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Instability modes of a two-layer Newtonian plane Couette flow past a porous medium
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We explore the salient features of the different instability modes of a pressure-driven two-layer plane Couette
flow confined between a moving wall and a Darcy-Brinkman porous layer. A linear stability analysis of the
conservation laws leads to an Orr-Sommerfeld system, which is solved numerically with appropriate boundary
conditions to identify the time and length scales of the instability modes. The study reveals that the movement
of the confining wall together with the slippage at the porous-liquid interface originating from the flow inside
the porous layer can stimulate a pair of finite-wave-number shear modes in addition to the long-wave interfacial
mode of instability. The shear modes dominate the interfacial mode, especially when the frictional influence
at the liquid layers is smaller due to the movement of the confining plate or due to the larger slippage at the
porous-liquid interface. The shear modes are found to be present under all combinations of the viscosity μr and
thickness hr ratios of the liquid layers. This is in stark contrast to the two-layer flow confined between nonporous
plates where the interfacial (shear) mode is observed only when μr > h2

r (μr < h2
r ). Interestingly, the strength

of one of the shear modes is found to increase with the velocity of the bounding moving plate, whereas the
other shear mode gains strength in the presence of highly porous, permeable, and thick porous layers. The results
reported can be of significant importance in the microscale two-phase flows where the presence of a bounding
porous layer or moving wall can expedite the intermixing of layers to improve the multiphase mixing, heat and
mass transfer, and emulsification characteristics.
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I. INTRODUCTION

The stability and dynamics of the pressure-driven stratified
flow of a pair of liquid layers have been studied comprehen-
sively over the years because of their presence in a variety of
important scientific and technological prototypes such as oil-
water flow, extrusion of polymers [1–3], electrochemical cells
[4], fuel cells [5], microfluidic devices [6,7], and bioprocesses
[8]. Previous theoretical [9–27] and experimental [28,29] stud-
ies suggest that the two-layer pressure-driven Poiseuille flow
(PPF) or Couette flow (CF) can become unstable either through
the long-wave interfacial mode or the finite-wave-number
shear mode. Yih [9] was the first to observe that the viscosity
stratification across the interface of a two-layer PPF develops
an interfacial mode in the friction-dominated low-speed flows
[9]. Subsequent studies showed that the two-layer flows can
also develop a Tollmein-Schlichting-type finite-wave-number
shear mode beyond a threshold flow rate where the inertial
force dominates the frictional force [11]. Importantly, a pair
of equal density immiscible liquids undergoing PPF is found
to be neutrally stable when μr = h2

r , while it develops the
interfacial mode (shear mode) of instability for the condition
μr > h2

r (μr < h2
r ) [15,20]. Here the notations μr and hr

denote viscosity and the thickness ratios of the liquid layers,
respectively. A number of reviews [30–33] ably summarize the
other salient features of the macroscopic two-layer stratified
flows.

Studies related to the instabilities of multiphase fluid flows
in microscale devices have regained impetus in the recent times
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owing to their significance in mixing, separation, heat and mass
transfer, and pumping applications [34–45]. Flow dynamics
in microscale devices are found to be notably different from
similar macroscopic configurations because of (i) the strong
frictional influence arising from the surrounding confinements,
(ii) the prominence of the capillary and adhesive forces in the
flow dynamics, and (iii) even a trifling amount of roughness,
porosity, or slippage at the boundaries, which can profoundly
alter the flow patterns. Clearly, the presence of air pockets,
physicochemical defects, or pores at the bounding walls can
easily invoke hydrodynamic instabilities to the fluid lamellae,
which can further be exploited in improving the mixing and
heat and mass transfer efficiencies. A number of previous
studies indicate that even at the macroscopic level, the presence
of a porous layer can influence the flow patterns.

Beavers and Joseph [46] showed that the salient features
of the instabilities of the flow of a liquid layer on a porous
bed can be explored by simply enforcing a simple slip
boundary condition at the porous-liquid interface. Later it
was found that the Darcy law together with the equations
of motion for the fluid can more comprehensively reveal
the influence of the properties of the porous medium on the
free-surface instabilities of a film flowing down an inclined
porous plane [47–50]. Recent studies employ a more generic
Darcy-Brinkman approach for the porous medium [51] and
reveal the influence of the porosity, permeability, and stress-
jump coefficient on the free-surface instabilities of a thin
film flowing over porous substrates [52–62]. Importantly, the
studies show that the presence of a porous layer underneath
a single liquid layer can induce a finite-wave-number shear
mode, which gains strength with an increase in the porosity,
permeability, and thickness of the porous layer. The studies
also highlight the conditional presence of multiple shear modes
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FIG. 1. Schematic diagram of a two-layer flow inside a channel
confined between a porous layer at the bottom and a moving substrate
at the top.

in which one of the shear modes appears because of the
presence of the porous medium [60–62]. In this context, the
hydrodynamic stability of a two-layer CF on a porous layer
(Fig. 1) is another exciting configuration.

