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Short-time behavior of advecting-diffusing scalar fields in Stokes flows
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This article addresses the short-term decay of advecting-diffusing scalar fields in Stokes flows. The analysis is
developed in two main subparts. In the first part, we present an analytic approach for a class of simple flow systems
expressed mathematically by the one-dimensional advection-diffusion equation w(y)∂ξφ = ε∂2

yφ + iV (y)φ −
ε′φ, where ξ is either time or axial coordinate and iV (y) an imaginary potential. This class of systems encompasses
both open- and closed-flow models and corresponds to the dynamics of a single Fourier mode in parallel flows.
We derive an analytic expression for the short-time (short-length) decay of φ, and show that this decay is
characterized by a universal behavior that depends solely on the singularity of the ratio of the transverse-to-axial
velocity components Veff (y) = V (y)/w(y), corresponding to the effective potential in the imaginary potential
formulation. If Veff (y) is smooth, then ||φ||L2 (ξ ) = exp(−ε′ξ − bξ 3), where b > 0 is a constant. Conversely, if
the effective potential is singular, then ||φ||L2 (ξ ) = 1 − aξν with a > 0. The exponent ν attains the value 5

3 at
the very early stages of the process, while for intermediate stages its value is 3

5 . By summing over all of the
Fourier modes, a stretched exponential decay is obtained in the presence of nonimpulsive initial conditions, while
impulsive conditions give rise to an early-stage power-law behavior. In the second part, we consider generic,
chaotic, and nonchaotic autonomous Stokes flows, providing a kinematic interpretation of the results found in
the first part. The kinematic approach grounded on the warped-time transformation complements the analytical
theory developed in the first part.
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I. INTRODUCTION

Mixing and transport in laminar flows admits several
important implications in the processing of very viscous
fluids for chemical and pharmaceutical applications [1,2]
and in microfluidic technology [3,4]. The advection-diffusion
equation is the fundamental Eulerian description of the inter-
action between a deterministic velocity field and stochastic
fluctuations that give rise to a term proportional to the
Laplacian of the scalar field [5]. For all the processes driven
by stochastic fluctuations possessing uncorrelated increments
(Wiener processes), the evolution of the probability density
function satisfies a forward Fokker-Planck equation [5], which
is essentially a particular form of an advection-diffusion
equation. Consequently, the understanding of the general
properties of the solutions of the advection-diffusion equation
has important implications in many different fields of physical,
biological, and social sciences: from soft-matter theory to
stellar dynamics [6], from biological systems [7] to economical
and financial models [8], from wave localization and propa-
gation in layered and nonlayered random media, to impurity
dynamics [9].

The research core in the field of advection-diffusion
processes in laminar flows has been focused on the long-
term asymptotic decay of scalar fields that is controlled by
the eigenvalue and eigenvector structures of the advection-
diffusion operator [10]. Several studies have also analyzed
the early-stage and intermediate mixing dynamics. Meunier
and Villermaux [11] analyzed the short-term decay of a
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concentration field in a vortex flow by focusing the attention
on the probability density function of the advected scalar
field. Ferreira de Sousa and Pereira [12] considered the early
decay of a scalar field in a two-dimensional tripolar vortex for
moderate values of the Schmidt number Sc ∈ (0.1,100), and
consequently of the Péclet number. Intermediate power-law
scalings of the norm of a concentration field have been also
observed experimentally in chaotic flows in the presence of
solid boundaries [13], and the effects of moving walls on
the intermediate scalar decay have been addressed [14]. At
these time ranges, the decay dynamics of a scalar field is a
consequence of the linear superposition of many eigenmodes,
and at the very early stages of all them, of the advection-
diffusion operator, and it depends strongly on the initial
condition since different initial conditions excite differently the
eigenvalue and eigenmode spectra. Transient mixing effects in
chaotic flows have been studied by Gleeson [15].

There is no general theory for the short-term properties of
laminar flow systems. Consequently, it is interesting to inves-
tigate whether the short-term properties of advecting-diffusing
scalars in Stokesian flows admit a universal behavior, at least
for a class of initial conditions of physical interest and, if so,
whether the early-stage dynamics could be predicted directly
from the properties of the advection-diffusion operator.

As in the case of the analysis of the asymptotic behavior,
a convenient strategy for addressing the early-stage prop-
erties could be the following: (i) first consider simple but
nontrivial model flows for which a theoretical analysis can
be performed analytically, and (ii) subsequently extend the
results so obtained to generic Stokes flows. In this article, we
follow this strategy in approaching the analysis of short-term
properties. In the first part of this article (Secs. III and IV), we
consider a class of model flows for which a fully analytical
interpretation of the early-stage dynamics can be developed.
This class is represented by (closed- or open-) flow systems
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in which the dynamics of the Fourier coefficients of the scalar
field decouples into a countable system of non-Hermitian
Schrödinger-type equations in the presence of an imaginary
potential.

Starting from the Schrödinger-type formulation, Giona
et al. [16–18] have derived several spectral properties of
advecting-diffusing systems, and the expression for the domi-
nant exponent controlling generically the exponential decay of
the norms of a scalar field as a function of the Péclet number
[17]. The imaginary potential formulation is suitable for
describing physically realizable magnetohydrodynamic mi-
cromixers [19], and for defining simple perturbation schemes
in order to predict the spectral properties in the low and
intermediate regions of Péclet number values [20]. As briefly
outlined in Sec. II, the mathematical description of channel
flows operating with time-pulsating inlets falls in the same
class of problems.

We show that the short-term (short-time or short-length,
depending on the operating conditions) behavior of simple
mixing systems is characterized by the occurrence of a univer-
sal decay of the L2-norm of scalar fields, the functional form
of which depends on the singularity of the effective potential.
The effective potential, introduced in Sec. III, is defined as the
ratio of the transverse-to-axial velocity components.

Gathering together modal dynamics, and weighting it
with respect to the Fourier coefficients associated with the
initial condition, it is possible to obtain a global prediction
of the norm decay for prototypical autonomous flows for
nonimpulsive and impulsive initial conditions. A stretched
exponential behavior is found for nonimpulsive conditions,
while impulsive conditions give rise to a power-law decay.

The second part of this article (Secs. V and VI) presents
the numerical results for the early-stage decay in prototypical
Stokes flow (lid-driven cavity flow, ABC flow), and develops
a simple kinematic interpretation of the results obtained. This
kinematic interpretation is fully predictive and confirms the
analytical results found in the first part of the article.

The article is organized as follows. Section II defines the
concept of short-term, intermediate, and asymptotic dynamics
in a simple physical way and introduces the basic model
equation, the concept of imaginary potential, and the dif-
ferent flow phenomenologies this equation can describe. The
Bohmian (modulus and phase) decomposition of the equation
is also reviewed. Section III analyzes the short-term properties
of the one-dimensional advection-diffusion equation in the
presence of an imaginary potential in the two relevant cases,
i.e., where the resulting effective potentials are a smooth versus
singular function of the position. The imaginary potential
formulation of the advection-diffusion equation describes the
evolution of the decoupled Fourier modes of prototypical
closed flow systems (such as the sine flow). As addressed
in Sec. IV, it is possible to predict the early-stage decay in
these systems for generic initial conditions (square summable,
impulsive), gathering the contribution of each mode, lead-
ing to typical stretched-exponential or power-law scalings.
Section V describes the numerical results obtained in physi-
cally realizable systems such as the lid-driven cavity flow, and
model systems (the ABC flow) giving rise to partial Lagrangian
chaos. A simple kinematic interpretation of the result found
in Sec. V is developed in Sec. VI, providing a fully predictive

model of the early-stage dynamics based on the warped-time
transformation. The kinematic approach agrees qualitatively
and quantitatively with the analysis developed in Sec. IV.

II. STATEMENT OF THE PROBLEM, MIXING REGIMES,
AND PROTOTYPICAL FLOW SYSTEMS

Let us consider a scalar field φ(x,t) defined in a closed
bounded mixing domain � (or on a boundaryless manifold),
and let v(x,t) be a time-periodic deterministic incompressible
velocity field. The evolution equation for φ(x,t) in the presence
of diffusion reads in dimensionless form as

∂tφ(x,t) = −v(x,t) · ∇φ(x,t) + ε∇2φ(x,t), (1)

where ε = Pe−1 is the reciprocal of the Péclet number. Let
||φ||L2 (t) and ||∇φ||L2 (t) be the L2 norms of φ and of its
gradient

||φ||L2 (t) =
[ ∫

�

φ2(x,t) dx
]1/2

,

(2)

||∇φ||L2 (t) =
[ ∫

�

|∇φ(x,t)|2 dx
]1/2

.

If � is bounded, the velocity field on the boundary ∂� of
� is at most tangential to the boundary, that is, v · n|∂� = 0
where n indicates the pointwise normal vector at ∂�, and
Eq. (1) is equipped with homogeneous Neumann conditions
∂φ/∂n|∂� = 0.

Since the quantity
∫
�

φ(x,t) dx = ∫
�

φ(x,0) dx = φ0 is
conserved, without loss of generality we can consider that
φ(x,t) possesses a vanishing initial mean, i.e., φ0 = 0. It
follows from Eq. (1) that

∂t ||φ||2L2 (t) = −2ε
||∇φ||2

L2 (t)

||φ||2
L2 (t)

||φ||2L2 (t). (3)

Therefore, the quantity ||∇φ||2
L2 (t)/||φ||2

L2 (t) is proportional
(modulus a proportionality factor equal to ε = Pe−1) to the
local decay rate of the norm of φ(x,t).

