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Different regimes in vertical capillary filling
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In this paper, we identify that the different regimes encountered in a vertical capillary filling or a capillary-rise
problem are determined entirely by two dimensionless parameters: Ohnesorge number (Oh) and Bond number
(Bo). The initial universal inertial regime, which has been analyzed in our recent paper [Das et al., Phys. Rev. E 86,
067301 (2012)], is followed by any one of three possible regimes, dictated by the ratio Oh/Bo. For Oh/Bo � 1,
the viscous effects dominate the gravitational effects, and one encounters the classical Washburn regime. For
the other limit, i.e., Oh/Bo � 1, the viscous effects are insignificant and there is no Washburn regime. On the
contrary, the inertial regime transits to the oscillatory regime with the filling length � oscillating about the Jurin
height (∼1/Bo), which is the maximum height attained by a liquid column in vertical capillary filling, with the
viscous effects (∼Oh) dictating the nature of the oscillations. For Oh/Bo ∼ 1, we get a behavior intermediate of
these two extreme regimes. Finally, we identify the correct force picture that drives the oscillatory regime and in
the process achieve quantitative match with the experimental results, that was precluded in the previous studies.
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I. INTRODUCTION

For close to a century, studies of capillary rise in a vertical
capillary have been one of the most well-addressed problems
of capillarity [1–3]. The most well-appreciated understanding
of the capillary-rise problem is the occurrence of the flow
due to a balance of the capillary and the viscous forces and,
therefore, a major volume of literature on capillary rise have
mostly concentrated on demonstrating the occurrence of this
regime, celebrated as the Washburn regime and characterized
by � ∼ t1/2 (where � is the filling length and t is the filling
time) [1–3]. In fact, the capillary-rise problem has been shown
to occur in a variety of different systems, e.g., in porous
media [4–8], in multiphase system [9,10], in geometries of
arbitrary shapes [11,12], in microgravity environment [13],
etc., and in virtually all of them prevalence of the Washburn
regimes has been identified as the overwhelming signature
of capillary-rise phenomenon. Only relatively recently have
researchers started to look beyond the Washburn regime in
the context of capillary-rise phenomenon. The first important
revelation has been the existence of an inertial regime, where
the filling length � remains small enough making the viscous
effects negligible, and the flow occurs by a balance of the
surface tension and the inertial effects [14]. This regime, where
� ∼ t , inevitably precedes the Washburn regime and occurs at
early stages of capillary rise, i.e., for time t � τc (where τc

is the capillary time scale [14]). The second major revelation
has been identification of the cases where the effect of gravity
overwhelms the viscous effect. Classically, the effect of gravity
has only been considered implicitly in the description of the
capillary problem. However, in these problems, typically valid
for low viscosity liquids, the filling length oscillates about the
Jurin height �J (Jurin height is the maximum height attained
by the liquid column by a balance between the capillary
and gravitational forces) [14]. This oscillatory regime, which
now replaces the Washburn regime, is observed immediately
after the initial inertial regime. In this paper, our focus is
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to first understand the factors that dictate which one of the
two regimes, Washburn or oscillatory, will follow the initial
regime and then pinpoint the role of the different factors
(e.g., viscosity, gravity, etc.) in the dynamics of these different
regimes. In this context, it is important to pose our problem in
the light of the current state of the art on these issues.

As discussed above, the understanding of the existence
of the inertial regime has been rather recent. One of the
pioneering studies in this context was by Quere [14], who
experimentally demonstrated the existence of this inertial
regime at the early stages of the capillary-rise problem. He
found that in this regime � ∼ t . This regime has been observed
in several following investigations: in fact, this regime has been
shown to be universally present in capillary filling problems
for a plethora of capillary dimensions, varying from mm to
nm [15,16]. In our recent paper [17], apart from establishing
such universality of this regime through quantifications from
existing literature, we also demonstrated that this regime
will occur only when the filling length is small enough to
ensure (�/R)Oh � 1 (where Oh is the Ohnesorge number and
R is the capillary radius). The second major advancement
of capillary-rise problems, beyond the understanding of the
Washburn regime, has been the identification of the presence
of an oscillatory regime, completely replacing the celebrated
Washburn regime. This regime, just like the Washburn regime,
follows the inertial regime. It primarily occurs for small
viscosity liquids, and is characterized by the oscillation of
the filling length about the Jurin height. Therefore, we no
longer witness � ∼ t1/2, which is a signature of the Washburn
regime; rather the filling length oscillates and, depending on
the strength of the viscous effects, gradually damp out and
equilibrates at the Jurin height. Like the identification of the
inertial regime, for this problem, too, Quere [14] pioneered the
experimental study, which demonstrated the existence of this
oscillatory regime. Several subsequent studies confirmed the
presence of this regime [18–20].