In the present work, the instability of a planar two-layer
Couette flow confined between a rigid and a Darcy-Brinkman
porous medium (CFPM) is investigated through a detailed Orr-
Sommerfeld (OS) analysis. The study seamlessly compares
and contrasts both macro- and microscopic features of the
different instability modes of the CFPM. Similar to two-layer
PPF, the CFPM is found to be unstable through the long-
wave interfacial and the finite-wave-number shear modes.
Interestingly, we observe the presence of twin shear modes for
a CFPM in which one shows its dependence on the velocity
of the bounding surface, whereas the other is responsive to the
flow inside the porous layer. The strengths of these shear modes
are tunable with the thickness, porosity, and permeability of
the porous layer together with the plate velocity, whereas the
interfacial mode remains rather insensitive to these changes.
The shear modes emerge stronger than the interfacial mode
when the frictional influence is reduced in the CFPM by
increasing the porosity, thickness, and permeability of the
porous layer or when the bounding plate velocity is faster.
The conditions for the coexistence and dominance of all these
modes are explored for a large parameter space, which can be
of importance in the studies related to the microscale mixing
and heat and mass transfer employing two-layer flows.

The paper is organized in the following manner. In Sec. II,
the details of the governing equations and boundary conditions
are shown. Brief outlines of the base-state equations and the
analysis on the base-state velocity profiles are presented in
Sec. III. In Sec. IV, brief outlines of the linear stability
analysis are presented. In Sec. V, the numerical methods to
solve the OS system are discussed and the results are validated
against previous investigations. The other results are analyzed
in Sec. VI before summarizing in Sec. VII.

II. PROBLEM FORMULATION

Figure 1 schematically shows a typical pressure-driven
two-layer CFPM. The liquid films are assumed to be of
Newtonian, immiscible, incompressible (constant density ρj ),
and constant viscosity μj . The subscripts 1, 2, and m of
the variables represent the upper, lower, and porous layers,
respectively. A two-dimensional Cartesian coordinate system
is employed for the formulation along the x and z directions.

The continuity and the equations of motion for the fluid layers
(j = 1 and 2) are

∇ · uj = 0, (1)

ρj [u̇j + (uj · ∇)uj ] = −∇pj + μj∇2uj + ρj g. (2)

Here g, uj {uj ,wj }, and pj represent acceleration due to
gravity, velocity vector, and pressure for the j th layer,
respectively. The overdots represent the time derivative. The
continuity and the equations of motion for the Darcy-Brinkman
porous medium [51–62] are

∇ · um = 0, (3)

ρ1

b
u̇m = −∇pm + μe∇2um − μ1

κ
um + ρ1g. (4)

The porous medium has the effective viscosity μe, porosity
b = μ1/μe, permeability κ , and thickness d. At the porous
solid (z = −d), no-slip and impermeability boundary condi-
tions (um = 0) are enforced. The impermeable upper plate
(w2 = 0) moves with a finite velocity (u2 = up) at the liquid-
solid interface (z = β). The continuity of velocities (u1 = um),
normal stresses balance (−pm + 2μewmz = −p1 + 2μ1w1 z),
and tangential stress jump (μeumz − μ1u1 z = ξum/

√
κ) are

enforced as boundary conditions at the rigid-lower-layer–
porous-medium interface (z = 0). Here the symbol ξ is the
stress-jump coefficient [51,52]. The tangential (t · τ̄ 2 · n =
t · τ̄ 1 · n) and normal (n · τ̄ 2 · n − n · τ̄ 1 · n = γ ∇ · n) stress
balances, the continuity of the velocities u1 = u2, and the
kinematic condition ḣ = −u1(∂h/∂x) + w1 are enforced as
boundary conditions at the deformable liquid-liquid interface
(z = h). Here γ represents the interfacial tension of the liquid-
liquid interface and τ̄ j = μj (∇uj + ∇uT

j ) is the Newtonian
stress tensor. The symbols n and t represent the outward normal
vector (−hx/

√
1 + h2

x,1/
√

1 + h2
x) and the corresponding

tangent vector (1/
√

1 + h2
x, hx/

√
1 + h2

x), respectively. The
subscripts x and z denote the partial derivatives of the
respective variables.

The governing equations (1)–(4) and the boundary condi-
tions are transformed into nondimensional forms employing
the thickness of the lower layer h0 as the length scale and
the viscous time scale ρ1h

2
0/μ1. The other dimensionless

variables employed for this purpose are X = x/h0, Z =
z/h0, H = h/h0, T = tμ1/ρ1h

2
0, Uj = uj ρ1h0/μ1, V =

uph0ρ1/μ1, ρr = ρ2/ρ1, μr = μ2/μ1, B = β/h0, hr = B −
1, Dm = d/h0, G = gh3

0ρ
2
1/μ2

1, and Pj = pj h2
0ρ1/μ

2
1. The

resulting dimensionless continuity equations for the liquid
layers (i = 1 and 2) and the porous medium (i = m) are

∇ · Ui = 0. (5)

The dimensionless equations of motions for the liquid layers
and the porous layer are

U̇1 + U1 · ∇U1 = −∇P1 + ∇2U1 + G, (6)

ρr (U̇2 + U2 · ∇U2) = −∇P2 + μr∇2U2 + ρrG, (7)

