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We report an experimental investigation of pair dispersions in turbulent thermal convection with initial
separation ry ranging from sub-Kolmogorov scale to scales in the inertial range. In the dissipative range of
scales we observed the exponential growth of the separation between a pair of particles predicted by Batchelor
and obtained a Batchelor constant 0.23 £ 0.07. For large ry, it is found that, for almost all time ranges, both the
mean-square separation and distance neighbor function exhibit the forms predicted by Batchelor, whereas the
two quantities agree with Richardson’s predictions for small r,. Moreover, the measured value of the Richardson
constant g = 0.10 &£ 0.07, which is smaller than those found in other turbulence systems. We also demonstrate
the crossover of the mean-square separation from the exponential to the Batchelor regimes in both temporal and

spatial scales.
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I. INTRODUCTION

A hallmark of turbulent flows is their ability to greatly
enhance the mixing and dispersion of materials. A paradigm
for investigating this phenomenon is the relative dispersion
of a pair of particles, which is of central importance to a
wide range of natural processes such as pollutants spreading
in the atmosphere [1] and mixing in the oceans. While the
above processes usually occur with particle separations in the
inertial range of scales of the turbulent flows, an important
regime of pair separation is in the very early stage where
relevant spatial and temporal scales are within the dissipative
subrange [2,3]. Turbulent dispersion and mixing in this regime
is closely related to the reaction rate for fast-reacting scalars,
such as in combustions and certain chemical reactions.

The concept of particle dispersion by turbulent flows was
first introduced by Richardson, who attempted to explain
the abnormally large observed value of turbulent diffusivity
in the atmosphere. He introduced a quantity named the
distance neighbor function (DNF) and the diffusion equation
to describe the evolution of DNF [4]. With Kolmogorov’s
scaling theory, Obukhov refined Richardson’s prediction and
found that (r?) = get?, with r the pair separation, € the
mean kinetic energy dissipation rate, and g a dimensionless
constant called the Richardson constant [5]. Batchelor [6],
recognizing that over a short time the initial separation r
between the pair of particles would be important, obtained
(Ie(t) — xol?) = f(ro)t* fort, < t K to, where 7, = (v/€)!/?
is the Kolmogorov time scale and ¢y = (rg / €)!/3 is a charac-
teristic time below which the initial separation is important.
The Richardson-Obukhov scaling is now supposed to hold for
tp K t K tp, where 1, is the integral time scale. In the above
f(r()) = [DLL(I"()) + ZDNN(I"())], with DLL and DNN being the
second-order longitudinal and transverse Eulerian structure
functions, respectively.

It is clear that the above 7> and ¢* power-law growth of
pair separations (termed Batchelor and Richardson scalings,
respectively) is relevant to dispersion and mixing processes
in the inertial range of scales. For pair separations in the
dissipative range, Batchelor was the first to argue that
their growth rate should be proportional to the separation
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distance r itself [7], which leads to an exponential growth
(r?y ~ rg exp(§t) when both the initial and final particle
separations are within the dissipative range, rg L (r2() <
n?. Here the growth rate & =2B/t, and B is called the
Batchelor constant. However, in most previous experimental
studies, the initial separation is in the inertial subrange [8,9].
As a result, the exponential growth regime has never been
observed in experiments and the Batchelor constant has never
been measured.

Recently, we have shown that the Lagrangian particle
tracking velocimetry (PTV) can be applied to thermally
driven turbulent flows and have obtained particle pairs with
separations smaller than the Kolmogorov scale n[=3 /6)1/ 4
[10]. One advantage of the present system is that the range
of its parameters is such that both the dissipative and inertial
subranges can be accessed in the experiment. In fact, using
PTV we have been able to accurately determine the energy
dissipation rate € from the measured dissipative range Eularian
structure functions [11]. In this respect, turbulent thermal
convection provides a good platform for studying properties
of particle dispersions in both the dissipative and inertial
subranges in a single experiment. From a different perspective,
turbulent thermal convection, and buoyancy-driven turbulence
in general, occurs ubiquitously in nature [12,13]. Therefore,
studying two-particle dispersions in turbulent thermal con-
vection is also important for understanding the transport and
mixing of passive scalars in buoyancy-driven flows such as in
the atmosphere and the oceans. However, buoyancy has been
absent in most previous studies of pair dispersions in turbulent
flows. In this paper, we report measurements of the mean-
square separation (r’(¢)) (and also {|r(t) — ro|?)) of a pair of
particles in buoyancy-driven turbulent thermal convection.