A. Mixing regimes: Early, intermediate,
and asymptotic dynamics

The focus of this article is on the early-stage dynamics
of an advecting-diffusing scalar field. A first basic issue to
be properly framed is therefore the definition of what early,
intermediate, and asymptotic mixing dynamics physically
mean. The definition of these three mixing regimes should
be unambiguous and based on the physical properties of the
interplay between advection and diffusion.

First, consider a classical example, namely, the time-
periodic sine flow [21] on the unit two-torus � = T 2 =
{(x,y) | 0 � x,y � 1}, equipped with periodic boundary con-
ditions at the end points. The velocity field is periodic in time
and given by the expression

v(x,t) =
{

v1(x) = [sin(2πy),0], t ∈ [0,Tp/2)

v2(x) = [0, sin(2πx)], t ∈ [Tp/2,Tp).
(4)

The parameter Tp represents the flow period. This simple
flow system has been extensively studied since, by changing
the flow period Tp, it is possible to modulate qualitatively
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and quantitatively the chaotic character of the Lagrangian
dynamics (metric and topological structure of the Poincaré
section, value of the Lyapunov exponent and of the topological
entropy, etc.) mimicking the properties of physically realizable
mixing systems.

As for any advection-diffusion problem at a finite value of
the Péclet number defined on a bounded closed domain or on
a boundaryless manifold such as the two-dimensional torus
in the presence of a smooth velocity field, the stroboscopic
Floquet operator P : L2(�) → L2(�) associated with the
advection-diffusion equation

P = e(−v2·∇+ε∇2)Tp/2 ◦ e(−v1·∇+ε∇2)Tp/2 (5)

is compact, and therefore it possesses a countable discrete
spectrum of eigenvalues. Therefore, the asymptotic decay of
any scalar field φ(x,t) solution of Eq. (1) for any ε > 0 is
necessarily exponential, and for generic initial conditions (i.e.,
apart from a set of zero Lebesgue measure) it is controlled by
the second eigenvalue ν2 of the Floquet operator (ν1 = 1 by
mass conservation, and the eigenvalues of P are ordered in
a nonincreasing way with respect to their moduli). In a time-
continuous frame, the dominant decay exponent is therefore
given by 	(Pe) = − ln |ν2|/Tp.

Figure 1 depicts the early and intermediate stages of the
norm decay of φ, starting from a segregated initial condition
φt=0 = 1/

√
2 for 0 � x < 1/2, φt=0 = −1/

√
2 for 1/2 �

x < 1, at Pe = 104 for several values of the flow period Tp.
As can be observed, the intermediate scale dynamics seems
to be characterized by an apparent power-law behavior of
||φ||2

L2 (t) ∼ t−κ , which applies over one and half decades
(curves b and c in Fig. 1) up to two and half decades
(curve a in Fig. 1) depending on the flow period Tp. The
values found for the apparent exponent κ are κ = 3.3 for
Tp = 0.56, κ = 1.6 for Tp = 1.18, and κ = 2.7 for Tp = 2.
There is no straightforward connection between the value of
the intermediate-range apparent exponent κ and the geometric
and dynamic properties of the Poincaré section of the flow
kinematics. The case Tp = 0.56 possesses large islands of
periodicity and the exponent κ is definitely higher than for
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FIG. 1. Decay of ||φ||2
L2 (t) vs t for the time-periodic sine flow at

Pe = 104 and for different values of the flow period Tp . Line a and
symbols (open square) Tp = 0.56, line b and symbols (filled square)
Tp = 1.18, line c and symbols (closed circle) Tp = 2. The solid lines
are the intermediate power-law fittings ||φ||2

L2 (t) ∼ t−κ , with κ = 3.3
at Tp = 0.56, κ = 1.6 at Tp = 1.18, κ = 2.7 at Tp = 2.

Tp = 1.18 (the Poincaré section of which possesses much
smaller islands), and larger than for Tp = 2 which is apparently
globally chaotic in a measure-theoretical sense and possesses
four parabolic fixed points.

In general, the evolution of an advecting-diffusing scalar
field can be subdivided into three main stages (see Supple-
mental Material for a brief discussion of the mixing regimes
[22]):

(i) An early-stage regime in which the interface separating
fluid elements increases in a purely kinematic way (for scalar
field possessing zero mean, this interface corresponds to the
zero-level set �0(t) = {[x0(t),y0(t)] | φ[x0(t),y0(t),t] = 0 }),
and diffusion acts only transversally to this interface. This
early-stage regime ends up when different fluid elements,
separated by narrow striations, coalesce due to diffusion.

(ii) An intermediate regime in which a complex restructur-
ing of the spatial profile occurs. This is due to the continuous
formation of material interface triggered by convection and
the subsequent smoothening and coalescence due to diffusion.

(iii) The asymptotic regime in which the function
||∇φ||2

L2 (t)/||φ||2
L2 (t) oscillates around a well defined mean

value, proportional to the dominant decay exponent. In this
regime, the spatial profile of the scalar field has a prevalent
contribution from the dominant eigenfunction (for generic
initial conditions), the decay of ||φ||L2 (t) is exponential in
time and is controlled by the dominant decay exponent 	.

From the above schematization, several relevant physical
observations follow. First, the early stages and the asymptotic
regimes admits a well-posed physical characterization, while
the intermediate regime corresponds essentially to the mixing
dynamics separating the early-stage evolution from the asymp-
totic behavior. It is not surprising that the intermediate-time
properties in the scalar decay can be very difficult to derive
from the properties of the advection-diffusion operator. The
complexity of the intermediate-stage mixing results in the
occurrence of a variety of different apparent intermediate
scaling behaviors (see Fig. 1), and by the fact that these scaling
behaviors strongly depend on the initial conditions.

Therefore, any attempt in analyzing the dynamics of a
mixing process with a focus on the initial mixing stages, with
the purpose of deriving closed-form expressions for the scalar
decay, should necessarily rely on what was defined above
as the early-stage dynamics. The analysis of Meunier and
Villermaux [11], although focused on other features of the
mixing process, addresses this early time scale.

B. Flow systems and prototypical model

In the previous paragraph, we have discussed the temporal
structure of a mixing process in a closed system, outlining the
relevance of the early-stage dynamics. In order to attempt a
theoretical analysis of this regime, it is convenient to consider
first some prototypical models amenable to a complete
theoretical investigation, and only afterward to tackle the issue
of generic Stokes flows. These models are reviewed in this
section.

Consider the autonomous sine-flow system [21], namely,
the autonomous flow on the two-torus T 2 = {(x,y) | 0 �
x < 1 , 0 � y < 1} in the presence of a sinusoidal veloc-
ity field v = [Vm sin(2πy),0]. In nondimensional form, the
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advection-diffusion equation for a scalar field φ reads as

∂tφ = − sin(2πy) ∂xφ + 1

Pe

(
∂2
xφ + ∂2

yφ
)
, (6)

where Pe = VmL/D is the Péclet number (L is characteristic
length scale and D the diffusivity). Equation (6) is equipped
with periodic boundary conditions on x and y, where Pe =
VmL/D is the Péclet number. Expanding the scalar field
φ(x,y,t) in Fourier series with respect to x, i.e.,

φ(x,y,t) =
∞∑

m=−∞
φm(y,t) ei2πmx, (7)

the advection-diffusion equation decouples into a countable
family of parabolic systems for the quantities φm(y,t), m =
. . . , − 1,0,1, . . .:

∂tφm(y,t) = −i2 π m sin(2πy) φm(y,t) + 1

Pe
∂2
yφm(y,t)

− 4π2m2

Pe
φm(y,t), (8)

which represent the Schrödinger-type non-Hermitian formu-
lation of the advection-diffusion equation in the presence of
an imaginary potential.

The imaginary potential formulation of the advection-
diffusion equation derived for parallel flows on the torus
applies also to simple channel flows. Consider a two-
dimensional (2D) channel flow in the presence of a parallel
velocity field v = [Vmv(y/W ),0] in a channel of length L

and width W , equipped with periodic boundary conditions at
the end sections. By rescaling the coordinates x/L 
→ x ∈
(0,1), y/W 
→ y ∈ (0,1), t 
→ tVm/L, the nondimensional
evolution equation for φ is identical to Eq. (6) with sin(2πy)
replaced by v(y), and with the Laplacian contribution along
the axis x multiplied by the reciprocal of the square of
the geometrical aspect ratio α = L/W � 1. Consequently, the
Péclet number is here defined as Pe = VmW 2/DL, and is the
ratio of the characteristic diffusion time tdiff = W 2/D along
the transverse direction, and the mean (convective) residence
time tadv = L/Vm.

As periodic boundary conditions along x are assumed, the
scalar field φ can be expanded in Fourier series (7), so that the
equation for the Fourier components φm(y,t) becomes

∂tφm(y,t) = −i2πmv(y) φm(y,t) + 1

Pe
∂2
yφm(y,t)

− 4π2m2

α2 Pe
φm(y,t), (9)

which is altogether similar to Eq. (8).
The two examples described above refer to closed bounded

systems. However, the imaginary-potential formulation en-
compasses also the description of simple open systems
operating at steady state, as well as channel flows operating in
a time-pulsating way. These two cases are briefly outlined as
follows.