(1/b)U̇m = −∇Pm + (1/b)∇2Um − (1/Da)Um + G. (8)
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The unperturbed lower, upper, and porous layers occupy
the domains 0 � Z � H , H � Z � B, and −Dm � Z � 0,
respectively. The dimensionless no-slip and impermeability
boundary conditions (Um = 0) are enforced at the porous-
solid interface (Z = −Dm). The impermeable plate (W2 =
0) at the upper liquid-solid interface (Z = B) moves with
a uniform dimensionless velocity U2 = V . The continuity
of velocities (U1 = Um), normal stress balance [P1 − Pm +
2(WmZ/b − W1Z) = 0], and stress jump [UmZ/b − U1Z −
(χ/

√
Da)Um = 0] are enforced at the liquid-porous interface

(Z = 0). The continuity of velocities U1 = U2, the kinematic
equation Ḣ = −U1HX + W1, the normal

P2 − P1 + 2[
1 + H 2

X

]{[(
1 − H 2

X

)
W1Z − HX(W1X + U1Z)

]

−μr

[(
1 − H 2

X

)
W2Z − HX(W2X + U2Z)

]} = 	HXX[
1 + H 2

X

]3/2 ,

and the shear

[
(U1Z + W1X)

(
1 − H 2

X

) + 2HX(W1Z − U1X)
]

= μr

[
(U2Z + W2X)

(
1 − H 2

X

) + 2HX(W2Z − U2X)
]

stress balances are enforced at the liquid-liquid interfaceZ =
H . The subscripts X and Z in the expressions denote partial

derivatives. In what follows, the formulations and discussion
are carried out in terms of nondimensional variables such as
the Darcy number Da = κ/h2

0, which represents permeabil-
ity; χ = ξ/μ1, which represents the stress-jump coefficient;
b = μ1/μe, which represents porosity; Dm = d/h0, which
represents the thickness of the porous layer; G, the Galileo
number; and 	 = γ h0/ρ1ν

2
1 , the capillary number.

III. BASE-STATE ANALYSIS

The governing equations are solved for the unperturbed
interface [H = 1, W̄j = 0, and Uj = Ūj (Z) (j = 1, 2, and
m)] and the following base-state solutions of the x-directional
flow are obtained:

Ū1 = C11Z
2 + C12Z + C13, 0 � Z � 1, (9)

Ū2 = C21Z
2 + C22Z + C23, 1 � Z � B, (10)

Ūm = Cm1e
MZ + Cm2e

−MZ + Cm3, −Dm � Z � 0. (11)

The global constraint that the volumetric flow rate Q =∫ 0
−Dm

Ūm + ∫ 1
0 Ū1 + ∫ B

1 Ū2 in the channels is correlated
to the base-state pressure gradient by the cumbersome
relation

P0X =

6G∗{−4Da(F+ − 1)2F−μr + M[(B − 1)2 − μr ]a2}a3 + 6Mμra
2
1(2V μr + G∗ρra5)

+ 3G∗{−2(F+ − 1)2F−μr + M[(B − 1)2 − μr ]φ}a4

+ a1(2M{−6(Q + V − BV )μr + G∗[3 − 6B + 3B2 − μr + 6DDaμr + 2(B − 1)3ρr ]}a3

− 6G∗Mμra4 + 3{2(F+ − 1)2F−μr + M[−(B − 1)2 + μr ]φ}(2V μr + G∗ρra5))

(−2{12Da(F+ − 1)2F−μr + M[−1 + (3 − 2B)B2 + μr − 6DDaμr ]a1 + 3M[−(B − 1)2 + μr ]a2}
a3 + 3{2(F+ − 1)2F−μr + M[−(B − 1)2 + μr ]φ + 2Mμra1}(a1a5 − a4))

. (12)

Here the velocities with overbars Ū1, Ū2, and Ūm represent
the base-state solutions at the lower, upper, and porous layers,
respectively. The constants Cij (i = 1, 2, and m; j = 1, 2, and
3) in expressions (9)–(11) are determined from the base-state
governing equations and boundary conditions as presented in
the Appendix and M = √

b/Da.
Figure 2 shows the nondimensional base-state velocity

profiles for a CFPM under varied conditions. Figure 2(a)
shows the influence of the velocity of the confining plate at
the top V of the flow profiles. The curves clearly indicate that
the CFPM is under the coupled influence of the slippage at
the porous-liquid interface originating from the flow inside
the underlying porous layer together with the motion of the
confining plate. The location of the maximum velocity in the
profile is observed in the lower layer because the viscosity of
the upper layer is considered higher (solid line). The dashed
lines suggest that with an increase in the plate velocity the
relative strength of the inertial force become stronger than
the viscous resistance. In such situations, the flow rate at the
highly viscous upper layer becomes faster and the location

of the maximum velocity at the lower layer progressively
moves towards the upper layer. Figures 2(b)–2(d) together
show that when V is kept constant, an increase in the porosity
b, permeability Da, and thickness of the porous layer Dm can
cause a stronger flow inside the porous layer, which in turn can
impart a stronger slippage at the porous-liquid interface. Thus,
for a confined CFPM, a moving boundary and the presence of a
bounding porous surface can lead to a stronger flow inside the
channel, which in turn can induce instabilities by suppressing
the frictional resistance.

