffs but are time-periodic have
been discovered [5]. Although turbulent puffs are transient
[6–9], spatial proliferation in the form of splitting can balance
the decay of individual puffs and lead to an overall sustainment
of turbulence [10,11]. The persistent turbulent state emerging
through this nonequilibrium phase transition, occurring at
Rec � 2040 [11], consists of a spatially temporally intermit-
tent flow where individual turbulent clusters are transient but
proliferate faster than they decay. At the same time turbulence
can only be sustained locally, driven by the upstream laminar
motion [12]. At the downstream end the pluglike velocity
profile needs to recover towards the laminar parabolic profile
before a new turbulent region can arise. This results in a
minimum spacing of turbulent clusters [13] and an effective
recovery length [14]. At higher Re puffs are superseded by
continuously growing structures called slugs [15], and it is
usually assumed that given sufficient time turbulence will
fill the entire pipe. This state depleted of laminar intermis-
sions will in the following be referred to as fully turbulent
flow.

Althoguh laminar-turbulent intermittency was first reported
in the early experiments of Reynolds [1], probably the first
quantitative characterization of intermittency in pipes was
provided by Rotta [16]. In his experiments he continuously
disturbed the flow at the pipe inlet to generate turbulence and
monitored its evolution at different downstream distances. He
quantified the turbulent fraction and concluded that a state
of fully turbulent flow would always be reached above the
critical Reynolds number Rec, which he speculated to be
about 2000 [16]. Wygnanski and coworkers later recognized
the intermittent nature of turbulence in the transitional regime
and concluded that a fully turbulent flow would be realized
at about Re � 2700 [15]. More recently the increase in
computing power has made it possible to numerically simulate
intermittent flows in spatially extended domains [10,11,17].
One advantage of simulations is that due to periodic boundary
conditions in the axial direction the dynamics of turbulent
patches can be studied for very long times, whereas in
experiments they are convected out. Using simulations in pipes
of up to 125 diameters in length, Moxey and Barkley [10]
argue that no laminar islands are found in turbulent flow
beyond Re � 2600. However, results from a model of pipe
flow, allowing for very long domains and observation times,
suggest that neither the transition to fully turbulent flow nor
the transition from puffs to slugs is sharp [14]. In this paper
we show that laminar-turbulence intermittency is an intrinsic
feature of shear flow. As the Reynolds number increases,
laminar regions become scarcer, yet they do not disappear
entirely. The underlying physical process has its roots in a
nearest neighbor interaction between turbulent regions.

II. NUMERICAL SIMULATIONS OF LONG
PERIODIC PIPES

A clear constraint of all previous investigations is the
limited observation times and pipe length accessible to
numerical simulation and laboratory experiment. In order to
estimate the dynamical behavior of pipe flow in the limit of
infinite length and time, we performed numerical simulations
of periodic pipes of up to 500 diameters in length and
considered observation times of up to 25 000D/U (D is the
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FIG. 1. (Color online) Coexistence of a puff and a slug at Re = 2600 in direct numerical simulations of pipe flow. The flow is from left to
right, and 125 diameters (D) of a 176D-long pipe are shown. (Top) Snapshot of streamwise vorticity in a (x,y) plane. (Bottom) Cross-sectionally
averaged streamwise vorticity q (dashed) and streamwise velocity U (solid) along the pipe axis.

pipe diameter and U the mean speed; the Reynolds number
is Re = DU/ν). The Navier-Stokes equations were solved in
cylindrical coordinates (r,θ,x) using the hybrid spectral finite-
difference method of Willis [18]. The numerical discretization
consists of a nonequispaced nine-point finite-difference stencil
in r and of Fourier modes in θ and x. The results for Re � 2800
have been obtained with up to N = 64 radial points and
M = ±36 azimuthal Fourier modes, whereas K = ±1024
axial Fourier modes have been used for a pipe length of
32πD � 100D. For Re > 2800 we used N = 64, M = ±48,
and K = ±1280.

