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Noncontact measurement of liquid-surface properties with knife-edge
electric field tweezers technique
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We have developed a technique for the simultaneous measurement of the surface tension and the viscosity of
a liquid in a noncontact manner. In this method, a small linear deformation of the liquid surface is induced by a
local dielectric force that is brought about by a knife-edge electrode. The surface tension and the viscosity are
obtained from the shape of the induced meniscus and from the dynamic response of the surface, respectively. The
surface tension obtained was examined in comparison with the values measured by the Wilhelmy plate method.
We also measured time constants of the surface deformation for a variety of standard viscosity samples and
obtained the relation between the time constant and the viscosity. The demonstrated advantage of the system is
the ability to uniquely determine the surface tension and the viscosity.
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I. INTRODUCTION

Surface properties such as the surface tension and surface
viscoelasticity are of great importance in the field of mi-
crofluidics. Fluid systems such as microchannels [1], inkjet
systems [2–6], and precision coatings [7–10] are becoming
progressively smaller in size. In such small systems, whose
characteristic length is shorter than the capillary length, the
contribution of the surface becomes significant. Consequently,
in these systems, the surface tension plays an important role
in determining the fluid dynamics.

Some widely used methods for the measurement of the
surface tension include the Wilhelmy plate method [11], the
pendant drop method [12], and the capillary rise method.
These methods require a solid probe or a solid wall to be
in contact with the sample liquid surface; yet, contact of a
probe with the liquid surface is often problematic. For instance,
the surface of the liquid or the equipment might become
contaminated. Instabilities caused by complex interactions
between the solid surface and substances dissolved in solutions
are also troublesome.

Recently, we developed an electric field tweezers system
to measure surface properties without contacting the liquid
surface [13]. In the electric field tweezers method, the sample
surface is deformed by the electric field that is formed near
the tip of a needle electrode, and the sample viscosity is
obtained from the time constant of the dynamic response of
the surface [14–16]. Because the electric field is localized in
a small surface area (∼100 μm2), the time constant, which is
proportional to the localization length, is small. Consequently,
rapid measurements can be carried out even for highly viscous
samples. However, by using the previous method, we cannot
uniquely determine both the surface tension and the viscosity,
because the time constant is given by their ratio. In our previous
work, the known surface tension of pure water was used as a
reference, and the measured surface tension of a surfactant
solution was compared against this reference.

In this paper, we report a different method, using which
an absolute value of the surface tension can be obtained by
measuring the shape of a deformed surface. In this method, a
metal blade instead of a needle is used as the electrode, and a
small deformation of the liquid surface is detected by an optical

lever technique with multiple laser beams. In addition, we
demonstrate that the time constant of the surface deformation
can also be measured with the same setup, yielding the value
of the sample’s viscosity.

II. EXPERIMENT

A. Principle and experimental setup

Figure 1(a) shows a schematic diagram of our system. A
Petri dish containing a liquid sample is placed on a metal plate
that is connected to the ground. The diameter of the Petri dish
is 85 mm, and the thickness of the liquid samples is 2–3 mm. A
35-mm-long metal blade electrode is placed 250 μm above the
sample surface, with its edge parallel to the sample surface. The
electric signal from a function generator (WF1956, NF Co.,
Japan) is amplified by a high-voltage amplifier (HOPS-3P1,
Matsusada Precision Inc., Japan) and is provided to the blade
electrode.