IV. LINEAR STABILITY ANALYSIS

The nondimensional governing equations and the boundary
conditions are linearized by imposing small-amplitude
perturbations to the base state: Uj = Ūj + U ′

j , Wj = W ′
j , and

Pj = P j + P ′
j , where j = 1, 2, and m. The overbars indicate

the base state and the primes denote perturbed quantities.
The equations for velocity perturbations are then transformed
in terms of the stream functions as U ′

j = ∂�j/∂Z and
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FIG. 2. Plots showing the nondimensional base-state velocity Ūi profiles across the width of the channel Z for μr = 5, ρr = 1, hr = 1,
b = 0.5, χ = 0.1, Da = 0.1, and Dm = 1.

W ′
j = −∂�j/∂X. The resulting governing equations and

the boundary conditions are linearized by employing the
normal linear modes �j (X,Z,T ) = �̃j (Z) eiK(X−CT ),
P ′

j (X,Z,T ) = P̃j (Z) eiK(X− CT ), and H (X,Z,T ) =
1 + H̃ eiK(X− CT ) to obtain the following dimensionless
coupled OS equations for the liquid layers and the porous
medium:

(D2 − K2)2�̃1 = iK[(Ū1 − C)(D2 − K2) − D2Ū1]�̃1, (13)

νr (D2 − K2)2�̃2 = iK[(Ū2 − C)(D2 − K2) − D2Ū2]�̃2,

(14)

(D2 − K2)2�̃m = (b/Da − iKC)(D2 − K2)�̃m. (15)

The notation D represent the differentiation d/dZ,
νr (=μr/ρr ), K is the wave number, and C (=Cr + iCi) is
the phase speed, with Cr and KCi the wave speed and the
growth rate of the perturbation, respectively. Here Cr and Ci

are the real and imaginary parts of the wave speed, respectively.
The linearized nondimensional boundary conditions at the
porous-solid and liquid-solid boundaries are

�̃mZ(−Dm) = �̃m(−Dm) = �̃2Z(B) = 0, �̃2(B) = V.

(16)

At the porous-liquid interface (Z = 0),

�̃1 = �̃m, (17)

�̃1Z = �̃mZ, (18)

1

b
�̃mZZ − �̃1ZZ = χ√

Da
�̃mZ, (19)

iKŪ1Z�̃1 + [−3K2 + iK(C − Ū1)]�̃1Z + �̃1ZZZ

= 1

b

[
−3K2 − b

Da
+ iKC

]
�̃mZ + 1

b
�̃mZZZ. (20)

At the liquid-liquid interface (Z = 1),

�̃1 = �̃2, H̃ = �̃1/(C − Ū1), (21)

(�̃1Z − �̃2Z) + [�̃1/(C − Ū1)](Ū1Z − Ū2Z) = 0, (22)

�̃1ZZZ − 3K2�̃1Z − μr�̃2ZZZ + 3μrK
2�̃2Z

+ iK(C − Ū1)(�̃1Z − ρr�̃2Z) + iK(Ū1Z�̃1 − ρrŪ2Z�̃2)

− �̃1/(C − Ū1)[(Ū1Z − μrŪ2Z)2K2 + i	K3] = 0, (23)

[�̃1ZZ + K2�̃1] + (Ū1ZZ − μrŪ2ZZ)�̃1/(C − Ū1)

−μr [�̃2ZZ + K2�̃2] = 0. (24)
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V. NUMERICAL ANALYSIS

The coupled OS system in Eqs. (13)–(24) is an eigenvalue
problem and is solved numerically to obtain the linear growth
rate KCi and the corresponding wave number K for the
unstable modes. In this study, the most accurate D2 algorithm
proposed by Dongarra et al. [63] for the Chebyshev τ -QZ

spectral method is employed to obtain the eigenvalues [64,65].
For this purpose, initially the computational domain is mapped
onto (−1, 1) by employing the transformations Z1 = −2Z +
1, Z2 = 2

B−1Z − B+1
B−1 , and Zm = 2

Dm
Z + 1 for the lower,

upper, and porous layer equations, respectively. Thereafter,
introducing the variables η(Z1) = �̃1(Z), σ (Z2) = �̃2(Z),
and ζ (Zm) = �̃m(Z), the fourth-order ordinary differential
equations (ODEs) (13)–(15) are transformed into the following
six second-order ODEs in terms of the variables ξ , λ, and π :

L1η ≡ (
4d2/dZ2

1 − K2
)
η = ξ, (25)

L1ξ − iKŪ1ξ + 2iKC11η + iKCξ = 0, (26)

L2σ ≡ {
[4/(B − 1)2]d2/dZ2

2 − K2
}
σ = λ, (27)

νrL2λ − iKŪ2λ + 2iKC21σ + iKCλ = 0 (28)

Lmζ ≡ [
(4/D2)d2/dZ2

m − K2]ζ = π, (29)

Lmπ − (b/Da)π + iKCπ = 0. (30)

The boundary conditions at the porous-solid and liquid-solid
boundaries are derived in terms of the transformed variables
as

ζZm
(−1) = ζ (−1) = σz2 (1) = 0, σ (1) = V. (31)