There are two major issues concerning this oscillatory
regime that remain unaddressed, and the motivation of the
present paper is to throw more light on these two issues.
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First, what are the relevant physical parameters and conditions
that dictate which one of the two regimes, Washburn or
oscillatory, will follow the initial inertial regime? Second,
what are the exact forces that are in action during this
oscillatory regime? Regarding the first issue, to the best of
our knowledge, there has been no definite identification of this
relevant parameter space. This in a way is rather baffling, given
that Quere [14] had already pointed out a quantification of the
viscosity, for a given tube radius, for the appearance of the
oscillatory regime. The closest study in this regard was by Fries
and Dreyer [19], who, through a scaling analysis, identified
several relevant dimensionless parameters for the capillary-
rise problem; however, they failed to pinpoint the relevant
parameter space for which the oscillatory regime replaces the
Washburn regime. There is another related point regarding the
transition from the inertial to oscillatory or Washburn regime.
In our recent paper [17], we conclusively established that
for cases where the inertial regime transits to the Washburn
regime, the transition occurs when (�/R)Oh ∼ 1. However,
for the case where the inertial regime transits to the oscillatory
regime, there exists no specification on the parameter space on
when this transition will occur. The second issue, or the issue
of the correct force picture during the oscillatory regime, is
more involved, particularly stemming from the fact that a large
number of models have been less successful in reproducing the
exact experimental behavior, pointing towards an incomplete
understanding of the correct force picture. One of the earlier
attempts in this context was by Quere and Raphaël [21],
who tried to analyze the oscillatory regime, but failed to
reproduce the experimental observations. Zhmud et al. [18]
suffered with similar failure. A more convincing attempt was
made by Lorenceau et al. [22], who derived the governing
equations (for the filling process, including the oscillatory
regime) from the energy argument, and found a better match
to the experimental results. Although this match is the closest
possible representation of the experimental results, it fails
to capture several key issues of the oscillatory regime, in
particular the highly damped regime. For example, for a thick
tube (R = 1 cm), the match can neither capture the amplitude
nor the locations of the maxima and minima of the oscillations
obtained from the experiments, whereas for a thinner tube
(R = 5 mm) the mismatch is in capturing the locations of
the maxima and minima of the oscillations. Both these issues
stem from incorrect accounting of the retarding viscous effects
and the driving capillary effects. In a recent paper, Masoodi
et al. [23] attempts an energy-based analysis exactly similar to
Lorenceau et al. [22], thereby suffering from the same gross
limitations in the context of reproducing the experimentally
observed oscillatory regime.

The above-described state of the art on the capillary-rise
problem leads us to believe that the capillary-rise problem
is yet to be fully understood due to lack of proper answers
to several questions. We can summarize these questions as
follows. What are the important physical parameters that
dictate which one of two regimes, Washburn or oscillatory,
will follow the inertial regime? Given that the inertial regime
will transit to the oscillatory regime, what physical parameters
dictate the occurrence of this transition? What is the role
of viscosity in the oscillatory regime? Can we correctly
identify the forces at play during the oscillatory regime,

so that we can ensure that, unlike the existing studies,
numerical and theoretical calculations can actually reproduce
the experimentally observed [14] oscillatory regime? etc.