A thin linear electric field, formed around the knife edge
of the blade electrode, applies a dielectric force and picks
up the liquid surface, inducing a small deformation. In the
experiment, a high-frequency alternating electric field, whose
frequency is 1 kHz, was applied instead of a dc field to avoid
the electrical charging up of the sample surface. Since the
carrier frequency is sufficiently higher than the characteristic
frequency of the surface response, the electric field can be
regarded as a modulated dc signal. We consider the orthogonal
coordinates shown in Fig. 1(b), in which the x and y axes in
the horizontal plane are perpendicular and parallel to the edge
of the blade electrode, respectively. Since the electric field
and the deformation of the liquid surface have translational
symmetry along the y axis, it is possible to consider the shape
of the surface deformation only in the xz plane. Let ζ (x) be the
vertical displacement at the coordinate x. When the state of
equilibrium is achieved, ζ (x) is determined from the balance
of the Laplace pressure, the gravity, and the dielectric force,
and ζ (x) satisfies the following force balance equation:

−γ
d2ζ

dx2
+ ρgζ = P (x), (1)

where γ , ρ, and g are the surface tension, the density,
and the acceleration due to gravity, respectively. The term
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FIG. 1. (a) Schematic illustration of the knife-edge electric field
tweezers method. The surface deformation, induced by the dielectric
force, is measured by laser beams aligned in parallel, and the surface
tension is obtained from the shape of a meniscus. (b) Schematic
illustration of the viscosity measurement. L, lens (f = 200 mm);
H, half mirror; M, mirror; P, Petri dish; S, liquid sample; E, blade
electrode; D, position-sensitive detector.

P (x) represents the spatial distribution of the dielectric
force.

When high voltage is applied to the knife-edge electrode,
almost all of the charge is localized at the edge, and it can
be approximately regarded as a line charge. However, a slight
charge that remains in the blade plane influences the dielectric
force on the surface. The blade is therefore tilted by 60◦ from
the perpendicular, whereby half of the surface area x > 0, is
not affected by the charge that is not localized at the knife
edge.

For a linear charge distributed along the length � with charge
density λ, the explicit expression for P (x) can be obtained
using the method of image charges:

P (x) = λ2�2

8π2ε0

εr − 1

(εr + 1)2

1

(x2 + h2)2

x2 + εrh
2

x2 + h2 + (�/2)2
, (2)

where ε0 is the permittivity of vacuum, εr is the relative
permittivity of the sample, h is the gap between the knife
edge and the horizontal surface, and � is the length of the
knife edge [17]. Since a strong electric field is localized
near the sharp edge, the dielectric force acting on the liquid
surface is localized approximately within the length of the gap
between the edge of the electrode and the sample surface. The

dielectric force P (x) is negligible if h � x, and the right-hand
side of Eq. (1) can be set to zero. Thus, the solution can be
approximated to

ζ (x) = A exp(−κx), (3)

where A is a constant, and κ is the inverse of the capillary
length:

κ =
√

ρg

γ
. (4)

This solution represents the so-called meniscus, and the
surface tension γ can be obtained from Eq. (4), provided the
density ρ and the experimental value of κ are known.

B. Measurement of surface tension

To obtain the surface tension from the shape of a meniscus,
we should observe a slightly deformed shape of the sample
surface over a large surface area. To this end, we used an
optical lever technique that allows the detection of the small
deformation of the liquid surface that is induced by the
dielectric force. A laser beam, emitted from a frequency-
doubled Nd:YAG laser (10 mW), is expanded and collimated
by an optical lens system and is focused by a cylindrical lens
to form a laser sheet. Then, the laser sheet passes through a
transparent film with a grid pattern printed in black (spacing
and linewidth are both 0.3 mm), forming multiple laser beams
aligned in parallel. As shown in Fig. 1(a), the laser beams are
reflected at the sample surface and projected on the screen
placed above the sample. The position of each bright point on
the screen is then captured using a charge coupled device
(CCD) camera. The bright points are regularly distributed
when the surface is flat, but their positions change when
the surface is curved. The gradient of the surface dζ/dx is
approximately given by

dζ

dx
= −
X

2L
, (5)

where 
X is the displacement of the bright points and L

is the vertical distance from the surface to the bright points.
To effectively increase the number of measuring points and
improve the spatial resolution of the measurement, the grid
is shifted five times (in steps of 100 μm) by an automatic
positioning stage.