The spreading of turbulence along the pipe was system-
atically studied by using the following procedure. First, a
puff was generated at low Reynolds number, e.g., Re = 2100,
from a localized perturbation. Subsequently, the Reynolds
number was impulsively changed to a prescribed value, and
the dynamics was monitored in time. Figure 1(a) shows a
snapshot of streamwise vorticity in a (x,y) plane at t �
75D/U after the Reynolds number was increased to Re =
2600. Although initially the localized puff appears to spread
continuously, as a slug, it later splits into two smaller turbulent
structures, the first one resembling a slug and the second
one a puff. Between them the cross-sectionally averaged
streamwise vorticity q = √〈ω2

x〉r,θ [dashed line in Fig. 1(b)]
rapidly approaches zero, whereas the streamwise velocity at
the centerline (solid line) slowly increases towards the laminar
value u = 2U but does not quite reach it. Our simulations
confirm previous experimental observations, which identified
mixed occurrences of puffs and slugs originating from single
localized perturbations [2,19] and suggest that the coexistence
of localized and expanding structures (i.e., puffs and slugs) is
intrinsic to pipe flow.

III. STATISTICAL ANALYSIS OF
LAMINAR-TURBULENCE INTERMITTENCY

In order to study the asymptotic behavior of the system, sim-
ulations started from a localized disturbance were continued
until the entire domain was filled with spatiotemporal inter-
mittency. The flow dynamics thereafter is shown in Fig. 2(a),
which is a space-time diagram of q(x,t) at Re = 2500. At
a given instant in time t , an x-constant cross section was
considered laminar if q(x,t) < q∗ = 0.3U/D. We note that
our threshold choice yields a puff size of 10D at Re = 2100,
which is consistent with results from previous experimental
studies considering the active part of the puff [12]. Note that
when streamwise velocity or pressure is considered, the length
of a puff is typically much longer due to the slow recovery of

the parabolic profile in the downstream direction [Fig. 1(b)].
Using this criterion the lengths of turbulent segments �x were
determined from each of the snapshots in Fig. 2(a), and a
collection of turbulent lengths li = �xi was generated. The
cumulative distribution of li is shown as left triangles in a
logarithmic vertical axis in Fig. 2(b) and is found to follow
an exponential law for lengths l � L0

t = 15D (patches longer
than a puff). At low Reynolds number (Re � 2200 at the time

0 10 20 30 40
Laminar length l

10
-2

10
-1

10
0

P(L>l)

2350
2400
2500
2600
2700
2800

0 100 200 300
Turbulent length l

10
-3

10
-2

10
-1

10
0

P(L>l) 2350
2400
2500
2600
2700
2800

0                                                                                     352 
0 

104 

FIG. 2. (Color online) Top: Space-time diagram of cross-
sectionally averaged streamwise vorticity q in a frame comoving
at 0.93U at Re = 2500. Dark blue corresponds to laminar flow and
red to intense turbulence. Middle: Cumulative distribution functions
of turbulent lengths at Re ∈ [2350,2800] in a vertical log scale.
Bottom: Cumulative distribution functions of laminar lengths at
Re ∈ [2350,2800] in a vertical log scale.
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scales considered here) spreading events (puff splitting) are
very rare. In the absence of these events the length distributions
are Gaussian-like about the average puff length. At higher
Reynolds number this behavior is still observed for short
patches l � L0

t .
The curves in Fig. 2(b) show turbulent length distributions

in the range Re ∈ [2350,2800]. As the Reynolds number in-
creases, turbulent patches become increasingly longer because
relaminarization of pipe sections becomes more infrequent.
The same analysis applied to the laminar gaps between
turbulent sections renders exponential distributions as well
[Fig. 2(c)]. Here also distributions are exponential only for
laminar gaps longer than the typical interaction length at which
puffs strongly influence each other [12,13]. At Re = 2350
this interaction length is about l � L0