In this paper, through scaling analysis and analytical and
numerical solutions, we establish that the entire capillary-rise
problem is dictated by two dimensionless physical parameters:
Ohnesorge number (Oh) and Bond number (Bo). Following the
initial inertial regime [14,17], one can witness any one of three
regimes: for Oh/Bo � 1 the viscous effects are important,
ensuring that the inertial regime transits to Washburn regime,
for Oh/Bo � 1, the gravitational effect dominates the viscous
retardation so that the inertial regime transits to the oscillatory
regime with the filling length oscillating about the Jurin height
�J (where �J ∼ 1/Bo), and, finally, for Oh/Bo ∼ 1, we get a
behavior intermediary to these two extreme cases. Therefore,
we establish that the Oh/Bo ratio dictates which one of the
two, Washburn or oscillatory regimes, will follow the inertial
regime. We also define an equivalent critical radius, which,
analogous to the Oh/Bo ratio, acts as a factor that dictates
this transition. Secondly, given that the inertial regime will
transit to the oscillatory regime, we identify the condition
on when this will occur. When the inertial regime transits
to the Washburn regime, this transition has been shown to
occur when (�/R)Oh ∼ 1 [17]. On the contrary, we show that
when the inertial regime transits to the oscillatory regime,
this transition will happen for (�/R)Oh � 1. Therefore, in the
present paper we identify parameter spaces for two different
events. First, we identify the parameter space which dictates
which one of the two regimes, oscillatory or Washburn, will
follow inertial regime and, second, we identify, given that
the inertial regime will transit to the oscillatory regime, the
relevant parameter space for this transition. Third, we pinpoint
the role of viscosity (∼Oh) in dictating the oscillatory regime:
we highlight the nontrivial aspect of this dependence, given the
fact that the oscillatory regime appears only when the viscous
effects are dominated by the gravity forces. Finally, we provide
extensive comparisons of our model with the experimental
results of capillary rise for different liquids in capillaries of
varying dimensions. First, we compare our model with the
experimental results of Quere [14], and find excellent match
for both the cases of low viscosity (case of oscillatory regime)
and high viscosity (case of Washburn regime) liquids. We
demonstrate that to achieve such a close match, we need to
use fitting parameters to describe the driving surface-tension
force and the retarding drag force. We subsequently establish
that use of such fitting constants leads to a prediction of the
experimental results (e.g., results of capillary rise of diethyl
ether in thinner capillaries [18]) that is substantially more
improved than that obtained with the existing model [18]. In
fact, in the process of faithfully reproducing the experimental
results, we identify the correct forces that are in action
during the post-inertial regime (Washburn or oscillatory) of
the capillary filling process.

Before starting the analysis, it is important to pinpoint
the key differences of this paper with our recent paper on
capillary filling [17]. Our recent paper [17] concentrated solely
on analyzing the inertial regime. In that paper, we identified
the time scale and the physical parameters that dictated the
occurrence and prevalence of this regime, and the transition of
this regime to the Washburn regime. Therefore, this paper
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virtually never looked beyond the inertial regime. On the
contrary, the main focus of the present paper is to look beyond
this inertial regime and analyze in detail the two possible
regimes, Washburn or oscillatory, that will follow the inertial
regime. Therefore, the present paper is completely different
in scope as compared to our previous paper: it can be argued
that both these papers address the broad problem of capillary
filling; however, they highlight two completely segregated
aspects of the problem.

II. SCALING ESTIMATES

In our previous paper [17], we have demonstrated that
a capillary filling problem, irrespective of whether it is a
problem of horizontal or vertical capillary filling, is universally
characterized by an initial inertial regime (where � ∼ t [14]),
and obtained the physical conditions that dictate the occurrence
of this regime. In vertical capillaries, in the regime following
this inertial regime, the capillary drive will be retarded by
a combination of the gravitational (Fg) and the viscous
forces (Fv). The ratio of these two retarding forces can be
expressed as, with the characteristic velocity u0 ∼ �/t and the
characteristic transverse dimension y ∼ R,

Fv

Fg

∼ η(du/dy)R�

R2�ρg
∼ ηu0�

ρgR2�
∼ η�

ρgR2t
, (1)

where η is the dynamic viscosity of the liquid and g is the
acceleration due to gravity. The flow being always driven by
the capillary forces, we may write d

dt
(ρ�R2u0) ∼ γR ⇒ t ∼

( ρ�2R

γ
)1/2 [17], so that Eq. (1) reduces to

Fv

Fg

∼ η

(ρRγ )1/2

γ

ρgR2
∼ Oh

Bo
, (2)

where Oh = η/(ρRγ )1/2 is the Ohnesorge number and Bo =
ρgR2/γ is the Bond number. Therefore, during capillary rise,
following the inertial regime, we can have three different types
of regimes based on the variation of the Oh/Bo ratio. In fact,
we can identify these three regimes, alternatively, by defining
a critical radius (obtained from the condition when Oh ∼ Bo):

Rc =
(

η2γ

ρ3g2

)1/5

. (3)

These three regimes can be defined as follows.
(1) For Oh/Bo � 1 or R � Rc, the impact of the gravity is

negligible (except at the very end of the filling), and we have
the perfect Washburn regime (see later) following the inertial
regime.