Figure 2 shows examples of the surface tension measure-
ment for propylene glycol and toluene; these experiments
were conducted at 30 ◦C. Although the data obtained from
the optical lever technique are the spatial derivatives dζ/dx,
rather than the actual surface shape ζ (x), we did not integrate
the data to obtain the actual shape of the meniscus, because
the exponential function remains unchanged for the differential
operations. The solid line in Fig. 2(a) shows an exponential
function fitted to the experimental data in the range of
1.5 < x < 10 mm, preventing the effect of the localized
dielectric force near the electrode. From the fitted curve
in Fig. 2(a), we obtained κ = 0.509 mm−1. With a density
of ρ = 1.018 g/cm3, as measured by a graduated cylinder
and an electronic balance (TE1520S, Sartorius Mechatronics
Japan K.K., Japan), the surface tension was determined to be
γ = 38.5 mN/m. The value obtained using the Wilhelmy plate
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FIG. 2. The derivative of the deformed surface for propylene
glycol (a) and for toluene (b). The solid line shows the fitting curve
of the exponential function (a) and of the exact solution of Eq. (1),
including the effect of the dielectric force (b).

method was γ = 35.8 mN/m, and the deviation between the
values was about 7%.

On the other hand, measuring the surface tension of
low-permittivity samples such as nonpolar liquids requires a
stricter approach. This is attributed to the fact that the dielectric
force extends to a long distance from the electrode, and the
shape of the meniscus can no longer be approximated by a
simple exponential function. Therefore, we need to take into
account the distribution of the dielectric force. By solving
Eqs. (1) and (2), we obtain the strict solution for the deformed
surface [17]. Figure 2(b) shows the result obtained for toluene,
with εr = 2.3, used as a low-permittivity sample. The solid line
in Fig. 2(b) shows the strict solution fitted to the experimental
data. From the fitting results, we obtain κ = 0.535 mm−1

as the fitting parameter. With the density ρ = 0.848 g/cm3,
the surface tension is calculated to be γ = 29.0 mN/m. The
surface tension measured by the Wilhelmy plate method is
γ = 27.4 mN/m, and the deviation between the two values
is about 6%. This analysis requires the permittivity of the
measured sample to be known in advance.

Figure 3 shows a comparison between the surface tension
obtained using the present method, and the one obtained using

FIG. 3. The comparison between the surface tension values
measured by the knife-edge electric field tweezers method and by
the Wilhelmy plate method. •, ethanol; ◦, toluene; ♦, propylene
glycol; �, ethylene glycol; �, distilled water. The experiment was
conducted at 30 ◦C. Each sample was measured three times and the
standard deviation is shown as the error bars. Note that only the
value for toluene was determined by fitting with the exact solution of
Eq. (1). The dashed line (slope of unity) corresponds to a complete
agreement between the surface tension values measured with the two
methods.

the Wilhelmy plate method [18]. Disagreement between the
results of these two methods, seen in Fig. 3, would be mainly
due to the mechanical noise that represents a vibration of the
liquid. Accuracy of the measurement would be improved by
employing a mechanical noise damper.

C. Measurement of viscosity

In our knife-edge electric field tweezers method, the
viscosity of liquid samples can be obtained from the dynamic
response of the sample surface. When the electric field is turned
on and off, the sample surface shows a transient behavior and
finally reaches an equilibrium state. In the area x < κ−1, the
effect of gravity is negligible and the dynamic behavior of the
surface is determined only by the viscosity and surface tension.

Figure 1(b) shows a schematic diagram of the experimental
configuration that was used to measure the viscosity. In this
configuration, a laser beam from a He-Ne laser was focused by
a lens (f = 200 mm), and made incident on the sample from
the underside of a Petri dish. This incident laser beam was
reflected from the sample surface, and it traveled backward,
almost collinear with the incident beam. Following this, the
laser beam was reflected by a half mirror, and the deflection
was detected by a position-sensitive detector (PSD; S1352,
Hamamatsu Photonics K.K., Japan). The deformation curve of
the sample surface exhibited an exponential decay, following
the rectangular modulation of the electric field [13,17,19]. In
our experiments, we obtained a time constant τ of the surface
deformation by fitting an exponential function to the transient
signal that was obtained after the electric field was turned off.