l = 15D, whereas it
rapidly decreases as Re increases (at Re � 2700, L0

l � 1D).
We note that exponential distributions of the size of chaotic
and laminar clusters are a typical signature of spatiotemporal
intermittency and were previously reported in simulations of
coupled map lattices [20], convection in an annulus [21],
in the Taylor-Dean system [22], and in torsional Couette
flow [23]. Although the distribution of laminar lengths is
expected to be scale invariant (algebraic) at the onset of
sustained spatiotemporal intermittency (Rec � 2040 in pipe
flow), the relevant physical decay and spreading processes
occur at a time scale > 107D/U [11], clearly out of reach in the
simulations. Using very long simulations of a reduced model
of plane Couette flow, Manneville [24] has demonstrated that
laminar size distributions are algebraic at onset. More recently,
scale invariance at the onset of turbulence has been shown
from simulations of the Navier–Stokes equations for Couette
flow in a tilted domain [25]. In pipe flow, reduced models
that recover the main features of the transitional dynamics
have been also proposed [18] and might prove useful in
addressing this point. Here we checked that the laminar size
distributions are indeed exponential for Re � 2350, whereas
we found that for Re � 2300 our simulations cannot be used
to quantitatively estimate the distributions. Exploring this
low Re regime remains a challenge and would require time
integrations and domains substantially beyond those used in
this work.

The distributions of the form exp[(l − L0
t )/Lt ] in Fig. 2(b)

naturally define a characteristic turbulent length Lt at each
Reynolds number. The variation of the scale parameter Lt as
a function of Re is shown in a logarithmic vertical axis in
Fig. 3(a). As Re increases Lt grows strikingly fast [Fig. 3(a)].
The data are best approximated by a super-exponential fit of the
shape Lt = exp[exp(a + b Re)] and indicate, if extrapolated,
that no divergence of turbulent lengths occurs at a finite Re.
This result suggests that no continuously growing slugs exist,
but rather these split into smaller slugs after perhaps a very
long, but finite, time. Moreover, the fit approximates the data
well into the puff regime and hence provides a quantitative
link between localized and pipe-filling turbulent flow. In the
case of laminar gaps it was found that the analogous scale
parameter Ll decreases algebraically with Reynolds number
[see the inset in Fig. 3(a)], also supporting that fully turbulent
flow is reached only in the asymptotic Re limit. Note that
Ll is not the average laminar gap length because it does not
contain information about the part of the distribution which is
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FIG. 3. (Color online) Top: Characteristic turbulent size, corre-
sponding to the slope of the dashed lines in Fig. 2(c), as a function
of Re. The computational domain length is indicated in the legend.
Inset: Characteristic laminar gap length as function of Re. Bottom:
Skin friction coefficient Cf = −〈∂zp〉rθztD/(2ρU 2), where ρ is the
fluid density.

not exponential. For example, Ll ∼ 7.5D at Re = 2350, but
the average laminar gap length is Ll + L0

l = 22.5D.
We verified that the length distributions are independent of

initial conditions by starting simulations with turbulent flow at
large Reynolds number and quenching to the desired Re. These
lead to the same size distributions as the simulations started
from a single puff. Secondly, we repeated the simulations
for different pipe lengths. Again convergence to the same
distributions was achieved. Overall, the results show that the
asymptotic size distributions are independent of the pipe length
and initial conditions, and so they are an intrinsic property of
the system in the “thermodynamic limit.” Although lengths
(durations) of laminar and turbulent regions in pipe flow had
been previously investigated in experiments [15,16,26], the
observation times of <500D were too short to reach size
distributions which are in statistical equilibrium (see especially
Fig. 26 of Ref. [16]). Hence, the lengths of the observed
laminar episodes was likely controlled by the time scale
at which turbulence was spontaneously triggered by the
disturbance (obstacle) at the inlet.