II. EXPERIMENTAL SETUP AND METHODS

Lagrangian particle tracking velocimetry (PTV) was used
in the experiments, which were carried out in a cylindrical cell
with water as working fluid. The measurements were made
in the cell center with ry ranging from dissipative to inertial
range of scales. The height and diameter of the cell both equal
to 19.2 cm, so the aspect ratio is one. The experiments were
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conducted at a fixed Prandtl number Pr = v/k = 4.4 with
various Rayleigh numbers Ra = «gAT H?/vk (from 2.9 x
10° to 1.3 x 10'%); here g is the gravitational acceleration,
AT the temperature difference across the fluid layer, and
o, v, and k, respectively the thermal expansion coefficient,
kinematic viscosity, and thermal diffusivity of the working
fluid. To compare the results with other turbulence systems,
the microscale Reynolds numbers R; are determined by using
R;, = \/15u™/ev with u’ the root-mean-square velocity and
€ the energy dissipation rate in the cell center [10]. The
tracking volume [§V =~ (5 cm)?] in the center of the cell
was illuminated by a laser beam, and the scattered light
from the seeding particles (diameter d, = 50 pm polyamid,
density p = 1.03 g/cm?) was captured by three cameras
simultaneously. The Stokes number St = 7,/1, ranges from
10~* to 1073, with 7, being the time scale of the Stokes
viscous drag due to interaction between particle and fluid. The
number is much less than 1, indicating that the particles can
be safely regarded as tracers. As the Kolmogorov time scale is
0.3 ~ 0.5 s in the parameter range of our experiment and the
camera frame rate is 50 or 100 fps depending on the Ra, the
temporal resolution is sufficient to resolve dissipative range
properties. The error of the particle position after calibration
is ~8 um. However, due to the finite particle size and the
diffraction effect, the minimum resolvable separation between
a pair of particles is typically between 100 pum and 200 pm,
which is less than n >~ 0.5 mm in the experiment. Thus we
are able to determine pair separations with initial separation
ro smaller than the Kolmogorov length scale. In practice, we
binned all pairs of particles with initial separation in the range
[ro — 8ro,ro + Sro] when computing statistics. For ry < 207,
we take §rg & n/5 and for ry > 20n, éry & n. Other details of
the setup and calibration have been described elsewhere [10].

III. RESULTS AND DISCUSSION

Figure 1 plots in semilog scale four mean-square separa-
tions all with ry within the dissipative scale. It is seen that
for t < 7, and r < 1.5 all curves with different Ra (R))
do follow an exponential growth as shown by the respective
dashed lines. This initial exponential growth is observed for
all nine values of Ra measured. From exponential fits we find
no systematic Rayleigh (Reynolds) number dependency for
the Batchelor constant, which leads to an average Batchelor
constant B = 0.23 & 0.07. This number was first estimated
by Batchelor and Townsend based on the assumption that the
dissipative separation is mainly due to the stretching from the
velocity gradient, which gives a range of B = 0.35 ~ 0.41
[14]. However, it was later argued that the original estimate
is too large due to the lack of persistence of the rate-of-strain
tensor and the role of vorticity [15] and it only serves as an
upper limit. There are several simulation [15] and model [16]
studies that attempt to estimate this constant and they gave
B =0.093 ~ 0.13. It is seen that our value of the Batchelor
constant is larger than previous findings but still smaller than
the upper limit proposed by Batchelor & Townsend [14].