(2) For Oh/Bo � 1 or R � Rc, the impact of viscous force
is negligible, and we do not encounter any Washburn regime at
all; rather the inertial regime transits to the oscillatory regime
where � oscillates (before equilibrating at �J ) about �J (see
later).

(3) For Oh/Bo ∼ 1 or R ∼ Rc, the two effects balance
each other and, following the inertial regime, we encounter
the behavior intermediate to the Washburn and the oscillatory
regimes.

III. ANALYTICS FOR THE GRAVITY-DOMINATED CASE

The net force balance can be expressed as

d

dt

[
πρR2�

d�

dt

]
= K1

2γ cos θ

R
(πR2) − πρR2�g. (4)

In (4), θ is the dynamic contact angle, and the factor K1 rep-
resents the contribution of the possible nontrivial effects, e.g.,
formation of precursor film [24], capillary wall roughness [25],
etc., that may affect the capillary drive. Equation (4) can be
expressed in dimensionless form as d

dt̄
(�̄ d�̄

dt̄
) ≈ A − B�̄, where

�̄ = �/R, t̄ = t/τc, A = 2K1γ cos θτ 2
c /ρR3 = 2K1 cos θ and

B = gτ 2
c /R = ρgR2/γ = Bo. Integrating this equation twice

under the condition that the solution passes through zero and
�̄t̄=0 = 0, we get

�̄ = A1/2 t̄ − B

6
t̄2. (5)

Equation (5) reduces to the form obtained by Quere [14]
with A = B = 1. The condition when the flow will stop,
i.e., d�̄/dt̄ = 0, yields t̄ = 3A1/2

2B
= 3(2K1 cos θ)1/2

Bo ⇒ (�/R)Oh =
3(2K1 cos θ )1/2(Oh/Bo). Therefore, for Oh/Bo � 1, i.e., the
condition when the gravitational effects dominate the viscous
retardation effects, the flow will stop (or the filling length
attains the Jurin height, and oscillates about the Jurin height)
for (�/R)Oh � 1. In other words, this signifies that the
inertial regime (where � ∼ t) transits to the oscillatory regime
(signature of the Oh/Bo � 1 case) for (�/R)Oh � 1. This is
a completely different finding in the light of the fact that in our
recent paper [17] we identified that the inertial regime transits
to the Washburn regime for (�/R)Oh ∼ 1.

IV. ANALYTICS FOR THE VISCOSITY DOMINATED CASE

The governing equation can be expressed in dimensional
form as

d

dt

[
πρR2�

d�

dt

]
= K1

2γ cos θ

R
(πR2) − K2πη�

d�

dt
. (6)

In (6) K2 represents the effect of possible deviation (from
the fully developed parabolic profiles) of the velocity profiles
at different depths (inside the liquid column) from the
liquid-air interface. The viscous drag being computed using
the velocity gradient at the capillary wall, this implies that
K2 �= 8 (K2 = 8 for fully developed velocity profiles [19]).
Equation (6) can be expressed in dimensionless form as
d
dt̄

(�̄ d�̄
dt̄

) = A − C�̄d�̄
dt̄

, where C = K2ητc/ρR2 = K2τc/τv =
K2(Oh) (here τv = ρR2/η is the viscous time scale). We
integrate the above equation twice (in the presence of the
condition d�̄/dt̄ = 0, �̄ = 0 at t̄ = 0) to obtain

�̄2 = 2
At̄

C
− 2A

C2
[1 − exp (−Ct̄)]. (7)

Expressions analogous to (7) have been obtained by other
authors [3,20]. Please note that for very small t or t̄ , we can
simplify (7) as �̄2 ≈ 2At̄

C
− 2A

C2 [1 − 1 + Ct̄ − C2 t̄2/2] ⇒ �̄ ≈
A1/2 t̄ ⇒ � ∼ t(γ /ρR)1/2 [17]. For larger time, i.e., τc < t <

τv , we can obtain [by using exp (−Ct̄) ≈ exp (−K2t/τv) ≈
1] �̄ = (2A/C)1/2(t̄)1/2 ⇒ � ∼ (γR/η)1/2t1/2, i.e., we recover
the Washburn regime [2,17].
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V. NUMERICAL SOLUTION

The governing equation with all the terms can be expressed
(in dimensionless form) as

d

dt̄

(
�̄
d�̄

dt̄

)
= A − C�̄

d�̄

dt̄
− B�̄. (8)

We solve (8) numerically in the presence of the conditions
(�̄)t̄=0 = (d�̄/dt̄)t̄=0 = 0.