Figure 4 shows the time constants obtained for a series
of silicone oils whose viscosity values ranged from 0.0017
to 978 Pa s. It is seen that the time constants obtained for
highly viscous samples are proportional to their corresponding
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FIG. 4. The relation between the time constant of the step
response τ and the viscosity η. The samples are a series of standard
silicone oils whose viscosities are known. The experiment was
conducted at 35 ◦C. The peak-to-peak amplitude of the applied
voltage was 900 V, and the frequency was 1 kHz. The time constant
was obtained after the electric field was turned off. The effect of inertia
appeared near the characteristic viscosity ηcr = √

ργh ∼ 0.07 Pa s,
making the relation deviate from linearity.

viscosities, whereas those for low-viscosity samples are not
linearly related to their viscosities. To discuss the relation
between τ and η, we used the Stokes equation in the lubrication
approximation. In our method, the area in which the dielectric
force acts on the liquid surface is limited by the same spatial
scale as the gap h between the knife edge and the liquid
surface. Therefore, a projection that is induced by the electric
field below the electrode is localized within the length h. The
penetration depth of the surface motion is also limited by
h. Therefore, for the region deeper than h, we neglected the
detailed distribution of the velocity field in the sample fluid
(refer to Fig. 5 in the Appendix).

To discuss the surface behavior of highly viscous liquids,
we start with the Stokes equation:

η
∂2v

∂z2
= ∂pL

∂x
. (6)

In Eq. (6), v = v(t,x,z) is the horizontal component of the
velocity field and pL is the Laplace pressure. It should be
noted that the effect of gravity is negligible, because the spatial
scale of the relevant surface deformation is much smaller than
the capillary length. Let us suppose that the velocity field is
the Poiseuille flow driven by the Laplace pressure and that it
satisfies the following boundary conditions:

v(t,x,z = −h) = 0,
∂v

∂z

∣∣∣∣
z=0

= 0. (7)

Here, we estimate the magnitude of each term in Eq. (6). The
average velocity of the velocity field and the Laplace pressure
are estimated as v ∼ ζ0/τ and pL ∼ γ ζ0/h2, respectively,
where ζ0 = ζ (x = 0). Since the characteristic length of the
system is only h, we obtain the following estimations:

η
∂2v

∂z2
∼ − ηζ0

h2τ
, (8)

∂pL

∂x
∼ −γ

ζ0

h3
. (9)

Substituting these estimations into Eq. (6), we obtain the
following linear relation:

τ = αηh

γ
, (10)

where α is a constant. In the analysis of experimental results,
α is treated as a fitting parameter. The dashed line in Fig. 4
shows the best fit to the linear relation in Eq. (10). Setting
h = 250 μm and γ = 21.3 mN/m [20], the coefficient is
determined as α = 4.19. The absolute values of the sample
viscosity can be obtained from Eq. (10) using the value of α

(as above) and the experimentally obtained value of the surface
tension.

In contrast, in the low-viscosity regime, the time constant
τ is not linearly related to the viscosity. In this regime,
the effect of inertia becomes apparent and the approximated
Stokes equation [Eq. (6)] no longer holds. Further, in this low-
viscosity limit, the dispersion relation of the surface-capillary
wave is [19]

τ ∼
√

ρ

γ
h3/2. (11)

The dispersion relation is shown as a dotted line in Fig. 4.
Here, we estimate the lower limit of the viscosity ηcr that can
be measured using the present method; this gives the crossover
from the viscous case described by Eq. (10) to the inertia
scenario given by Eq. (11). By using Eqs. (10) and (11), we
obtain

ηcr ≡
√

ργh. (12)