Figure 2 shows the temporal evolution of (|r(t) — ro|?)
for different ry, which increases, from bottom to top, from
a dissipative range of scales to an inertial range of scales.
The dotted and dashed lines in the figure show Batchelor
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FIG. 1. (Color online) The mean square separation (r’?) as a
function of time for four different Rayleigh numbers with initial
separation smaller or close to 7 in a semilog plot. From top to bottom:
Cyan squares (Ra = 1.0 x 10'°, R, = 67, ry = n); red circles (Ra =
1.3 x 10'°, R, = 84, ry = 0.9n); green triangles (Ra = 6.1 x 10°,
R, =53, 1o =0.7n); pink diamonds (Ra=2.9 x 10°, R, = 35,
ro = 0.47n). The dashed lines show the exponential fit to the respective
data forr < 7,.

and Richardson scalings, respectively. In PTV, the number of
velocity pairs varies for different spatial separations, and pairs
with the small separations generally have lower probability
of being measured than those in some intermediate range
of scales. Therefore, the one with smallest ry has the lowest
number of particle pairs for statistics. In our experiment, there
are 107 pairs of particles for ro = 60.67, but only 103 for ry =
0.97. In Fig. 2 we show only the statistical errors for ry = 0.9,
as the uncertainty for this initial separation is the biggest. One
may note that even the largest error bar is within the symbol.
For large ry, there is a power-law regime in a range of time
scales extending from 0.1 to 6 7,,, whose exponent is very close
to the one predicted by Batchelor [6], i.e., (|r(t) — ro|?) ~ t>
(shown as the dotted line in the figure). It is seen that for those
symbols with large initial separation and near the large end of
t the exponent is slightly lower than 2 because those data are
more likely to be affected by the finite measurement volume

10"
10°
10° .
10’

10°

(r=r )/’

10™
107

107

FIG. 2. (Color online) The normalized mean-square separation
{(r — ry)?)/n?* as a function of time for different initial separations
at Ra= 1.3 x 10" and R, = 84. From bottom to top: ry = 0.9n,
1.3n, 1.7n, 2.2n, 4.3n, 6.5, 8.7, 10.8n, 13.0n, 15.15. The dotted
line and dashed line indicate the Batchelor and Richardson regimes,
respectively.
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FIG. 3. (Color online) The mean-square separation compensated
by #3 with time normalized by #. The red solid line gives the
Richardson constant ¢ = 0.1. From bottom to top, the curves
represent the same initial separations as those in Fig. 2. The thickness
of each line at different times shows the uncertainties for the data.

effect [3,17]. Forry = 0.97, there is no single power law for the
entire range. For ¢ > 27, the behavior could be well described
by the Richardson-Obukhov law for two-particle diffusion;
i.e., (Ir(t) —ro|?) = ger3. This can be seen more clearly in
Fig. 3 as the plateau for the square separation compensated by
Richardson-Obukhov scaling. Here it is seen that two data sets
with the smallest initial separations (ro = 0.9 and 1.37) reach
the plateau, whereas the others show a similar trend towards
the Richardson-Obukhov scaling but lack sufficient time to
develop. This is consistent with the numerical simulation in the
same thermal convection system [18]. Note that the time scale
in Fig. 3 is normalized by a characteristic time 7y = (3 /€)'/3,
below which the initial separation is important.

From the red solid line we obtain the Richardson constant
g = 0.10 £ 0.007. Previous studies show that there is a large
uncertainty on the value of g. For non-buoyancy-driven
turbulent flows, more recent experimental and numerical
studies [9,19-22] suggest g =~ 0.5. For thermal convection,
a numerical study found that the value of g equals 0.16 and
this smaller value was attributed to the correlated pair motion
in thermal plumes [23]. As the plumes’ motions are predom-
inantly in the vertical direction, this would imply that pair
dispersions should behave differently in different direction.
However, by studying pair dispersion in the vertical and lateral
directions separately we find the dispersion properties to be
isotropic with the Richardson constant nearly the same in
the vertical and the two lateral directions, i.e., each being
0.03. This suggests that pair dispersions in all directions are
affected by some correlated motions. It is noted that flow
in the cell center is affected by the large-scale circulation.
This coherent motion is also azimuthally rotating, which may
induce correlated motions in different directions.