Consider the flow between two coaxial cylinders of inner
and outer radii Rin and Rout , respectively, where Rout =
Rin + rδ , rδ � Rin, driven in the axial direction by a pressure
drop and by the rotation of the inner and outer cylinders.
This flow can be referred to as the Couette-Poiseuille flow,

the velocity field of which admits nonvanishing angular
and axial components. Under Stokes conditions, the velocity
field is expressed in a cylindrical reference system by v =
[0,vθ (r),vz(r)], where r is the radial coordinate and z the
axial one. If the length of the tube is much greater than
the characteristic cross-sectional width rδ = Rout − Rin, the
contribution of axial diffusion can be neglected with respect
to transverse diffusion. This follows straightforwardly by
the Taylor-Aris analysis of dispersion [23,24], and has been
thoroughly discussed for cylindrical tubes in [25]. Due to
periodicity on θ , the steady-state scalar field φ(r,θ,z) can be
expanded in Fourier series with respect to the angular variable
θ , namely, φ(r,θ,z) = ∑∞

m=−∞ φm(r,z)eimθ , thus reducing the
advection-diffusion equation to an imaginary potential form
for each of the Fourier coefficients φm(r,z), m = . . . , −
1,0,1, . . .:

vz(r) ∂zφm(r,z) = − i m vθ (r)

r
φm(r,z) + D

r
∂r (r ∂rφm)

− D m2

r2
φm(r,z). (10)

If the spacing between the two cylinders is very small
compared to the inner radius, i.e., rδ/Rin � 1, the advection-
diffusion equation can be linearized by respect to the scaled
cross-sectional coordinate y = (r − Rin)/rδ ∈ (0,1). In this
way, Eq. (10) simplifies to a Cartesian nondimensional form,
leading to the equation

w(y) ∂ξφ(y,ξ ) = ε ∂2
yφ(y,ξ ) + i V (y) φ(y,ξ ) − ε′ φ(ξ,y),

(11)

where ξ = z/L and φm(y,ξ ) has been replaced (for notational
simplicity) by φ(y,ξ ). In Eq. (11) the weight function w(y)
is proportional to the axial velocity vz and the potential V (y)
to the angular velocity vθ/r . This model has been discussed
in [15,26], and for details the reader is referred to these articles.
Observe in this case that the coordinate ξ = z/L represents a
nondimensional axial coordinate (since a steady-state mixing
problem in an open-flow device is considered), and that
the weight function w(y) accounts for the axial velocity
component. Therefore, under no-slip boundary conditions,
w(y) vanishes at the end points y = 0,1 (i.e., at the tube
walls), meaning that w−1(y) is singular at y = 0 and 1. For the
Cartesian Couette-Poiseuille flow, the nondimensional weight
function equals w(y) = 6y(1 − y) (Poiseuille flow), while the
potential V (y), in the case of equal and opposite rotation of
the inner and outer cylinders, is given by V (y) = κ(−1 + 2y),
where κ is proportional to the ratio of the transverse-to-axial
velocities.

It is important to observe that the time evolution of closed
and bounded mixing systems fulfilling Eqs. (8) or (9) can be
viewed as a special case of Eq. (11). Indeed, the positions
ξ = t , w(y) = 1, ε = Pe−1, V (y) = −2πm sin(2πy), ε′ =
4π2m2/Pe reduces Eq. (8) to the form (11). Therefore, Eq. (11)
is a very flexible model structure: if ξ is interpreted as an axial
coordinate, then Eq. (11) describes steady-state properties of
simple static mixers. In this case, w(y) represents the axial
velocity profile. Conversely, if ξ is a time coordinate, Eq. (11)
describes transient behavior in closed mixing system. In this
case, w(y) = 1, identically.
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Equation (11) represents the prototypical model for un-
veiling the early-stage [early-time or short-length, deepening
on the physical meaning of Eq. (11), and of the variable ξ ,
as discussed above] mixing dynamics, starting from simple
functional theoretical arguments. In Eq. (11), y ∈ (0,1), ξ > 0,
ε > 0, ε′ > 0. Moreover, the real-valued functions w(y) and
V (y) entering Eq. (11) are such that w(y) � 0, while V (y)
can attain both positive and/or negative values. Equation
(11) is equipped with the homogeneous Neumann boundary
conditions

∂yφ|y=0,1 = 0. (12)

The field φ is complex valued, and we assume an initial and
inlet condition of the form

φ|ξ=0 = φin = constant. (13)

While y in general corresponds to a coordinate transverse
to the flow, the coordinate ξ can be viewed, depending on
the flow system, either as a nondimensional time (for closed-
flow systems) or as a nondimensional axial coordinate (for
channel flows, operating at steady conditions). In the former
case, w(y) = 1. In the latter case, the weight function w(y)
represents physically the axial velocity profile that depends
on the transverse coordinate y, while the potential V (y)
accounts for the transverse velocity field. The parameter ε

is the reciprocal of the Péclet number Pe = tdiff/tadv, which
is the ratio of the characteristic diffusion and advection
times. The parameter ε′, whenever present (see below),
expresses the effects of molecular diffusion acting parallel
to the flow direction. Since Eq. (11) describes a wealth of
different physical flow conditions, it is referred to as the
generalized one-dimensional imaginary potential formulation
of an advection-diffusion problem for a scalar field φ.

There is another interesting operating condition associated
with mixing and dispersion in channel flows leading to the
imaginary potential formulation (11), corresponding to time-
periodic pulsating inlet conditions of the chemical species to
be mixed. In microfluidic literature, this operating condition
is referred to as time-interleaved sequential segmentation
[27,28]. For details, see [22].

To sum up, Eq. (11) is the prototypical system considered,
describing the modal dynamics of the Fourier coefficients for
a wealth of different simple but physically significant mixing
systems.

C. Modulus-phase equations

Let us express φ(y,ξ ) in terms of its modulus R(y,ξ ) and
phase ϕ(y,ξ ) [29]:

φ(y,ξ ) = R(y,ξ ) eiϕ(y,ξ ). (14)

Multiplying Eq. (11) by the complex conjugate φ∗, and the
complex conjugate of Eq. (11) by φ, and summing and
subtracting the resulting equations, one obtains

w(y)(φ∗∂ξφ + φ∂ξφ
∗) = ε

(
φ∗∂2

yφ + φ∂2
yφ∗) − 2ε′|φ|2,

(15)

w(y)(φ∗∂ξφ − φ∂ξφ
∗) = ε

(
φ∗∂2

yφ − φ∂2
yφ∗) + 2iV (y)|φ|2.

(16)

Since

φ∗∂ξφ + φ∂ξφ
∗ = 2R ∂ξR, (17)

φ∗∂2
yφ + φ∂2

yφ∗ = 2R ∂2
yR − 2R2(∂yϕ)2, (18)

φ∗∂ξφ − φ∂ξφ
∗ = 2 iR2 ∂ξϕ, (19)

φ∗∂2
yφ − φ∂2

yφ∗ = 4 i R ∂yR∂yϕ + 2iR2∂2
yϕ

= 2i∂y(R2∂yϕ), (20)

Eqs. (15) and (16) become

w(y) ∂ξR = ε∂2
yR − ε(∂yϕ)2R − ε′R, (21)

w(y) R2 ∂ξϕ = ε∂y(R2∂yϕ) + V (y)R2, (22)

which express the advection-diffusion equation in the
modulus-phase formalism.

Multiplying Eq. (21) by R and Eq. (22) by ϕ and integrating
over y ∈ (0,1), the following energetic equalities can be
obtained:

1

2
∂ξ ||R||2w(ξ ) = −ε||∂yR||2L2 (ξ ) − ε||R ∂yϕ||2L2 (ξ )

− ε′||R||2L2 (ξ ), (23)

1

2

∫ 1

0
w(y) R2(y,ξ )∂ξϕ

2(y,ξ ) dy

= −ε||R ∂yϕ||2L2 (ξ ) + (V,R2 ϕ)(ξ ), (24)

where

||R||2L2 (ξ ) =
∫ 1

0
R2(y,ξ ) dy,

||R||2w(ξ ) =
∫ 1

0
w(y) R2(y,ξ ) dy,

||∂yR||2L2 (ξ ) =
∫ 1

0
[∂yR(y,ξ )]2dy, (25)

||R ∂yϕ||2L2 (ξ ) =
∫ 1

0
R2(y,ξ ) [∂yϕ(y,ξ )]2dy,

(V,R2 ϕ)(ξ ) =
∫ 1

0
V (y) R2(y,ξ ) ϕ(y,ξ ) dy.

In deriving Eqs. (23) and (24), the homogeneous Neu-
mann boundary conditions (12) have been applied, leading
for the modulus and phase to the analogous conditions
∂yR(y,ξ )|y=0,1 = 0, ∂ϕ(y,ξ )|y=0,1 = 0.

III. SHORT-TIME BEHAVIOR OF THE IMAGINARY
POTENTIAL MODEL AND UNIVERSALITY

This section is aimed exclusively at the analysis of the
early-stage properties of Eq. (11) in order to show the
occurrence of two different qualitative universal scalings
depending on the regularity properties of the two functions
V (y), w(y) entering Eq. (11). Following Giona et al. [16,17],
the asymptotic spectral properties associated with Eq. (11),
such as localization patterns, eigenvalue scaling, etc., are
controlled by the effective potential

Veff(y) = V (y)

w(y)
. (26)
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As it will be discussed in this section, the short-term properties
of the solutions of Eq. (11) also depend on the nature of Veff(y).