VI. RESULTS AND DISCUSSIONS

Figure 1 shows the analytical and numerical results for
the �̄ versus t̄ variation for C/B = K2(Oh/Bo) � 1 (i.e.,
cases where the viscous effects dominate the gravitational
effects). Therefore, such cases are effectively analogous to
horizontal capillary filling (except at the very end of the
filling time, when gravitational effects take over). In fact, this
demarcation can be witnessed by comparing the numerical
and the analytical results: for lesser time (when the effect
of gravity is negligible), one finds excellent match between
the numerical and the analytical results; but at instants close to
when the filling stops, the effect of gravity becomes important,
thereby showing a saturation in the numerical results (which
consider gravity), whereas the analytical results (without the
effect of gravity) shows no saturation. Plots in Fig. 1 exhibit the
attainment of a distinct viscosity-governed Washburn regime,
indicating the impact of Oh/Bo � 1. Figure 1 clearly shows
that the transition between the linear and the Washburn regimes
occurs when (�̄)Oh = (�/R)Oh ∼ 1, as has been suggested
previously [17]: for smaller C/B ratio, therefore, the transition
is triggered at a larger �/R. Figure 1 also demonstrates the
impact of the capillary drive, manifested by the quantity A.
Smaller A implies lesser drive, implying a greater inertial effect
manifested through the occurrence of transition between the
linear and the Washburn regimes at a larger �/R.

Figure 2 shows the �̄ versus t̄ variation for the gravity-
dominated cases [i.e., when C/B = K2(Oh/Bo) � 1]. Like
the case of the other extreme (C/B � 1), here too one
witnesses the linear regime for small t̄ , and for this regime
there is an excellent match between the numerical and the
analytical results. In fact, similar to the model by Quere [14],
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C/B=100, A=1
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C/B=10, A=1
C=10, A=1

Washburn Regime

Linear
Regime

FIG. 1. (Color online) Analytical and numerical results for the �

versus t variation for C/B = K2(Oh/Bo) � 1 and A/B = 1. Results
from analytical and numerical calculations are shown by markers and
continuous lines, respectively. We also indicate the linear and the
Washburn regimes.
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Linear Regime

FIG. 2. (Color online) Analytical and numerical results for the �

versus t variation for C/B = K2(Oh/Bo) � 1 and A/B = 1. Results
from analytical and numerical calculations are shown by markers and
continuous lines, respectively. We also indicate the linear regime.

analytical results show a perfect match for the linear regime
and the first part of the rise, but fail to reproduce the subsequent
oscillations of the numerical results. Figure 2 clearly shows
that for this case the linear regime transits to the oscillatory
regime for (̄�)Oh � 1 [here C = K2(Oh) gives a measure of
the Ohnesorge number], as has been illustrated in Sec. III. This
is in distinct contrast to the transition from the inertial to the
Washburn regime, which occurs for (�/R)Oh ∼ 1 (see [17] and
previous paragraph). The most important observation of Fig. 2
is that, due to the insignificant contribution of the viscous drag,
there is no Washburn regime, following the inertial regime and
the inertial regime directly transits to the oscillatory regime
with oscillations (of �̄) about the Jurin height [�̄J = A/B =
2γ cos θ/ρgR2 ∼ 1/Bo (with K1 = 1)]. The net force on the
rising liquid column is A − B�̄ = A(1 − �̄/�̄J ). Hence one
gets the oscillations about �̄J . Therefore, when the capillary
drive is weak (i.e., A is small), Jurin height is attained at
a later time, triggering the oscillations at a later time. Lower
viscosity [or smaller C = K2(Oh)] leads to lesser damping and
higher amplitude of the oscillations. This is rather nontrivial:
the insignificant influence of the viscous forces ensures that
there is no Washburn regime and the inertial regime transits
to the oscillatory regime, but the oscillations themselves are
controlled by the viscosity. The fact that there are oscillations
and the filling length can attain any finite height (Jurin
height, although Jurin height is independent of viscosity) at
equilibrium, occurs solely due to the presence of a viscous
liquid: in the case of a perfectly inviscid liquid, the liquid
column will rise and fall back to the reservoir (equivalent to
the case of a stone moving up and coming down in air), without
causing any finite capillary rise.