The transformed boundary conditions at the porous-liquid
interface are

η − ζ = 0, (32)

ηZ1 + 1

D
ζZm

= 0, (33)

K2η + ξ − K2

b
ζ + 2χ

D
√

Da
ζZm

− 1

b
π = 0, (34)

iKC12η + 2(2K2 + iKŪ1)ηZ1 − 2ξZ1

+ 2

bD

[
2K2 + b

Da

]
ζZm

− 2

bD
πZm

−C

(
2iKηZ1 + 2iK

bD
ζZm

)
= 0. (35)

The transformed boundary conditions at the liquid-liquid
interface are

η − σ = 0, (36)

C
[
2ηZ1 + (2/B − 1) σZ2

] − [(2C11 + C12) − (2C21 + C22)] η − 2Ū1ηZ1 − (2Ū1/B − 1)σZ2 = 0, (37)

C(2K2η + ξ − 2μrK
2σ − μrλ) + 2[(C11 − μrC21) − Ū1K

2]η − Ū1ξ + 2μrŪ1K
2σ + μrŪ1λ = 0, (38)

C2
[
2iKηZ1 + (2iKρr/B − 1)σZ2

] + C{−iK(2C11 + C12)η − 4(iKŪ1 + K2)ηZ1 + 2ξZ1 + iKρr (2C21 + C22)σ

− (4/B − 1)(μrK
2 + iKρrŪ1)σZ2 + [2μr/(B − 1)]λZ2}

+ ({2[(2C11 + C12) − μr (2C21 + C22)]K2 + iKŪ1(2C11 + C12) + i	K3}η − [2μrŪ1/(B − 1)]λZ2

+ 2
(
2Ū1K

2 + iKŪ 2
1

)
ηZ1 − 2Ū1ξZ1 − iKŪ1ρr (2C21 + C22)σ + [2/(B − 1)]

[
2μrŪ1K

2 + iKρrŪ
2
1

]
σZ2

) = 0. (39)

The subscripts Z1, Z2, and Zm denote ordinary differentiation.
The transformed ODEs are then expanded in terms of
Chebyshev polynomials Tn(z). For N Chebyshev polynomials,
the eigenvalues are obtained for a (6N + 12) × (6N + 12)
matrix corresponding to six second-order ODEs and twelve
boundary conditions. The accuracy of the eigenvalues is tested
by varying the number of polynomials and in the process the
spurious eigenvalues are eliminated. The eigenvalues obtained
from the Chebyshev τ -QZ spectral method are validated by
solving the set of equations (25)–(39) employing the spectral
collocation method [66]. The eigenvectors reported here are
found using the spectral collocation method.

The numerical results are also validated against a number
of configurations available in the literature. Figure 3(a) shows
the variation in the linear growth coefficient KCi vs wave
number K plotted from the collocation method (circles) and
Chebyshev τ -QZ method (solid line). The plots confirm that
both numerical methods predict the same eigenvalues for the

CFPM. Figure 3(b) reproduces a KCi vs K plot for a two-
layer CF [15] in the limit where the porous layer is almost
impervious. Further, Fig. 3(c) shows a neutral stability diagram
of a single layer of liquid confined between a rigid and a
porous substrate [56]. This plot is obtained from the present
analysis in the asymptotic limit where the upper plate velocity
is zero and the liquid layers are kept identical. The code is also
verified with the available results of the two-layer PPF in the
limits where the porous layer is absent and the upper plate is
stationary. Concisely, Fig. 3 corroborates the accuracy of the
code at various asymptotic limits.

VI. RESULTS AND DISCUSSION

Previous theoretical studies [8] suggest that a two-layer PPF
with equal density liquid layers is unstable either because of
the long-wave interfacial mode when the condition μr > h2

r

is met or because of the finite-wave-number shear mode when
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μr < h2
r or is neutrally stable when μr = h2

r . The results
discussed here highlight the importance of the underlying
porous layer or the bounding moving plate of the CFPM
largely around these conditions. It may be noted here that
the results are reported in terms of upper to lower viscosity
μr and thickness hr ratios. To uncover the salient macro- and
microscopic features of the CFPM, the following parameter
space has been used for the analysis: ρj ∼ 1000 kg/m3,
μj ∼ 0.001 – 0.01 Pa s, dj ∼ 0.0001 – 0.1 m, γ ∼ 0.02 N/m,
and x-directional velocity ∼10−4–0.5 m/s.