Two distinct cases should be considered separately: (i)
whether Veff(y) is a smooth function of y ∈ (0,1) or (ii) Veff(y)
diverges at some points in the interval (0,1), including the
boundary point y = 0, 1. The first case occurs for closed-flow
models, for which ξ represents a nondimensional time and
w(y) = 1, identically. The second case occurs for channel
flows, by considering steady or pulsatile mixing patterns,
whenever the axial velocity profile w(y) admits some stagna-
tion points. In no-slip flows, this occurs at the channel walls.
We consider smooth, i.e., nonimpulsive initial conditions. The
case of impulsive conditions is briefly outlined in Sec. IV.

As addressed in the following, the short-term behavior of
the scalar field φ solution of Eq. (11) is “universal,” meaning
that its functional scaling with respect to the coordinate ξ does
not depend on the fine structure of the two functions w(y)
and V (y), but solely on the singularity versus regularity of the
effective potential Veff(y).

A. Nonsingular effective potentials

This section addresses the case of a smooth Veff(y). In order
to obtain an analytic expression for the early stages of the mix-
ing process, it is necessary to make some approximations for
the leading terms controlling the dynamics. In this perspective,
the modulus-phase equations (21) and (22) provide the most
convenient formal setting for simplifying the dynamics.

Consider Eqs. (21) and (22). For small ε, at the early stages,
the phase dynamics is controlled by the term V (y)R2, with
R � 1, since V (y)R2 ∼ O(1), while ε∂y(R2∂yϕ) ∼ O(ε).
Therefore, Eq. (22) at early stages simplifies as

∂ξϕ(y,ξ ) = Veff(y), (27)

i.e., the diffusive contribution in the phase dynamics can be
neglected with respect to the forcing term associated with the
action of the potential V (y).

Similarly, in the modulus equation, the term −ε(∂yϕ)2R ∼
O(ε) is order of ε, while ε∂2

yR ∼ O(ε2), as can be checked
by elementary perturbation methods and ex post from the
approximated solution so obtained (see below). This implies
that the modulus evolution at the early stages can be described
by the simplified equation

w(y) ∂ξR(y,ξ ) = −ε (∂yϕ)2 R(y,ξ ) − ε′R(y,ξ ), (28)

meaning that the modulus dynamics is controlled by the
gradient of the phase. Since ϕ(y,0) = 0, from Eq. (27) it
readily follows that

ϕ(y,ξ ) = Veff(y) ξ, (29)

and Eq. (28) becomes

∂ξR(y,ξ ) = −
[
ε [V ′

eff(y)]2 ξ 2

w(y)
+ ε′

w(y)

]
R(y,ξ ), (30)

where V ′
eff(y) = dVeff(y)/dy.

Observe that the solution (29) satisfies the condition (13),
namely, ϕ(y,ξ = 0) = 0. Since R(y,ξ = 0) = 1, the modulus
profile resulting from Eq. (30) is given by

R(y,ξ ) = exp

[
− ε[V ′

eff(y)]2 ξ 3

3 w(y)
− ε′ ξ

w(y)

]
. (31)

Observe from Eq. (31) that ε∂2
yR ∼ O(ε2) since ε′ ∼ O(ε). A

further quantitative numerical validation of these approxima-
tions can be found in [22].

The case w(y) = 1, as discussed in Sec. II, corresponds
to the early-time dynamics of closed and bounded mixing
systems, upon the identification of ξ with the time variable t .
In this case, from Eq. (31), the L2 norm of the scalar field φ

decays at the early stages as

||φ||L2 (ξ ) = exp

[
− ε′ ξ − ε

3
[V ′(y)]2 ξ 3

]
, (32)

where y is some internal point in the interval (0,1), and
||φ||L2 (0) = 1. Consequently,

− ln ||φ||L2 (ξ ) = ε′ ξ + ε [V ′(y)]2

3
ξ 3. (33)

Equation (33) predicts the following early-stage scaling:

− ln ||φ||L2 (ξ ) ∼
{

ξ for ξ < ξc,

ξ 3 for ξ > ξc,
(34)

where the crossover abscissa ξc can be vanishing, whenever
ε′ = 0. Equation (34) is independent of the fine details
characterizing the spatial profiles of w(y) and V (y), and
consequently can be viewed as a universal scaling for this
class of advection-diffusion problems.

Let us discuss several examples. Consider the Poiseuille
flow [w(y) = 1, V (y) = 6y(1 − y), ε′ = 0]. In this case, at
short times,

||φ||2L2 (ξ ) =
∫ 1

0
R2(y,ξ ) dy

= exp

[
− 2 ε

3
[V ′(y)]2 ξ 3

]
. (35)

Therefore, the early-stage evolution for different values of
Pe = ε−1 can be rescaled into a single master curve, for
a given flow system, by considering the lumped variable
ξ = ε1/3ξ . This invariant rescaling, which is a straightforward
consequence of Eq. (35), is depicted in Fig. 2 in the case of
the Poiseuille flow.

100

10-4

10-8

10110-110-3

- 
ln

|| φ
|| L

2 (
ξ)

ε1/3 ξ

FIG. 2. Invariant rescaling of the initial norm: − ln ||φ||L2 (ξ ) vs
ε1/3ξ for the 2D Poiseuille flow. Symbols (open square) refer to ε =
10−3, (filled square) to ε = 10−4, (open circle) to ε = 10−5, (filled
circle) to ε = 10−6. The solid line represents the graph of the curve
− ln ||φ||L2 (ξ ) = 3 (ε1/3 ξ )3.
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-l
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|φ
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ξ

a
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c

FIG. 3. − ln ||φ||L2 (ξ ) vs ξ for the modal evolution of the
autonomous sine flow at ε = 10−5 for different values of m. Symbols
(filled circle) refer to m = 1, (open circle) to m = 3, (open square)
to m = 5. The solid lines are the theoretical predictions based on
Eq. (36).

The crossover behavior described by Eq. (34)
occurs, e.g., in the autonomous sine flow, where [V ′(y)]2 =
16π4m2 cos2(2πy). The value of y can be chosen as the ab-
scissa at which the function cos2(2πy) attains its intermediate
value 1

2 , in this way [V ′(y)]2 = 8π4m2. The groups ε and ε′
are related to the Péclet number by the equations ε = 1/Pe,
ε′ = 4π2m2/Pe = 4π2m2ε, so that Eq. (33) specializes for the
mth mode of the sine flow as

− ln ||φ||L2 (ξ ) = 4π2m2ε ξ + 8π4m2ε

3
ξ 3. (36)

Figure 3 depicts the initial scaling of − ln ||φ||L2 (ξ ) in the
sine flow at ε = 10−5 for different values of the integer m,
compared with the theoretical prediction (36). The simulations
refer to an initial uniform concentration φ|ξ=0 = 1. The agree-
ment between theory and numerical simulations is excellent.

B. Singular effective potential

A completely different behavior characterizes the short-
term properties of the solutions of Eq. (11) in the presence of
a singular effective potential. The analysis developed in this
paragraph is a more thorough elaboration of the scaling theory
proposed in a paper [28] for time-pulsating channel flows,
and applies on equal footing to generic open-flow systems
for which w(y) possesses some stagnation point. In point of
fact, all the numerical examples supporting the theory refer
to steady-state operations in channel flows and not to time-
pulsating inlet conditions.

Since V (y) is smooth in physically significant transport
problems, the occurrence of singularities for Veff(y) is associ-
ated with the zeros of w(y). In channel flows, Eq. (11) describes
the steady-state mixing behavior along the nondimensional
axial coordinate ξ , and consequently w(y) is a normalized
nondimensional representation of the axial velocity profile.
For no-slip flows, the singularities in Veff(y) are thus localized
at the channel walls y = 0, 1.

As a model system, consider the Cartesian Couette-
Poiseuille flow described by Eq. (11) with ε′ = 0, where
V (y) = −1 + 2y and w(y) = 6y(1 − y). Figure 4 shows the
behavior of 1 − ||φ||L2 (ξ ) for this flow system at several values
of ε starting from a uniform inlet condition φ|ξ=0 = 1, which

10-5

10-3

10-1

10-3 10-1 101

1-
|| φ

|| L
2 (

ξ)

ξ

a
b
c

d

e

FIG. 4. 1 − ||φ||L2 (ξ ) vs ξ for 2D channel flow (Cartesian
Couette-Poiseuille flow) with V (y) = −1 + 2y, w(y) = 6y(1 − y)
at different values of ε = 10−3 (line a), 10−4 (line b), 10−5 (line c).
Dashed lines d and e represent the scaling laws 1 − ||φ||L2 (ξ ) ∼ ξ 5/3

and 1 − ||φ||L2 (ξ ) ∼ ξ 3/5, respectively. The data have been obtained
numerically using a truncated Galerkin expansion for the scalar field,
as discussed in the main text.

implies R|ξ=1 = 1, ϕ|ξ=1 = 0. These data have been obtained
numerically, expanding the concentration field in Fourier
series φ(y,ξ ) = ∑N

n=0 φn(ξ ) cos(nπy), enforcing a very large
number of Fourier coefficients, i.e., N � 105, and integrating
the resulting system of differential equations for {φn(ξ )}, using
a fourth-order Runge Kutta algorithm. A crossover behavior
occurs between two qualitatively different regimes, leading to
the scaling

1 − ||φ||L2 (ξ ) =
{

ξ 5/3, ξ < ξc

ξ 3/5, ξ > ξc

(37)

where ξc is the crossover abscissa (see Fig. 4). At the very
early stages of the process, a 5

3 power-law scaling is observed
for the quantity 1 − ||φ||L2 (ξ ), which successively shifts into
a 3

5 power-law behavior. This transition corresponds to two
well-defined physical phenomenologies associated with the
occurrence of two qualitatively different mixing regimes,
the properties of which can be understood by considering the
spatial behavior of the modulus R(y,ξ ) in the neighborhood
of the singularity point y = 0 (a perfectly symmetric situation
occurs at the other channel wall, located at y = 1).