The DNF represents the spherically averaged PDF
for pairs of particles with separation r at time f,
ie.,, p(rt). Richardson first suggested that relative
dispersion can be modeled by a diffusion equation for
the DNF. For isotropic flow, the diffusion equation can be
expressed as dp(r,t)/dt = (1/r»)a[r*K (r,t)dp(r,t)/dr]/dr
with K(r,t) being the diffusion constant. Richardson
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FIG. 4. (Color online) The distance neighbor functions for differ-
ent initial separations at Ra = 1.3 x 10'" (R, = 84). The red curved
dashed line is Batchelor’s predicted PDF and the black straight line
is Richardson’s. The open symbols show the experimental results for
initial separation ro = 0.9n with time ¢ ranging from 3.17, to 5.57,,.
The closed symbols show the results for initial separation ry = 527
with time ¢ ranging from 5.57, to 8.17,,.

proposed that K(r,t) ~r*3 based on experimental
measurements in the atmosphere and, based on dimensional
argument, Obukhov later suggested K (r,t) = koe'/3r*/3.
This led to the solution pgr(r,t) = 4/143/2 x
429/70(m (r?))~3/? exp[—(1287r2 /8(r?))'/3]. Assuming
K (r,t) ~ 12, Batchelor found another solution to the diffusion
equation; i.e., pp(rt) = (27'r(r2)/3)’3/2 exp[—3r2/2(r2)].
The two solutions are shown in Fig. 4 as a black solid line
(Richardson’s prediction) and red dashed line (Batchelor’s
prediction). In both solutions, the separation between two
particles was assumed to be zero at the very beginning.
Experimentally, however, even if one could resolve
sub-Kolmogorov scale, the initial separation would be
much larger than 0. One way to solve this problem is by
subtracting all particle separations with their initial value,
ie., Ar =r —ro, and replacing p(r,t) with p(Ar,t) [8]. In
Fig. 4, the open symbols all have ro = 0.9n and closed ones
ro = 52n. There are five data sets at different times for each
initial separation. The times are chosen to fall into the time
range where the particle separations increase as > (rg = 521)
and 13 (ro = 0.9n) scalings, respectively. It is clear that the
DNF results agree with Richardson’s prediction for small ry
and agree with Batchelor’s prediction for large ry.

To take a closer look at the Batchelor scaling, we show
in Fig. 5 the mean-square pair separation compensated
by f (ro)t>. Note that because the initial separation ry in
our experiments varies continuously from the dissipative
range to inertial range, we use the full function f(ry) =
Di1(ro) +2Dyn(rg) for the coefficient of the Batchelor
scaling, instead of its dissipative range (%rg/ n?) or inertial

range (%C rg/ } /n*3) scalings as in some previous studies. It

is seen from the figure that curves for all initial separations
and for ¢ from 7, to 37, collapse onto one horizontal line
with the height very close to unity. In the above the values
of the Eulerian structure functions f(ry) were independently
obtained from the measured particle trajectories [11], which
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FIG. 5. (Color online) (a) The mean-square separation {(r — ry)?)
compensated by f(ro)t? as a function of normalized time 7 /7, for
different initial separations measured at Ra = 1.3 x 10'° (R, = 84).
From top to bottom: rp = 0.91(4),1.3n (<), .79 (»),2.2n (M), 4.3n
(#). There are 18 data sets with ry = 6.5n7 ~ 657 that collapse onto
each other, which are represented by the solid circles. Inset: The black
circles represent the values of ((r — ro)?)/#> att = 2, for different ry
and the blue dashed line that goes through all the symbols represents
f(ro) determined from Eulerian structure functions. Both quantities
are normalized by €7,. The red (near the lower left corner) and green
(near the upper right corner) solid lines are respectively f(rg) =
1r¢/m* and f(ro) = 13—1Cr§/3/772/3 (C = 1.56 is the Kolmogorov
constant [24]), which are the dissipative and inertial range scaling
predictions for f(ry). The (horizontal) purple dashed line shows the
large ro limit of £(rp) = 6R; /+/15. (b) [(¥2(r)) — x21/f (ro)t> Vs t /7.
The open symbols here correspond to the closed ones in (a). The red
dashed line shows {rg expl[0.42(t/t,)] — rg}/f(ro)t2 with ro = 0.9n.