Figure 4 shows the presence of different instability modes
under varied conditions. Figure 4(a) shows that when μr > h2

r ,
a CFPM on a porous layer with very small porosity and
permeability shows only an interfacial mode of instability, as
observed previously for the two-layer PPF between rigid and
impervious surfaces [15,20]. With an increase in the velocity
of the upper plate V , the frictional resistance progressively
reduces the viscosity stratification across the interface, which
in turn weakens the interfacial mode of instability. In contrast,
the curves in Fig. 4(b) show that when the porosity b of
the same configuration is increased, a finite-wave-number
shear mode of instability appears beyond a critical porosity
even when μr > h2

r . In this situation, an increase in porosity
intensifies the flow inside the porous layer, which induces a
larger slippage at the porous-liquid interface and reduces the
frictional influence in the liquid layers to induce the shear
mode of instability. Figure 4(c) shows that for a fixed b when
V is progressively increased, the shear mode also can appear
beyond a threshold plate velocity. A larger velocity of the
bounding plate escalates the strength of the inertial force,
which is the major reason for this shear mode at a larger V .
Importantly, the shear modes reported in Figs. 4(b) and 4(c)
are of different nature as compared to the conventional shear
mode of two-layer CF or PPF under the condition μr < h2

r ,
which is shown separately in Fig. 4(d). The origin of these
twin shear modes in the CFPM can be attributed to (i) the
velocity of the moving plate at the top and (ii) the slippage at
the porous-liquid interface due to the stronger flow inside the
porous medium. The shear modes are found to coexist with
the interfacial mode as dominant or subdominant modes even
when the condition μr > h2

r is met. Concisely, Fig. 4 confirms
that movement of the bounding plate and the presence of a
bounding porous layer can stimulate an additional shear mode
of instabilities in a CFPM.

The neutral stability diagrams in Fig. 5 show more clearly
the point of onset of the shear modes under the condition
μr > h2

r . It may be noted here that the symbols i and s in the
plots represent the interfacial and shear modes of instability,
respectively. For ease of analysis, the shear mode appearing
from the movement of the plate (from the porous layer) is
denoted by sc (sp) in the plots. In this figure, Re is changed by
altering the plate velocity V . Curves with the notation i suggest
the presence of a long-wave interfacial mode of instability
under all conditions. In this plot, the progressive reduction
in the span of unstable wave numbers with an increase in
Re is due to a reduction in the viscosity stratification across
the interface with an increase in V . Curve 1s shows that the
finite-wave-number shear mode appears beyond a threshold
Re and can coexist with the interfacial modes at larger V .
Curves 2s–5s show that a reduction in porosity, thickness, and
permeability and an increase in the stress-jump coefficient of
the porous layer can delay the onset of the shear mode to
a larger value of Re. The curves also suggest that the span
of unstable wave numbers for the shear mode increases with
a progressive increase in Re. Figure 5 shows that the shear
modes associated with the movement of the upper plate or
due to the presence of a porous medium appear only beyond
a threshold Re but can grow stronger as the relative inertial
influence increases with Re.
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In Figs. 6 and 8–10, plot (a) shows the variation of KCi

withK and plots (b)–(d) show the neutral stability plots
of (KCi)max and Kmax, respectively, with the porous-media
parameters. The dominant growth coefficient (KCi)max and
wave number Kmax are the global maxima from the KCi vs K

plots and the dominant wavelength is �max = 2π/Kmax. The
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FIG. 5. Plot showing the neutral stability, which is the variation
of Kc with Re when the plate velocity V is varied. The curves with i
and sc represent the interfacial and shear modes, respectively. Curves
1–5 represent b = 0.5, b = 0.3, Dm = 0.7, Da = 0.005, and χ = 0.5,
respectively. The other parameters are kept fixed at μr = 5, ρr = 1,
hr = 1, b = 0.5 (for curves 3–5); Dm = 1 (for curves 1, 2, 4, and 5);
Da = 0.01 (for curves 1–3 and 5), and χ = 0.1 (for curves 1–4).

critical wave number Kc is obtained by enforcing the neutral
stability condition KCi = 0.

Figure 6 shows the influence of the porosity b of the porous
layer on the inception and the growth of the different modes
of the instabilities. Figure 6(a) shows that when μr > h2

r

and the porous layer is nearly impervious (small b), the
CFPM can be unstable by only the long-wave interfacial
mode (curve 1i). An increase in b allows a stronger flow
inside the porous layer, which empowers the inertia force to
subdue the viscous resistance at the lower layer. Consequently,
a finite-wave-number shear mode of instability (curve 2sc)
appears alongside the interfacial mode (curve 2i). With an
increase in b, the shear mode progressively becomes the
dominant mode (curve 2sc). Interestingly, at higher values of
b, the presence of multiple shear modes (curves 3sc and 3sp) is
observed. In such a situation, the shear mode that appeared at
intermediate values of b becomes subdominant (curve 3sc),
whereas the newly appeared mode becomes the dominant
mode (curve 3sp) at very high values of b. Importantly, when
b is kept constant and V is increased (curves 2sc and 4sc)
the shear mode originating due to the movement of the plate
becomes stronger. The neutral stability in Fig. 6(b) shows
the conditions for the onset and coexistence of the different
instability modes. Curves 1–3 in this plot represent different
velocities; curve 2 was already discussed in Fig. 6(a). Curve 1
in Fig. 6(b) conveys that when V = 10, the interfacial mode is
the only unstable mode at lower values of b. Beyond a critical
value of bc = 0.614, the frictional influence due to the flow
inside the porous layer diminishes in such a manner that the
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finite-wave-number shear mode (curve 1sc) appears. With a
further increase in b, as the flow empowers the inertial force,
the span of unstable wave numbers increases for the shear
mode, whereas the interfacial mode remains rather insensitive
to the change in b. Curve 2 in this plot shows that if V = 90
and other conditions are kept the same, the shear mode appears
at a much lower critical porosity bc = 0.33. Interestingly, in
such a situation, when b is progressively increased we observe
the appearance of twin shear modes (curves 2sc and 2sp), as
discussed previously for Fig. 6(a). The plot also shows that
with an increase in b at constant V , the span of unstable
wave numbers reduces for the first mode (curve 2sc) before
the second mode appears (curve 2sp). Further, the span of
unstable wave numbers for the sp mode is more towards
the shorter-wavelength regime as compared to the sc mode.
Importantly, curve 3 in Fig. 6(b) shows that as V is increased
to 150, the twin shear modes combine to show a single shear
mode (curve 3sc). Figure 6(b) clearly show that an increase
in the velocity of the upper plate can significantly reduce the
viscous influence in a CFPM, which can expedite the onset
of the shear mode of instability at a much lower value of b.
Further, as observed in the base-state profiles in Fig. 2(b),
an increase in b induces larger slippage at the porous-liquid
interface, which is reflected in the increase in the span of
unstable wave numbers for the shear mode with an increase
in b in Fig. 6(b). Curves 1–3 in Figs. 6(c) and 6(d) represent
V = 10, 90, and 150, respectively. The plots show that with a
progressive increase of b and V , as the inertia is empowered,