While a variation of the cutoff q∗ discriminating laminar
from turbulent flow necessarily leads to a shift of absolute
values, the qualitative scaling remains unchanged. Regardless
of the choice, the characteristic turbulent (laminar) size scale
super-exponentially (algebraically) with Re. It was found that
turbulent distributions are more sensitive to the threshold value
than laminar ones, which remain almost unchanged.

The gradual transition from spatiotemporal intermittency
to fully turbulent flow is further illustrated in Fig. 3(b),
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FIG. 4. (Color online) Streamwise vorticity isosurfaces showing
the development of a laminar island in turbulent flow at Re = 2800.
The time snapshots are separated by 28D/U in a frame comoving
at the mean speed U . Here 23D out of a domain of 400D are
shown.

showing the skin friction dependence on Re. In contrast to
previous simulations [17] we do not observe an overshoot
of the Blasius curve as this is approached. This discrepancy is
likely due to numerical resolution. It is noted that to accurately
resolve friction values high numerical resolutions are required.
Here convergence was checked by independently increasing
the resolution in all directions until the difference between
computed frictions was below 0.5%. Beyond Re > 3000 the
flow rapidly converges to the Blasius friction law, whereas
for Re � 2300 it was not possible to reliably compute friction
values due to the extremely slow time scales at which puffs
merge, split, and annihilate each other to open laminar gaps
[11].

IV. TRANSIENT LAMINAR ISLANDS
IN TURBULENT FLOW

The development of a laminar island at Re = 2800 is shown
in Fig. 4 and illustrates the collapse of streamwise vortices in an
extended part of the flow domain. A similar phenomenon was
observed in minimal channels, where occasionally streamwise
vortices weaken across the entire domain and turbulent activity
temporarily ceases [27]. Our observation that laminar islands
keep emerging in the flow as the Reynolds number is increased
supports that quiescent regions are intrinsic to turbulent
shear flow in realistically long domains. Unlike in Couette
flows, where laminar-turbulent patterns have been suggested
to emerge as a wavelength instability of the fully turbulent
flow [28–30], in pipe flow laminar domains are found to
appear at random locations and times in the turbulent flow
[see Fig. 2(a)]. Our results are in agreement with recent
experiments in long pipes [13] which found random spacing
between puffs following Reynolds number reductions from
fully turbulent flow. The essence of this process is captured by
excitable and bistable media models [14]: the emergence of a

laminar gap depends here only on the state of turbulence in the
nearby region. The exponential size distributions of laminar
and turbulent lengths further suggest that laminar turbulent
patterns in pipe flow are the manifestation of a contact process
only asymptotically giving rise to fully turbulent flow. The
results presented here can be used to test and calibrate models
of pipe flow that have been recently developed following
different approaches [14,31,32].

V. DISCUSSION

The traditional view of equilibrium puffs giving way to
a regime of puff splitting and eventually to one of expanding
slugs [15,33] has originated from observations over time scales
typically accessible in laboratory experiments. While over
these time scales this picture appears to reflect the sequence
of events, it nevertheless obscures some of the most relevant
physics. Only the observation of a large number of events in
extended domains and over long times reveals that a uniform
state of turbulence (or fully turbulent flow) does not exist.
Instead strong spatiotemporal fluctuations are intrinsic to the
flow, including the extreme case where turbulence collapses
in some part of the domain. As we have pointed out elsewhere
[11], localized turbulent patches are also never in equilibrium;
i.e., they either grow or decay, and an equilibrium puff regime
does not exist either.

In conclusion, only one state of turbulence exists which is
that of a spatiotemporally intermittent flow exhibiting large
fluctuations. At low Re > Rec ≈ 2040 fluctuations manifest
themselves in sequences of laminar and turbulent regions,
whereas at Re > 3000 laminar events become so scarce that
turbulence flow will here appear as space filling but with
large fluctuations of intensity in space and time providing the
familiar turbulence intermittency still observed at Reynolds
numbers many orders of magnitude larger.
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[20] H. Chaté and P. Manneville, Physica D 32, 409

(1988).