In Fig. 4, the characteristic viscosity of ηcr = 0.07 Pa s is
indicated by an arrow. When the viscosity is close to ηcr, the
following equation gives a first-order approximation for τ :

τ = αηh

2γ

⎛
⎝1 +

√
1 + 4η2

cr

η2

⎞
⎠ . (13)

The derivation of Eq. (13) is given in the Appendix. The
relation between τ and h, calculated using Eq. (13), is shown
as a solid line in Fig. 4, and it can be seen that the curve
is in good agreement with the experimental data. This result
shows that the viscosity can be accurately obtained from the
time constant of the surface deformation, although the effect
of inertia is not negligible. As can be seen from Eq. (13), in
the low-viscosity regime (η < ηcr), the time constant is almost
independent of the viscosity and the error in determining the
viscosity rapidly increases. Actually, in the other conventional
methods, accurate determination of a low viscosity is also
found to be difficult. Recently, a method which is suitable
for the measurement of low viscosity has been proposed by
Hosoda et al., and the method can supplement the experimental
data in the low-viscosity regime [21].

III. CONCLUSIONS

We developed a knife-edge electric field tweezers method to
simultaneously measure the surface tension and the viscosity
of liquid samples, without the need to contact the sample
surface. The surface tension and the viscosity are determined
from the shape of a meniscus and the time constant of a step
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response, respectively. With the previous method that used
electric field tweezers, only the ratio γ /η was obtained [13],
whereas the present method allows unique determination of the
absolute values of the parameters γ and η. The main advantage
of this technique is that it prevents the various types of damage
caused by the contact of a probe with the sample surface.

This technique is useful for investigations of the delicate
surface properties of liquid samples. We are trying to extend the
method to measure more complex fluids such as viscoelastic
fluids, and the result will be reported soon.
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APPENDIX

In the high-viscosity regime, ηcr � η, the time constant
τ of the surface deformation is proportional to the viscosity
η (Fig. 4). On the other hand, in the intermediate-viscosity
regime, η ∼ ηcr, the linear relation [as in Eq. (10)] needs to be
modified to account for the effect of inertia. Here, we take the
effect of inertia into account and derive the relation between τ

and η for the intermediate-viscosity regime. We start with the
Navier-Stokes equation

ρ
∂v

∂t
= −∂pL

∂x
+ η

∂2v

∂z2
, (A1)

where v = v(t,x,z) is the horizontal component of the velocity
field and pL is the Laplace pressure. The left-hand side
of Eq. (A1) shows the effect of inertia, and this effect
is not negligible when the Reynolds number Re ∼ (ηcr/η)2

approaches the value of unity. Note that the nonlinear term in

FIG. 5. The profile of the velocity field, after the electric field is
turned off. In the region deeper than h, the liquid is static all the time.
Since the liquid flow is driven by the Laplace pressure, the profile of
the velocity field is approximately parabolic (Poiseuille flow).

the Navier-Stokes equation can be neglected in our system,
because the velocity gradient with respect to the horizontal
direction is small.

Figure 5 shows a schematic diagram of the velocity field
after the electric field is turned off. We estimate each term in
Eq. (A1) with the characteristic length h and the time constant
τ . These two terms on the right-hand side of Eq. (A1) are
estimated using Eqs. (8) and (9). The left-hand side is estimated
as

ρ
∂v

∂t
∼ ρζ0

τ 2
, (A2)

where the positive sign indicates that the outward-flow
velocity is increased after the electric field is turned off.
Substituting Eqs. (8), (9), and (A2) into Eq. (A1), the
following quadratic expression for τ is obtained:

τ 2 − ηh

γ
τ − ρh3

γ
= 0. (A3)

The solution of Eq. (A3) gives Eq. (13). Since Eq. (13) is
consistent for arbitrary values of the viscosity, Eqs. (10) and
(11) are obtained as the approximation of Eq. (13) in the high-
and low-viscosity limits, respectively.
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