Figure 5(a) depicts the very early stages of the process,
corresponding to the formation of a thin depletion region
[where the modulus R(y,ξ ) deviates from 1] close to the
stagnation point y = 0 of the axial velocity profile. As
ξ increases, the depletion proceeds progressively up to a
situation at which the modulus R(y,ξ ) at y = 0 is practically
vanishing. This very early stage of the mixing process can be
referred to as the depletion regime, where a boundary layer
close to y = 0 is formed (and by symmetry, an analogous
boundary layer occurs at the symmetric wall y = 1). Once
the depletion at y = 0 is completed, i.e., R(0,ξ ) = 0, another
mixing regime occurs, as depicted in Fig. 5(b), where the
modulus for increasing ξ behaves as a moving front with
dispersion traveling away from the stagnation point. This new
regime can be referred to as the traveling wave regime.
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FIG. 5. R(y,ξ ) vs y for the model discussed in the main text
[V (y) = −1 + 2y, w(y) = 6y(1 − y)] at ε = 10−5 for different ξ

(the arrows indicate increasing values of ξ ). (a) Depletion regime,
ξ = 5 × 10−3, 10−2, 2 × 10−2, 3 × 10−2,10−1. (b) Traveling-wave
regime, ξ = 1, 2, 5, 10, 20.

The physics of these two phenomena can be conveniently
understood by enforcing the modulus-phase decomposition
of the advection-diffusion equation. Before developing this
analysis, it is convenient to observe that the two early-stage
regimes (i.e., the depletion and the traveling wave regimes)
originate from the formation and extension of a mixing
boundary layer close to the stagnation point. Therefore, it is
convenient to make use of classical boundary layer approx-
imations, consisting in assuming the transverse coordinate
unbounded [i.e., considering y ∈ (0,∞)], and in linearizing
the velocity profiles near y = 0. The first assumption is fully
motivated by the fact that solely a small neighborhood close
to y = 0 is influenced by the phenomenon, while for large
y the modulus R(y,ξ ) remains at the uniform inlet value
R(y,0) = 1. The second approximation implies that one can
consider for the weight function w(y) and for the potential
V (y) the leading order terms is a series expansion, namely,

w(y) = w0 y, V (y) = V0, (38)

where w0 = dw(y)/dy|y=0 �= 0 and V0 = V (y = 0) �= 0.
First, consider the depletion regime depicted in Fig. 5(a). In

the depletion regime R � 1, so that phase dynamics simplifies
as

w0 y ∂ξϕ = ε ∂2
yϕ + V0, (39)

where the boundary layer linearizations (38) have been
enforced. This equation is defined for y ∈ (0,∞), and it is
equipped with the boundary conditions ϕ|ξ=0 = 0, ϕ|y=0 = 0.
The solution of Eq. (39) can be sought in an invariant form

ϕ(y,ξ ; ε) = εp ξα yβ f (ξ εq y−γ ), (40)

where the dependence of the phase on ε has been indicated,
and f (η) is a function of the lumped variable η = ξ εq y−γ .
Substituting the latter expression into the phase dynamics,
Eq. (39) reduces to an ordinary differential equation for
the rescaled variable η provided that the exponents entering
Eq. (40) are given by

p = − 1
3 , α = 2

3 , β = 0, q = 1, γ = 3. (41)

Therefore, the invariant solution of Eq. (39) attains the
functional form

ϕ(y,ξ ; ε) = ε−1/3 ξ 2/3 f (ξ ε y−3). (42)

From Eq. (42) it follows that ∂yϕ = −3 ε2/3ξ 5/3y−4f ′(ξεy−3),
where f ′(η) = df (η)/dη, so that

ε (∂yϕ)2 = 9 ε7/3 ξ 10/3 y−8 [f ′(η)]2, (43)

where η = ξεy−3. Since y−1 = (ηξ−1ε−1)1/3, thus y−8 =
η8/3 ξ−8/3 ε−8/3, and therefore Eq. (43) can be rewritten as

ε (∂yϕ)2 = 9 ε−1/3 ξ 2/3 η8/3 [f ′(η)]2

= ε−1/3 ξ 2/3 h(η), (44)

where h(η) = 9 η8/3 [f ′(η)]2. Substituting the latter expression
for ε(∂yϕ)2 into the evolution equation (21) for R(ξ,y; ε), one
obtains

w0 y ∂ξR = ε ∂2
yR − ε−1/3 ξ 2/3 h(η) R. (45)

Since R|ξ=0 = 1, it is convenient to introduce the new variable
ρ(y,ξ ; ε) = 1 − R(y,ξ ; ε), so that ρ|ξ=0 = 0. The last term in
Eq. (45) thus becomes ε−1/3 ξ 2/3 h(η) (1 − ρ), and since ρ

is very small at the short-term stages of the process, ρ can
be neglected with respect to 1 in the factor (1 − ρ). As a
consequence, Eq. (45) reduces to

w0 y ∂ξρ = ε ∂2
yρ + ε−1/3 ξ 2/3 h(η). (46)

Equation (46) too admits an invariant rescaled solution

ρ(y,ξ ; ε) = ε−2/3 ξ 4/3 g(ξ ε y−3), (47)

which can be obtained by applying the same approach adopted
above for the phase function.

Starting from the invariant solution (47), an estimate for the
norm decay can be obtained. In the depletion regime, R(y,ξ )
is very close to 1, apart from the depletion zone close to the
stagnation point y = 0. Let δ(ξ ) be the width of the mixing
boundary layer, i.e., of the region close to y = 0 where R(y,ξ )
deviates from 1 [see Fig. 5(a)]. The difference 1 − ||φ||L2 (ξ )
is approximately equal to the area of the triangle possessing
base equal to δ(ξ ) and height 1 − R(0,ξ ), where R(0,ξ ) is the
value of the modulus at y = 0 [see Fig. 5(a)]. Therefore,

1 − ||φ||L2 (ξ ) = 1
2 [1 − R(0,ξ )] δ(ξ ) = 1

2 ρ(ξ,0) δ(ξ ). (48)

It follows from Eq. (47) that

ρ(0,ξ ) = ε−2/3 ξ 4/3 g∞, (49)

where g∞ = limη→∞ g(η). For the width δ(ξ ) of the mixing
boundary layer one can assume an expression of the form

δ(ξ ) =
∫ ∞

0 y|∂yR(y,ξ )| dy∫ ∞
0 |∂yR(y,ξ )| dy

. (50)
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In point of fact, the specific choice of the definition (50) for
the width of the mixing boundary layer is immaterial, in the
meaning that alternative, physically consistent, expressions for
δ(ξ ) would produce the same scaling for the norm decay as a
function of ξ .

Substituting the invariant rescaled expression for 1 −
R(y,ξ ) into Eq. (50), after some manipulations, it results that

δ(ξ ) ∼ ε ξ 1/3. (51)

Consequently, from Eqs. (49) and (51), it follows that

1 − ||φ||L2 (ξ ) ∼ ε−1/3 ξ 5/3. (52)

Equation (52) explains the very early-stage 5
3 scaling found

for singular potentials and depicted in Fig. 4.
Let us now analyze the traveling-wave regime. As discussed

in [28], the traveling-wave regime is controlled by the phase
singularity occurring at the stagnation point. This implies that
the contributions ε(∂yϕ)2 and V (y) R2 in the modulus and
phase dynamics [Eqs. (21) and (22)] are predominant with
respect to the remaining diffusive contributions. Therefore,
phase dynamics simplifies as

∂ξϕ = V0

w0 y
, (53)

i.e.,

ϕ(ξ,y) = V0 ξ

w0 y
, (54)

and the modulus dynamics (21) becomes

∂ξR = − ε

w0 y
(∂yϕ)2 R = −ε V 2

0 ξ 2

w0 y5
R. (55)

Equation (55) can be solved starting with the inlet condition
R(0,y) = 1 to give

R(y,ξ ) = exp

[
−ε V 2

0 ξ 3

3 w0 y5

]
. (56)

Observe that R(y,ξ ) vanishes identically at y = 0 for ξ > 0 in
the traveling-wave regime.