[21] S. Ciliberto and P. Bigazzi, Phys. Rev. Lett. 60, 286 (1988).
[22] M. M. Degen, I. Mutabazi, and C. D. Andereck, Phys. Rev. E

53, 3495 (1996).
[23] A. Cros and P. Le Gal, Phys. Fluids 14, 3755 (2002).
[24] P. Manneville, Phys. Rev. E 79, 025301 (2009).
[25] L. Shi, M. Avila, and B. Hof, Phys. Rev. Lett. 110, 204502

(2013).
[26] K. R. Sreenivasan and R. Ramshankar, Physica D 23, 246 (1986).
[27] L. Xi and M. D. Graham, Phys. Rev. Lett. 104, 218301 (2010).
[28] A. Prigent, G. Grégoire, H. Chaté, O. Dauchot, and W. van

Saarloos, Phys. Rev. Lett. 89, 014501 (2002).
[29] D. Barkley and L. S. Tuckerman, Phys. Rev. Lett. 94, 014502

(2005).
[30] P. Manneville, Europhys. Lett. 98, 64001 (2012).
[31] M. Sipos and N. Goldenfeld, Phys. Rev. E 84, 035304 (2011).
[32] K. T. Allhoff and B. Eckhardt, Fluid Dyn. Res. 44, 031201

(2012).
[33] I. Wygnanski, M. Sokolov, and D. Friedman, J. Fluid Mech. 69,

283 (1975).

063012-5

http://dx.doi.org/10.1073/pnas.0909560107
http://dx.doi.org/10.1073/pnas.0909560107
http://dx.doi.org/10.1126/science.1203223
http://dx.doi.org/10.1126/science.1186091
http://dx.doi.org/10.1017/jfm.2011.189
http://dx.doi.org/10.1017/jfm.2011.189
http://dx.doi.org/10.1103/PhysRevE.84.016309
http://dx.doi.org/10.1017/S0022112073001576
http://dx.doi.org/10.1017/S0022112073001576
http://dx.doi.org/10.1103/PhysRevLett.100.124501
http://dx.doi.org/10.1103/PhysRevLett.100.124501
http://dx.doi.org/10.1017/S0022112008004618
http://dx.doi.org/10.1017/S0022112008003315
http://dx.doi.org/10.1017/S0022112008003315
http://dx.doi.org/10.1016/0167-2789(88)90065-6
http://dx.doi.org/10.1016/0167-2789(88)90065-6
http://dx.doi.org/10.1103/PhysRevLett.60.286
http://dx.doi.org/10.1103/PhysRevE.53.3495
http://dx.doi.org/10.1103/PhysRevE.53.3495
http://dx.doi.org/10.1063/1.1508796
http://dx.doi.org/10.1103/PhysRevE.79.025301
http://dx.doi.org/10.1103/PhysRevLett.110.204502
http://dx.doi.org/10.1103/PhysRevLett.110.204502
http://dx.doi.org/10.1016/0167-2789(86)90134-X
http://dx.doi.org/10.1103/PhysRevLett.104.218301
http://dx.doi.org/10.1103/PhysRevLett.89.014501
http://dx.doi.org/10.1103/PhysRevLett.94.014502
http://dx.doi.org/10.1103/PhysRevLett.94.014502
http://dx.doi.org/10.1209/0295-5075/98/64001
http://dx.doi.org/10.1103/PhysRevE.84.035304
http://dx.doi.org/10.1088/0169-5983/44/3/031201
http://dx.doi.org/10.1088/0169-5983/44/3/031201
http://dx.doi.org/10.1017/S0022112075001449
http://dx.doi.org/10.1017/S0022112075001449