Figure 3 shows the �̄ versus t̄ variation for C/B =
K2(Oh/Bo) ∼ 1. Other than the universal linear regime
present in all the plots, one can clearly witness the gradual
transition from the oscillatory to the nonlinear (with slope less
than 1), nonoscillatory regime with an increase in the C/B

ratio. Smaller A or weaker drive ensures a larger oscillation
(also witnessed in Fig. 2) for a given C/B. Figures 1–3
provide answers to three key questions put forward in the first
part of the paper. First, it clearly shows that ratio Oh/Bo,
proportional to the ratio C/B, dictates which one of the
two regimes, Washburn or oscillatory, will follow the inertial
regime in a capillary-rise problem. Second, it is established
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FIG. 3. (Color online) Numerical results for the � versus t

variation for C/B = K2(Oh/Bo) ∼ 1. We also indicate the linear
regime. For all the plots we take A/B = 1.

that if the inertial regime transits to the oscillatory regime,
then the transition occurs for (�/R)Oh � 1. Third, the impact
of the viscosity in the nature of the oscillations are explicated:
the nontriviality of the scenario, on account of the fact that
the oscillations appear only when the gravity effects dominate
viscous retardations, are clearly highlighted in a manner that
has been missing from similar previous studies [19].

Figure 4 compares our numerical model with the experi-
mental results of Quere [14] for two different liquids (ether and
ethanol) having large differences in viscosity (which thereby
provides disparate ranges of Oh/Bo values). In the numerical
results, K1 and K2 are used as fits. We find K2 = 15 (i.e.,
�=8) for both ether and ethanol, whereas K1 cos θ = 0.95
for ether and K1 cos θ = 0.5 for ethanol. We shall discuss
the significance of these fitting parameters later. To provide
a more substantiative demonstration of the validity of our
proposed model, we further compare our numerical model

10
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(m
m

)

FIG. 4. (Color online) Comparison with the experimental results
of Quere [14] on capillary rise (capillary radius R = 689 μm)
for ether (shown in red circles; corresponding properties are
ρ = 710 kg/m3, γ = 16.6 mN/m, η = 0.3 mPas, and �J = 7.1 mm;
hence τc = 3.7 ms, Oh = 0.0033, Bo = 0.1990, and Oh/Bo =
0.0167) and ethanol (shown in green squares; corresponding prop-
erties are ρ = 780 kg/m3, γ = 21.6 mN/m, η = 1.17 mPas, and
�J = 8.1 mm; hence τc = 3.4 ms, Oh = 0.0109, Bo = 0.1680, and
Oh/Bo = 0.0646). Numerical results are shown by continuous lines:
black bold line is used for the case of ether (corresponding fitting
parameters are K1 cos θ = 0.95 and K2 = 15) and blue dashed line
is used for the case of ethanol (corresponding fitting parameters are
K1 cos θ = 0.5 and K2 = 15).
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FIG. 5. (Color online) Comparison with the experimental results
of Zhmud et al. [18] on capillary rise for diethyl ether in capillaries
(of radius R = 0.5 mm) with different lengths L. The experimental
results are shown by markers (results corresponding to L = 0.05 m is
shown in red circles and that corresponding to L = 0.1 m is shown in
green squares) and the numerical results from our proposed model are
shown by continuous lines (results corresponding to L = 0.05 m are
shown in dashed magenta line and results corresponding to L = 0.1
m are shown in black bold line). The numerical results proposed by
Zhmud et al. [18] for L = 0.05 m are shown in blue dash-dotted
line. The properties used for the simulation are ρ = 710 kg/m3, γ =
16.7 mN/m, η = 0.22 mPas, and ηg = 0.0186 mPas (which yields
�J = 9.9 mm, τc = 2.3 ms, Oh = 0.0028, Bo = 0.1, and Oh/Bo =
0.028). The fitting parameters used for the present numerical result
are K1 cos θ = 1.0 and K2 = 13.

with the experimental results of filling of capillaries by diethyl
ether [18]. The experiments had been performed for capillaries
of different lengths, and we provide the comparison for those
values of capillary lengths where the filling length exhibits
oscillations. The key thing to note is that our governing
equation for the capillary filling dynamics [Eq. (8)] does not
account for the length dependence of the capillary. Following
Zhmud et al. [18], such a dependence is introduced by
considering an additional viscous drag force that results on
account of the capillary liquid displacing another fluid (usually
vapor or air) and can be expressed as K2πηg(L − �)(d�/dt)
(where ηg is the viscosity of the displaced fluid and L is
the capillary length). Typically, ηg being substantially small,
only when the filling liquid has sufficiently low viscosity will
this additional drag force contribution be important. Figure 5
clearly demonstrates that our numerical model leads to a
substantially better prediction of the oscillation behavior, as
compared to the prediction provided by Zhmud et al. [18],
thereby establishing the need for using the fitting constants
K1 cos θ and K2 (in Fig. 5, we use K1 cos θ = 1 and K2 = 13)
in the capillary-rise model.