shorter-wavelength shear modes become the dominant mode
of instability. Interestingly, as the viscosity stratification across
the interface remains unchanged, the interfacial mode (curves
1i–3i) is insensitive to these influences. The plots highlight
that at lower V only the sc shear mode exists, at intermediate
V the coexistence of both sc and sp shear modes is observed,
and at higher V both the shear modes combine to form again a
single sc shear mode of instability. Interestingly, both shear
modes are found to gain strength with V and b, whereas
when twin modes are present the sp (sc) mode gains (loses)
strength with an increase in b. Figure 6(d) shows that with
an increase in b, the wavelength of the dominant shear mode
progressively move towards the smaller-wavelength regime,
whereas the same for the interfacial mode remains constant.
It may be recalled here that the CFPM considered in Fig. 6
meets the criteria μr > h2

r and ρr = 1 for which a two-layer
PPF is unstable only through the interfacial mode of instability.
The figure suggests that the introduction of the underlying
porous layer together with movement of the upper plate can
reduce the frictional influence and increase the relative strength
of the inertia force to develop multiple finite-wave-number
shear modes of instability. From the application point of view,
the presence of these instability modes can be particularly
useful in improving the heat and mass transfer and mixing
characteristics especially in the microfluidic devices.

The origin of the twin shear modes is also investigated
through an eigenfunction analysis. Figure 7 shows the magni-
tudes of the perturbed stream function |�̃j | corresponding to
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the eigenvalues obtained for the different modes in Fig. 6(a).
In Fig. 7(a) the horizontal dashed, dash–double-dotted, dash-
dotted, and solid lines show the locations for the critical layers
(U = Cr ), which are found to be situated in either the upper
(Z > 1) or the lower layer (0 < Z < 1). Interestingly, all
three (dashed) curves show three distinct changes in the slope
for |�̃j |: (i) near the porous-liquid interface, (ii) near the
liquid-liquid interface, and (iii) at the bulk of the lower layer.
However, among these three slope changes in |�̃j | one is
found to be predominant. For the case with higher porosity
(b = 0.9) two different eigenfunctions corresponding to the
two different eigenvalues for the shear modes are analyzed
at V = 90. The solid line 1sp shows the largest variation in
|�̃j | near the porous-liquid interface (Z = 0), whereas the
dashed curve 1sc shows the same at the lower liquid layer.
The dash–double-dotted curve 2sc shows that a reduction in
the porosity (b = 0.6) leads to an eigenfunction similar to
curve 1sc. In this case we obtained only one eigenvalue for
the shear mode. Further, the dash-dotted curve 3sc shows an
eigenfunction corresponding to the single eigenvalue obtained
at b = 0.9 and V = 150, which again depicts the largest
variation in |�̃j | at the lower liquid layer. A comparison
between curves 2sc and 1sp confirms that the change in
|�̃j | near the porous-liquid interface gains strength when the
porosity is increased. In contrast, the same happens to |�̃j | at
the lower layer when the upper plate moves faster (curves 1sc,
2sc, and 3sc).

In Fig. 7(b) the eigenfunctions obtained at different values
of K are shown. The plot corresponds to curve 3 in Fig. 6(a)
(b = 0.9), which showed the existence of the interfacial mode
at lower K , the appearance (disappearance) of a Couette
shear mode (interfacial mode) at moderately higher K , the
coexistence of both shear modes at higher values of K , and
the existence of only the porous-medium mode at higher K .
Following this trend, Fig. 7(b) shows the largest variation in
|�̃j | at the liquid-liquid interface (curve i) at lower values of
K(=0.3), which corresponds to the interfacial mode of
instability. At moderately higher values of K (=1.3), |�̃j |
shows a sharp variation in the lower layer (dashed line) when

there exists only the Couette flow shear mode of instability. At
K = 1.6, the coexistence of both Couette and porous-medium
modes is observed, as shown by the dash–double-dotted lines
with the marker sc and sp. In this case, the change of slope
of |�̃j | for the sp mode takes place near the porous-liquid
interface, whereas the same for the sc mode occurs at the
lower liquid layer. At higher values of K (=2.0), we observe
only the presence of the porous-medium mode as shown by the
dash-dotted line with the marker sp. Clearly, the eigenfunction
plots shown in Fig. 7 connect the origin of the sc and sp modes
with the movement of the plate at the top and the slippage at
the porous-liquid interface, respectively.