are also shown as the dashed blue line in the inset of the
figure. The values of f(r() can also be obtained as the plateau
heights of the compensated plots (|r(¢) — ro|?)/¢? for various
values of ry (not shown here), which are shown as the circles
in the inset. It is seen that there is an excellent agreement
between the values of the f(ry) obtained from the measured
mean-square pair dispersion and the Bachelor scaling and
those obtained directly from Eulerian structure functions. Also
shown in the inset are the K41 predictions for the dissipative
(red line), inertial range (green line), and the large-ry limit
6R;/ V15 (purple dashed line) of f(rg) [22]. The excellent
collapse between circles and three solid lines indicates that the
dispersion in the intermediate time domain is mainly controlled
by the initial velocity difference between two particles with
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their separation extending from dissipative to inertial ranges.
In Fig. 5(a) it is seen that the compensated (|r(t) — ry|?) for
ro ~n and ¢t < 7, increases systematically as ry decreases.
The reason is as follows. For very small ¢ and ry < 5 (so
the velocity difference between the pair is very small), r(z)
is not much different from ry and their difference essentially
represents random measurement errors. But because of the
square, these errors do not cancel but add up after averaging
over different pairs.

So far we have shown that our measured pair dispersions
exhibit exponential growth in the dissipative range and power-
law growth in the inertial range. However, these are manifested
in different quantities, i.e., in (r?(¢)) and ([r(t) — ro]?), respec-
tively. But in fact the pictures are consistent and there exists a
crossover between the two regimes in both spatial and temporal
scales. We note that Batchelor first discussed mean-square
separation by using (r’(¢)) — r(z) rather than (|r(¢) — ro|?) [6].
In Fig. 5(b) we plot several data sets with ro = 0.9,1.3,1.7,
2.2, and 4.37 using the original definition for pair dispersion
(r’(t)) — r} [again normalized by f(ro)¢?]. It is seen that
the height of these curves shifted downward systematically
with increasing ry. As (r2@)) = rg exp[0.42(¢ / ;)] for small
values of ¢ and r(, we plot {rg exp[0.42(t /)] — rg}/f(ro)t2
as the dashed red line in the same figure. It is seen that even
in the high-resolution compensated plot the symbols agree
excellently with the line. Note that the Taylor expansion of
rd exp[0.42(t/7,)] — r3 with respect to time is dominated by
0.42r3t /7, for t/t, < 1. This can explain why the curves for
small ry tilted up in the dissipative time range for mean-square
separations compensated by ¢2. Figure 5(b) thus demonstrates
the crossover from the exponential to the Batchelor regimes
both spatially (when r( varies from the dissipative to the inertial
range of scales for fixed ¢ < t,,) and temporally (when ¢ varies
from smaller than 7, to greater than 7, for a fixed ry < 7).

IV. SUMMARY AND CONCLUSIONS

To summarize, we have made an experimental study of
particle pair dispersions in buoyancy-driven thermal turbu-
lence. In the dissipative subrange of scales, our results show
experimentally for the first time the existence of an exponential
growth regime for the pair separation (r2(¢)), which also yields
the Batchelor constant B = 0.23 & 0.07. For time ¢ smaller
and larger than #o[=(r3/€)'/*], respectively, the Batchelor
and the Richardson-Obukhov scalings are observed in the
measured (|r(¢) — ro|?). The measured value of the Richardson
constant is g = 0.10 = 0.07.
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