A. Significance of the fitting constants

The most essential ingredient of our model is the use of
the fitting parameters K1 cos θ and K2 to respectively model
the capillary drive and the viscous drag. Use of such fitting
parameters has been absent in earlier models; however, as
shown above, they are essential to provide a more acceptable
match to the experimental results as compared to those
obtained with existing numerical results. The first fitting
parameter K1 cos θ dictates the driving capillary forces, and
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therefore is directly related to issues such as the dynamic con-
tact angle (since this θ is the dynamic contact angle), precursor
film, etc. There is a plethora of literature that expresses the
dynamic contact angle as a function of the capillary number
(Ca = Uη/γ , where U is the filling speed) [20,26,27] and
the equilibrium contact angle θe. Therefore, even when θe

becomes identical (often dictated by the corresponding surface
tension), variation in η, which will vary Ca, may change the
dynamic contact angle. For example, ethanol and ether (two
fluids whose filling behavior are studied in Fig. 4) have iden-
tical surface-tension values, but disparate viscosities, thereby
leading to substantial difference in the corresponding capillary
numbers and hence cos θ . Using θe ≈ 0 for both the liquids,
and U = d�/dt ∼ √

γ /ρR (considering the linear regime, for
example), we get (cos θ )ethanol = 0.59 and (cos θ )ether = 0.82
[using cos θ = cos θe − (1 + cos θe) tanh(4.96Ca0.702) [27]]
and (cos θ )ethanol = 0.58 and (cos θ )ether = 0.77 [using cos θ =
cos θe − 2(1 + cos θe)Ca0.5 [20]]. Therefore, we can clearly
see that the cosine of the dynamic contact angle for ether
is more than that of ethanol, and this justifies our choice of
using larger K1 cos θ for ether as compared to ethanol. For
the results corresponding to diethyl ether (see Fig. 5 and [18])
(with θe = 26◦), we get cos θ = 0.87 [using cos θ = cos θe −
(1 + cos θe) tanh(4.96Ca0.702) [27]] and cos θ = 0.84 [using
cos θ = cos θe − 2(1 + cos θeCa0.5) [20]]. From the closeness
of values of cos θ between the ether and diethyl ether, we can
justify similar K1 cos θ values for the two cases. Please note the
above analysis only provides an indication of the qualitative
variation of the K1 cos θ values between different liquids—to
obtain the exact values of K1 cos θ (which will match with the
values used for fitting) we need to perform rigorous molecular
scale simulations of the interactions between the filling liquids
and the capillary walls, which is beyond the scope of the
present study. The fit parameter K1 cos θ can be considered to
reflect the effect of wetting of the capillary walls by the filling
liquid. Therefore, issues such as presence of a precursor film
(and the structure of the precursor film) [24,25], capillary wall
roughness [25], etc., which have been previously pointed out
to affect the capillary filling process, will also influence the
parameter K1 cos θ .

The second fitting parameter is K2, which dictates the drag
force experienced by the filling liquid. The drag force being a
function of the transverse velocity gradient at the capillary
wall, one needs the exact velocity profile to calculate it.
The classical approach has been to assume a fully developed
Poisseuille flow field, which will yield K2 = 8. However, the
fit to the experimental results are obtained with much higher
values of K2, namely K2 = 15 for the experimental results of
Quere (with capillary radius R = 0.689 mm) [14] (see Fig. 4)
and K2 = 13 for experimental results of Zhmud et al. (with
capillary radius R = 0.5 mm) [18] (see Fig. 5). Deviation of
K2 values from the classical case of K2 = 8 occurs due to the
fact that the fully developed profile (which leads to K2 = 8)
will occur only substantially downstream of the liquid-air
interface; at locations close to the liquid-air interface, the
bulk remains unaffected, and therefore the velocity gradients
at the wall (used to calculate the drag) would be steeper,
leading to larger values of K2. Also different fitting values
of K2 for different capillary radii (see Figs. 4 and 5) can be
explained by arguing that, for channels with smaller radii, there

is lesser distinction between “near-wall” and bulk regions of
the capillary, and consequently the difference in K2 values,
caused by the steepness in the velocity gradients close to the
wall (with the bulk remaining unaffected), will be less severe.