As can be observed from the graph of R(y,ξ ) depicted in
Fig. 5(b), the difference 1 − ||φ||L2 (ξ ) in the traveling-wave
regime is substantially equal to the width of the mixing
boundary layer δ(ξ ):

1 − ||φ||L2 (ξ ) � δ(ξ ). (57)

From Eqs. (56) and (57) it follows after some simple algebraic
manipulations (not reported here for the sake of brevity) that

δ(ξ ) =
∫ ∞

0
y∂yR(y,ξ ) dy ∼ ξ 3/5, (58)

as observed numerically in Fig. 4. This result completes the
analysis of the early-stage dynamics in the presence of singular
effective potentials.

IV. GLOBAL SHORT-TERM PROPERTIES

In Sec. III, we have outlined the short-term universal
features exhibited by Eq. (11) in the presence of an imaginary
potential. In this section, we explore how the the universal

10
0

10
-2

10
-4

10
-6

10
2

10
0

10
-2

10
-4

10
-6

-l
n 

||
φ|

| L2
(t

)

t

a

b

Increasing  Pe

FIG. 6. − ln ||φ||L2 (t) vs t obtained by applying Eq. (63) for
the sine flow at different Péclet numbers. The arrow indicates
increasing values of Pe = 104, 105, 106, 107, 108, 109, 1010. Dashed
line (a) represents the scaling − ln ||φ||L2 (t) ∼ t1/2, dashed line (b)
− ln ||φ||L2 (t) ∼ t3/2. Symbols [(open circle) Pe = 104, (filled circle)
Pe = 105] refer to the numerical simulation of Eq. (6).

scaling laws obtained in Sec. III for the modal components
should be composed and weighted with respect to the initial
concentration distribution to obtain global short-term proper-
ties by considering the autonomous sine-flow equation (6) as
a prototype.

Consider Eq. (6) and let us assume a segregated initial
profile

φ(x,y,t)|t=0 =
{−1 for x < 1/2,

1 for x > 1/2.
(59)

Figure 6 [symbols (open circle) and (filled circle)] depicts
the initial norm decay of the scalar field φ for two different
values of the Péclet number. As can be observed, the very early
dynamics follows a stretched exponential behavior

||φ||L2 (t) � exp(−c
√

t), (60)

where c is a time-independent parameter that depends on
Pe. Equation (60) implies that the logarithm of the L2

norm of φ with reversed sign is proportional to the square
root of time (dashed line a in Fig. 6). The numerical data
depicted in Fig. 6 have been obtained by expanding the
concentration field in a truncated Fourier series φ(x,y,t) =∑N

m,n=N
φm,n(t)ei2π(mx+ny) by considering a very large num-

ber of Fourier modes (N = 30 000). Such an accurate and
computationally expensive numerical simulation is necessary
in order to reproduce correctly the initial concentration decay
since the initial condition φm,n(0) associated with Eq. (59) is
a slow decaying function of m:

φm,n(0) = i
(1 − δm,0) δn,0

π m
[1 − (−1)m]. (61)

The result expressed by Eq. (60) finds a straightforward expla-
nation by enforcing the universal scaling behavior analyzed in
Sec. III. From Eq. (36), by expanding φ in Fourier modes with
respect to x, φ(x,y,t) = ∑∞

m=−∞ φm(y,t) ei2πmx , it follows
that the norm decay of each mode is given by

||φm||L2 (t) = |φm(0)| exp(−4π2m2ε t − 8π4m2εt3/3). (62)
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Since |φm(0)| = 2/(πm) for m odd and zero otherwise, the
early-stage decay of the L2 norm of φ is given by

||φ||L2 (t) =
[ ∞∑

m=1

8

π2(2m − 1)2
exp[−8π2(2m − 1)2ε t

−16π4(2m − 1)2εt3/3]

]1/2

. (63)

Observe that the summation in Eq. (63) is extended to positive
odd integers weighted twice, as negative values of m contribute
with the same factor as positive integers. The solid lines
in Fig. 6 represent the function (63). For very short times,
the linear term in the argument of the exponentials entering
Eq. (63) prevails with respect to the cubic contribution (∼ t3).
Therefore,

||φ||L2 (t) � √
B(t,q)|q=8π2ε, (64)

where the function B(t,q) is given by

B(t,q) =
∞∑

m=1

8

π2(2m − 1)2
exp[−q(2m − 1)2t]. (65)

The scaling of the function B(t,q) with respect to time t can
be obtained by replacing the summation with an integral

B(t,q) ∼
∫ ∞

1
e−qtx2 dx

x2

= e−qt − √
πqt[1 − erf(

√
qt)]

= G(q t) (66)

[the result expressed by Eq. (66) is reported in [30]], where
erf(x) = (2/

√
π )

∫ x

0 e−y2
dy is the error function. For q t <

10−2 the function G(q t) can be accurately approximated as

G(q t) � e−√
π q t . (67)

Equation (67) explains the observed scaling equation (60) at
the very early times. The result obtained above can be extended
to longer time scales. Specifically, Fig. 6 depicts the behavior
of ||φ||L2 (t) obtained from Eq. (63) for very high Péclet values
(up to Pe = 1010). As the Péclet number increases, it becomes
more evident the crossover from the early − ln ||φ||L2 (t) ∼ t1/2

scaling to the subsequent − ln ||φ||L2 (t) ∼ t3/2 decay. In point
of fact, this crossover is also evident from the numerical
simulation of the advection-diffusion equation (symbols)
depicted in Fig. 6. Also, this phenomenon can be easily
interpreted from what was discussed above. At later times, the
cubic contribution in the argument of the exponential entering
Eq. (63) becomes predominant with respect to the linear
term. Therefore, the decay of the L2 norm of φ is essentially
given by

||φ||L2 (t)

=
[ ∞∑

m=1

8

π2(2m − 1)2
exp[−16π4(2m − 1)2εt3/3]

]1/2

�
√

B(t3,q)|q=16π4ε/3, (68)

and from the scaling relation (67) it follows that

||φ||L2 (t) ∼ exp(−c t3/2), (69)

where c is a positive parameter independent of time, as
observed numerically. This example is indicative of the fact
that starting from the scaling predicted for the class of model
systems [Eq. (11)], it is possible to explain and predict the
early-stage behavior of more complex flows. This issue is
further addressed in the next section by considering physically
realizable model systems.

It is useful to discuss further the physical meaning and the
implications of the early-stage solutions (60) and (69) obtained
from segregated (and initially discontinuous) profiles. In point
of fact, Eq. (60) holds for purely diffusive transport [31]. As
the Péclet number increases (i.e., for ε → 0), the effective
practical relevance of the early diffusive decay is practically
immaterial, and the e−ct3/2

behavior (69) controls, de facto, the
initial dynamics. This decay regime is indeed a consequence
of the interplay between transverse diffusion and the action of
the flow field. Therefore, Eq. (69) can be properly viewed as a
convection-controlled initial decay. We return to this issue in
the next section. The analysis developed for the initial profile
(59) can be extended to generic initial profiles by summing
the contribution of each of the Fourier modes weighted with
respect to the initial conditions |φm(0)|2. In all the cases in
which |φm(0)|2 ∼ 1/m2, one expects from scaling arguments
to observe generically the global norm decay scaling expressed
by the stretched exponential function exp(−b1t

1/2 − b2t
3/2),

where the contribution of the very early diffusive behavior
becomes progressively less significant as Pe increases.

Different initial scalings occur in the presence of impulsive
initial conditions. To give an example, consider the impulsive
initial profile,

φ(x,y,t)|t=0 = δ(x − xc) − 1 (70)

localized along a line, where xc is a generic abscissa in (0,1).
This initial profile is not square summable, and its Fourier
coefficients are in modulus equal to |φm(0)| = 1 for m �= 0
and |φ0(0)| = 0. Therefore, the early stage decay can be
expressed as

||φ||L2 (t) =
[

2
∞∑

m=1

exp(−8π2m2ε t − 16π4m2εt3/3)

]1/2

.

(71)

Using the same approach applied for segregated initial profiles
(see [22]), one obtains at very early stages

||φ||L2 (t) ∼
(

Pe

t

)1/4

. (72)

Figure 7 shows the comparison of the theoretical predictions
based on Eqs. (71) and (72) with the numerical results for the
autonomous sine flow at two different values of Pe, confirming
the early-stage 1

4 scaling. At later times, an intermediate
scaling ||φ||L2 (t) ∼ t−3/4 sets in as a consequence of the cubic
terms in the argument of the exponentials entering Eq. (71).
This phenomenon becomes more pronounced as the Péclet
number increases.

There is one further case that can be considered to complete
the picture, namely, that of an impulsive initial condition
localized at some point (xc,yc):

φ(x,y,t)|t=0 = δ(x − xc)δ(y − yc) − 1. (73)
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FIG. 7. ||φ||L2 (t) vs t for the autonomous sine flow in the presence
of the impulsive initial conditions (70) and (73). Symbols (open
square) refer to Pe = 103, (filled square) to Pe = 104 for (70). Lines
a and b represent Eq. (71) for the corresponding values of the Péclet
number. Line c represents the scaling ||φ||L2 (t) ∼ t−1/4. Symbols
(open circle) refer to Pe = 103, (filled circle) to Pe = 104 for (73).
Lines d and e represent Eq. (74) for the corresponding values of the
Péclet number. Line f represents the scaling ||φ||L2 (t) ∼ t−1/2.

This situation is interesting, as it implies an impulsive initial
condition for the Fourier modes φm(y,t = 0). Therefore, the
theory developed in Sec. III does not apply straightforwardly.
However, if one expands the concentration profile in a double
Fourier series φ(x,y,t) = ∑∞

m,n=−∞ φm,n(t) e2πi(mx+ny), and
enforces the analysis discussed above for the inlet condition
(70), one can easily recognize that the very early mixing stages
are controlled by pure diffusion and therefore |φm,n(t)| =
e−4π2m2εt e−4π2n2εt . By summing over all the modes, it follows
that

||φ||L2 (t) � 2Bδ(t,q)|q=8π2ε ∼
(

Pe

t

)1/2

, (74)

where Bδ(t,q) = ∑∞
q=1 e−qm2t (see also [22]). Equation (74)

predicts an initial power-law decay with an exponent equal to
1
2 , i.e., twice as large than in the case of a lineal impulsive
condition (70). Figure 7 shows the results of numerical
simulations, confirming the theoretical prediction. For high
Péclet values, this initial decay is followed by an intermediate
power-law scaling ||φ||L2 (t) ∼ t−3/2, which is a consequence
of the interplay between diffusion and advection. We return to
this issue in Sec. VI.

V. SHORT-TERM DECAY IN AUTONOMOUS
STOKES FLOWS

In the previous section, we have used an autonomous
flow on the two-torus (the sine flow) to show how the
information deriving from the short-time decay of single
Fourier modes can be composed and used to predict the
variance decay associated to several different initial conditions.
The sine-flow model is just a useful toy model, but it would
be unrealistic to extrapolate from its behavior general results
valid for autonomous Stokes flows unless a careful analysis
is performed on more realistic flow models. This section

considers physically realizable and model flows of increasing
fluid-dynamic and kinematic complexity.

Specifically, we show that the results derived from the
analysis developed in Sec. IV hold true even for physically re-
alizable two-dimensional steady Stokes flows in wall-bounded
domains, and even for autonomous partially chaotic flows.
This section presents the result of numerical simulations. A
theoretical explanation of them is addressed in Sec. VI.

A. Two-dimensional Stokes flows

There are simple physically realizable flows for which the
theory developed in Secs. III and IV applies straightforwardly.
This is the case of the Couette flow in the annular region
between coaxial cylinders, a case that is strictly described
by Eq. (11) in that the flow is unidirectional along a cyclic
coordinate. The description of advection-diffusion dynamics
in the Couette flow by means of a family of one-dimensional
Schrödinger-type equation in the presence of an imaginary
potential has been thoroughly developed in [18].

However, there are situations in which the reduction to
Eq. (11) is by no means trivial. A typical example of this case
is the Stokes flow within a square cavity with a sliding wall
moving at constant unit velocity (lid-driven cavity flow). In
principle, one can use an action-angle transformation [32] by
enforcing the analogy between the stream function and the
Hamiltonian function to recast the advection-diffusion equa-
tion in a form of non-Hermitian Schrödinger-type equation.
We leave this analysis to future investigation and focus below
on numerical simulations.

The advection-diffusion equation in the lid-driven cavity
has been solved by expanding the concentration field in Fourier
series φ(x,y,t) = ∑N

m,n=0 φm,n(t) cos(mπx) cos(nπy) and
solving the resulting linear system of differential equations
for the Fourier coefficients φm,n(t).

Figure 8(a) shows the behavior of − ln ||φ||L2 (t) for the
lid-driven cavity flow in the case of a segregated nonimpulsive
inlet condition φ0 = 1 for x < 1

2 , φ0 = −1 for x > 1
2 , at at

three different values of the Péclet number: Pe = 103; 104; 105.
Aside from the initial dependence of − ln ||φ||L2 (t) propor-
tional to t1/2, the regime − ln ||φ||(t) ∼ t3/2 becomes more
and more evident as the Pe values increase. This regime
eventually breaks down to leave place to a smooth transition
to the asymptotic exponential decay. The comparison of the
mixing patterns at different times along the process [Figs. 8(b),
8(c), and 8(d)] with the decay regimes of Fig. 8(a) shows the
different mixing mechanisms that are relevant in each regime.
The initial square root decay exponent is essentially associated
with the superposition of purely diffusive modes expressing
the initial condition. The 3

2 exponent instead arises as the con-
sequence of the superposition of convection-enhanced decay
exponents, as already observed for the sine-flow protocol. Note
that in the lifespan of this regime, no significant interaction
between neighboring lamellae as yet occurred [see Fig. 8(c)].
When the 3

2 regime breaks down, the interaction between
parallel lamellae becomes significant [Fig. 8(d)], and the scalar
variance becomes almost entirely localized at the system walls.
An interesting feature arising from the numerical simulations
is that the breakdown of the 3

2 regime occurs at the same value
of scalar variance, independently of the Pe value.
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FIG. 8. (Color online) Short and intermediate variance decay
regimes in the Stokes flow within a square cavity loaded with a
step initial condition. (a) − ln ||φ||L2 (t) vs t (open square): Pe = 103,
(open circle): Pe = 104, (filled circle): Pe = 105. The solid lines are
the kinematic predictions based on Eq. (83) and on the scaling of σ (t).
(b), (c), (d) Mixing patterns at t = 0.1, t = 7.5, t = 25 at Pe = 104,
respectively, corresponding to the different scaling regimes [compare
with (a)].

By taking the lid-driven cavity flow as a prototypical
example of a physically realizable system, it is possible to show
the validity of the scaling results provided in Sec. IV also in the
presence of impulsive initial conditions. Consider a localized
inlet condition, namely, φ(x,t)|t=0 = δ(x − xc) − 1. Figure 9
depicts the initial dynamics of the norm of a scalar field and for
two different choices of xc, namely, xc = (0.5,0.5) and xc =
(0.1,0.1), i.e., very near the stagnation region close to the bot-
tom wall, at several Péclet values. As expected from the theory
developed in Sec. IV for impulsive initial conditions, the norm
decay fulfills an initial 1

2 power-law decay (independently of
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FIG. 9. ||φ||2L(t) vs t for the lid-driven cavity flow in the presence
of a localized initial condition centered at (xc,yc) Line a refers to
xc = yc = 0.1 at Pe = 103, line b to xc = yc = 0.1 at Pe = 104, line
c to xc = yc = 0.5 at Pe = 104.

xc), followed by an intermediate 3
2 power-law decay. This

numerical result confirms the theoretical analysis developed
in Sec. IV, and indicates that the scaling results developed in
Sec. IV provide a rationale for predicting the early-stage decay
of the norm of scalar field for generic autonomous flows in the
presence of arbitrary initial conditions.

B. Three-dimensional chaotic flows

The model flows considered until now were two di-
mensional. In autonomous two-dimensional (incompressible)
flows, the kinematics of passive particle is nonchaotic, as an
integral of motion exists, represented by the stream function. In
point of fact, the validity of the early-stage scaling discussed
in Sec. IV, and confirmed above for 2D flows, seems to be
a generic feature of autonomous systems and, consequently,
there is no apparent reason why it should not hold also for
three-dimensional flows, independently of their regular or
chaotic nature. To support this claim, consider a classical
model of autonomous chaotic flow, namely, the ABC [33]
defined on the unit three-dimensional torus. This is a Beltrami
flow [34], the velocity field v = (vx, vy, vz) of which is
given by

vx = A sin(2πz) + C cos(2πy),

vy = B sin(2πx) + A cos(2πz), (75)

vz = C sin(2πy) + B cos(2πx).

For A = 1/2π , B = √
2/3/2π , C = √

1/3/2π , the kinemat-
ics of passive particle is partially chaotic [33].

Let us consider the advection-diffusion equation

∂tφ = −(vx ∂xφ + vy ∂yφ + vz ∂zφ)

+ ε
(
∂2
xφ + ∂2

yφ + ∂2
z φ

)
, (76)

where (vx,vy,vz) is given by Eq. (75), ε = Pe−1, and equipped
with periodic boundary conditions at x,y,z = 0,1. As an initial
condition, consider the segregated zero-mean distribution

φ|t=0 =
{−1 for x < 1/2,

1 for x > 1/2.
(77)

Figure 10 depicts the L2 norm of φ(t,x) solution of Eqs. (76)
and (77) at three different values of the Péclet number.
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FIG. 10. − ln ||φ||L2 (t) vs t for the 3D ABC flow equations
(75) and (76), starting from the initial condition (77). The arrow
indicates increasing values of Pe = 104, 5 × 104, 105. Dashed line a
represents the scaling − ln ||φ||L2 (t) ∼ t1/2, dashed line b the scaling
− ln ||φ||L2 (t) ∼ t3/2.
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The numerical simulations are performed by expanding
the scalar field in a truncated Fourier series φ(t,x) =∑N

m,n,p=−N φm,n,p(t) ei2π(mx+ny+pz), and integrating the result-
ing first-order system of ordinary differential equation for the
Fourier coefficients φm,n,p(t). In order to reproduce accurately
the initial decay, the value of N has been chosen equal to
120, corresponding to about 1.4 × 107 modes. As can be
observed, the qualitative behavior of the short-time decay
is altogether qualitatively identical to the decay observed
in the sine flow and in the other two-dimensional flows
considered in this section, displaying a crossover between
a very early diffusive scaling − ln ||φ||(t) ∼ t1/2 and a
subsequent convection-driven stretched exponential behavior
− ln ||φ||(t) ∼ t3/2, corresponding to dashed lines a and b in
Fig. 10, respectively.