It is to be clearly noted that these two fitting parameters,
K1 cos θ and K2, play distinctly different roles in reproducing
the different regimes during the capillary filling process.
K1 cos θ dictates the driving force for filling, and its variation
and dependence on issues such as liquid viscosity can be at
least qualitatively hypothesized from dependence of dynamic
contact angles on capillary number, etc. On the contrary, use of
a value of K2 �= 8 [i.e., calculation of drag (for capillary filling)
considering velocity profiles other than the fully developed
parabolic profiles] is very new in the context of the existing
studies [14,19,21–23]. Nevertheless, use of both the fitting
parameters are unavoidable to ensure acceptable match with
the oscillatory behavior demonstrated in the experimental
results. In Fig. 5, we pinpoint the relevance of these individual
fitting parameters in faithfully reproducing the experimental
behavior. In Fig. 5, we show the manner in which the numerical
result of Zhmud et al. [18] deviates from the corresponding
experimental results. In the numerical result of Zhmud et al.
[18], a lesser value of the driving capillary force (caused by the
absence of the appropriate fitting value of K1 cos θ ) ensures
that the filling length (at all times) obtained from the numerical
prediction is substantially lower than the experimental results,
and the Jurin height about which the filling length oscillates
is also lesser. Secondly, a weaker value of the viscous drag
force (caused by the use of K2 = 8) ensures that in the
oscillatory regime the filling length oscillates more vigorously
(i.e., with a larger amplitude and/or frequency) than that
observed in the experiments (e.g., the numerical results show
two maxima in a time span of 0.35 s, whereas the experimental
results show only one). In our proposed numerical model,
on the other hand, use of the appropriate fitting parameters
ensure that we indeed get a much better reproduction of the
experimental results. In fact, this comparison allows us to
infer the possible effect in using K2 = 8 in the numerical
model in order to match the experimental results of Quere [14]
(see Fig. 4)—for ether (whose viscosity is small enough to
cause oscillations) the oscillations will be substantially more
vigorous (with larger amplitude and/or frequency) than that
observed in experiments, whereas for ethanol (whose viscosity
is too large to cause oscillations and the filling length obeys
the Washburn regime), oscillations may be triggered so that,
completely contrary to the experimental results, the oscillatory
regime will follow the inertial regime.

As a closing remark, it is useful to emphasize that the
parameters K1 cos θ and K2 still remain as fit parameters,
and we have only provided a qualitative argument justifying
their choices. Importantly, however, use of these fit parameters
clearly bring out the lacuna of the existing understanding of
the forces at work during the capillary filling process. This
limitation is particularly manifested while reproducing the
oscillatory regime, where correct accounting of the drag forces
are needed. This motivates the use of K2 > 8, establishing
that the drag force in capillary filling should not be computed
considering fully developed flow from the outset. However,
this inference is constrained by the fact that it uses fitting
parameters and justifies these parameters from a qualitative
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argument. A more complete model is required, which would
provide the correct “no-fitting-parameter” description of the
drag forces by considering the necessary picture of the
developing flow field in the capillary. We are in the process of
developing such a model, and validate it through micro-Particle
Image Velocimetry experimental results. Findings of that study
will be presented in a future publication.

VII. CONCLUSIONS

We have identified that the different possible regimes in
vertical capillary filling are dictated by two dimensionless
physical parameters: Ohnesorge number (Oh) and the Bond
number (Bo). For Oh/Bo � 1, the filling is dictated by a com-
bination of linear and viscous (Washburn) regimes, whereas

for Oh/Bo � 1, the filling is dictated by a combination of
linear and oscillatory regimes. For the latter case, the effect
of gravity outweighs the viscous drag; but counterintuitively it
is viscosity that dictates the nature of the oscillations and the
attainment of an equilibrium height. In fact the correct descrip-
tion of the viscous retardation effects holds the key to perfectly
describe the oscillatory regime, and obtain a satisfactory match
with the experimental results of oscillations [14,18].
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