VI. KINEMATIC ANALYSIS

As discussed in Sec. II, the early-stage dynamics is
amenable to a kinematic description for generic autonomous
flow systems. Specifically, the results obtained in the previous
section for autonomous flows can be derived from a kinematic-
based analysis of the early-stage dynamics by enforcing the
warped-time transformation [11,35,36].

At the early stages, advection stretches the material in-
terface (corresponding to the zero-level set of the φ for
concentration fields possessing vanishing mean), and diffusion
smoothens field gradients mainly in the direction transverse to
the interface. As there is no merging between neighboring
lamellae, these two processes can be easily accounted for.
The approach followed is conceptually similar to the analysis
developed in [11]. Let us consider an initial interface �0 [in
the case of segregated initial conditions (59) it corresponds
to the straight vertical line at x = 1

2 ], and let x and y be the
local coordinates transversal and parallel to the interface. At
the early stages, as discussed in [11], the diffusive contribution
along the interface (i.e., in the x direction) can be neglected so
that the advection-diffusion equation simplifies as

∂tφ = −vx ∂xφ − vy ∂yφ + ε ∂2
yφ. (78)

At the early stages of the process, the interface experiences
a stretching along y and a contraction along the transversal
x direction. Let L(t) be the length of the interface at time t ,
and L(t = 0) = L0. The local velocity field controlling the
stretching and contraction processes can be expressed as [11,
35,36]

vx = x

σ (t)

dσ (t)

dt
, vy = − y

σ (t)

dσ (t)

dt
, (79)

where σ (t) = L(t)/L0. The magnitude of the ratio of the
convective terms vy∂yφ, vx∂xφ is proportional to the interface
aspect ratio [11], and therefore vx∂xφ can be neglected with
respect to vy∂yφ at the early mixing stages. This implies that
Eq. (78) becomes

∂tφ − y

σ (t)

dσ (t)

dt
∂yφ = ε ∂2

yφ. (80)

Let us introduce the kinematically rescaled coordinates

η = y σ (t), τ = ε

∫ t

0
σ 2(t ′) dt ′ = ε�(t). (81)

The variable τ is referred to as the warped time since it
encompasses the stretching effects induced by the convective
field. Since

∂tφ = y
dσ

dt
∂ηφ + ε σ 2 ∂τφ, ∂yφ = σ ∂ηφ, ∂2

yφ = σ 2 ∂2
ηφ,

Eq. (81) becomes

y
dσ

dt
∂ηφ + ε σ 2 ∂τφ − y

dσ

dt
∂ηφ = ε σ 2 ∂2

ηφ,

and, after simplifications, it reduces to a purely diffusion
equation in the rescaled coordinates:

∂τφ = ∂2
ηφ. (82)

Let gD be the solution of Eq. (82) with the prescribed initial and
boundary conditions, and ||gD||L2 (τ ) its L2 norm. It follows
from the definition of the warped time that

||φ||L2 (t) � ||gD||L2 (τ )|τ=ε
∫ t

0 σ 2(t ′) dt ′ . (83)

For autonomous flows, σ (t) grows at small t linearly with
t , i.e.,

σ (t) �
√

1 + b t2, (84)

where a is a constant depending on the velocity field.
Therefore,

τ � ε

(
t + a t3

3

)
, (85)

i.e., the warped time τ displays a crossover between the very
early linear behavior proportional to t , and the later power-law
scaling τ ∼ t3. This kinematic analysis explains the scaling
observed for generic Stokes flows, and is the Lagrangian
counterpart of the functional analysis developed in Sec. IV.
Moreover, it is also quantitatively predictive once the time
evolution of σ (t) is estimated for a given flow and a given
initial condition. Let us discuss this observation in the light of
all the examples analyzed in the previous section.

Consider first the case of the autonomous sine flow. For the
segregated initial condition (59),

σ (t) =
∫ 1

0

√
1 + 4π2t2 cos2(2πy) dy. (86)

In this case, the solution of the diffusion equation pro-
vides ||gD||2

L2 (τ ) = ∑∞
k=1[8/π2(2k − 1)2] exp[−8π2(2k −

1)2 τ ]. Figure 11(a) shows the comparison of the kinematic
predictions based on Eq. (83) and of the numerical results for
two values of Pe. The agreement is excellent.

In a similar way, the power-law scaling observed starting
from impulsive conditions can be predicted analytically. In this
case, gD is the solution of the diffusion equation in the presence
of an impulsive initial condition. At the very early stages, the
norm of gD(τ ) can be approximated by that deriving from the
solution of the diffusion equation in an infinite medium, i.e.,

||gD||L2 (τ ) � 1

(8πετ )1/2
. (87)

As it regards σ (t) associated with the initial condition (73),
consider a small circle of radius ρ centered at (xc,yc). At
time t , the coordinates of its points advected by the sine-flow
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FIG. 11. Kinematic prediction based on Eq. (83) (solid lines) of the initial norm decay for the autonomous sine flow. (a) Segregated initial
conditions. Line a and (open circle) refer to Pe = 104, line b and (filled circle) to Pe = 105. (b) Refers to an impulsive initial condition at
xc = yc = 0.5. Line a and (open square) refer to Pe = 103, line b and (filled circle) to Pe = 104.

protocol are given by

x(φ,t) = xc + ρ cos φ + t sin[2π (yc + ρ sin φ)],
(88)

y(φ,t) = yc + ρ sin φ, φ ∈ [0,2π ).

Therefore, σ (t) can be expressed as

σ (t) = lim
ρ→0

1

2πρ

∫ 2π

0

√(
dx

dφ

)2

+
(

dx

dφ

)2

dφ. (89)

It can be observed from Eqs. (87)–(89) that the kinematic
analysis predicts the transition from a power-law scaling
||φ||L2 (t) ∼ t−1/2 to ||φ||L2 (t) ∼ t−3/2 as observed numeri-
cally. Figure 11(b) shows the quantitative comparison of the
kinematic approximation versus numerical simulations for
impulsive initial conditions.

The comparison between kinematic predictions (solid lines)
and numerical simulations for the cavity flow is depicted
in Fig. 8(a) for segregated initial conditions. As the cavity
is a closed domain equipped with homogeneous Neumann
boundary conditions, the solution gD of the diffusion equation
in the rescaled coordinate should account for it. Consequently,
the norm ||g||L2 (τ ) is given by

||gD||2L2 (τ ) =
∞∑

k=1

8

π (2k − 1)2
exp[−2π2(2k − 1)2τ ]. (90)

VII. CONCLUDING REMARKS

This article has developed a first systematic analysis of
the short-term properties of autonomous mixing systems
by considering the class of model flows described by the
Schrödinger-type equation (11) in the presence of an imaginary
potential iV (y) and of a non-negative weight function w(y).
As discussed in Sec. II, this prototypical system describes a
wealth of different physical conditions, ranging from closed
to open flows, from steady to unsteady and pulsating inlet
conditions. The results found for this class of systems, once
the dynamics of all of the Fourier modes is added together, are

generic of the behavior observed in autonomous Stokes flows
as shown numerically in Sec. IV and justified kinematically
in Sec. V.

Essentially, the short-term properties associated with (11)
are controlled by the singularity of the effective potential
V (y)/w(y), and universal short-term scaling laws have been
derived from smooth and singular Veff(y). It is important to
stress that the concept of universality refers strictly to the class
of transport problems described by Eq. (11) in that the stretched
exponential versus power-law initial scaling does not depend
on the fine details of the two functions V (y) and w(y) entering
Eq. (11) but exclusively on the occurrence of singularities for
V (y)/w(y).

The kinematic approach developed in Sec. VI is the
“Lagrangian” [as the scaling is controlled by the quantity
σ (t)] counterpart of the functional analysis developed in
Secs. III and IV. This approach is physically intuitive and
fully predictive at early stages for generic initial conditions, as
the function gD and the behavior of σ (t) depend on the mixing
domain and on the initial concentration profile.

In discussing the qualitative properties of the mixing
regimes and their time scales, we have analyzed in passing sev-
eral model systems (time-periodic sine flow, two-dimensional
lid-driven cavity flow), the early decay of which follows
the theory presented in this paper. However, for longer time
scale (intermediate mixing regime), an apparent power law
is observed similarly to what was found in [13]. A thorough
characterization of the intermediate-scale decay goes beyond
the scope of this paper and will be developed elsewhere.
Nevertheless, the results presented in Secs. II and IV and V
provide some hints in the understanding of intermediate-scale
mixing properties and can be summarized as follows: (i) a
power-law behavior in ||φ||2

L2 (t) observed over more than two
or three decades in the variance has no direct connection
with the presence of solid no-slip boundaries in the mixing
domain, as the case of the time-periodic sine flow shows; (ii)
short-term power-law scalings are a consequence of impulsive
initial conditions, corresponding to the localized injection of a
dye tracer; (iii) the occurrence of these power-law scalings is an
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intermediate-time manifestation of the rather complex modal
decay in the relaxation towards the dominant eigenmode.
Asymptotically, the scalar decay would follow eventually
an exponential decay. This is ensured by the compactness
of the Floquet operator (or of the stroboscopic operator)

associated with the advection-diffusion equation. The analysis
of intermediate-scale properties and the merging of the present,
early-stage, theory with the asymptotic spectral theory, in order
to achieve a global prediction of the decay of a scalar field,
will be developed elsewhere.
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