Apart from the porosity of the porous layer, the thickness
of the porous layer Dm can be an alternative parameter to
reduce the frictional influence in a CFPM, as evident in Fig. 8.
Figure 8(a) shows that when μr > h2

r and Dm is very small, the
CFPM can be unstable only through the interfacial mode (curve
1i). An increase in Dm allows flow inside the porous layer,
which expedites the slippage at the porous-liquid interface
developing a pair of finite-wave-number shear modes (curves
2sc and 2sp) alongside the interfacial mode. The sp mode of
instability becomes the dominant mode at moderately high
values of Dm. With a further increase in Dm, the sp mode
grows in strength, whereas the growth of the interfacial and
sc modes remains invariant. The neutral stability curve 1 in
Fig. 8(b) conveys that when V = 10, interfacial mode (curve
1i) is the only unstable mode at lower values of Dm and the
sc mode (curve 1sc) appears only beyond a critical thickness
(Dm = 0.56). With an increase in Dm, initially the span of
unstable wave numbers increases for the shear modes and then
becomes constant, whereas the same for the interfacial mode
it always remains constant. Curve 2 in Fig. 8(b) shows that if
V is increased to 90, the sc mode appears at a similar critical
thickness of the porous layer (Dm = 0.56). However, an sp

shear mode is also observed at a higher thickness of the porous
layer (Dm = 0.68). Interestingly, curve 3 shows that at V =
150, the twin shear modes combine to show a single shear
mode with a larger span of unstable wave numbers (curve
3sc). Previously, the base-state velocity profiles in Fig. 2(c)
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showed that an increase in Dm induces larger slippage at
the porous-liquid interface, which increases the convective
influence in the CFPM. However, beyond a threshold Dm the
reduction in the frictional influence saturates to a constant
value, which is reflected in curves 1–3 of Figs. 8(c) and 8(d).
The plots highlight that at very low Dm the interfacial mode
is dominant and the shear mode appears only after a threshold
porous layer thickness. With a progressive increase in Dm

the shear mode becomes the dominant mode as the frictional
influence reduces. However, beyond a threshold Dm, as the
relative increase in the inertial influence saturates, (KCi)max

reaches a constant value. The behavior of the CFPM here
resembles a single-layer plane Poiseuille flow over a porous
medium [55–57]. Briefly, Fig. 8 suggests that although the
inertial influence due to the increase in the porous layer
thickness can induce shear modes, the strength of these modes
can only be increased until a threshold value of Dm.

Figure 9 shows that the permeability of the porous layer
(Da) is another parameter that can influence the onset of shear
modes. Curve 1i in Fig. 9(a) shows that in the presence of an
impermeable porous layer only the interfacial mode is present.
With a progressive increase in Da, as more flow is allowed
inside the porous layer we observe the appearance of twin
sc and sp shear modes of the instabilities. However, beyond
threshold permeability, higher flow inside the porous layer
weakens the flow in the fluid layers and the strength of the shear
mode is found to decay. A CFPM on a highly permeable porous
layer is unstable only through the interfacial mode, as shown

by curve 3i. The neutral stability diagram in Fig. 9(b) confirms
the appearance of the shear mode after a lower-threshold value
of Da and the disappearance of the same beyond an upper-
threshold value of Da. The plots also support that at lower V ,
only the sc shear mode is observed, whereas at intermediate V ,
both shear modes coexist (curves 2sc and 2sp). At higher V , the
shear mode combines to show the presence of a single shear
mode for a larger span of Da, as shown by curve 3sc. Curves
1–3 in Fig. 9(c) more clearly show that at low Da the interfacial
mode is the dominant mode (curves 1i–3i). With a progressive
increase in Da, the sc (sp) shear mode is the dominant mode at
lower (higher) V . However, at very high velocities both shear
modes combine to form a single shear mode, as depicted by
curve 3sc. The strength of the shear modes decays beyond a
limiting value of Da as the interfacial mode again becomes the
dominant mode of instability. Figure 9(d) shows that with an
increase in Da, the shear (interfacial) mode progressively move
towards the larger- (smaller-) wavelength regime. Figure 9
shows that the twin shear modes can be observed only for a
window of Da, while the interfacial mode of instability is the
dominant mode for very high or very low Da.

Figure 10 summarizes the influence of the stress-jump
coefficient χ on the different modes of instabilities. Curves
1i–3i in Fig. 10(a) show that an increase in χ infuses strength
to the interfacial mode of instability. In contrast, the shear
modes are only observed at some intermediate values of χ .
Further, the shear modes disappear at higher values of χ .
The plots clearly suggest that an increase in the stress-jump
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coefficient increases the frictional influence in the lower layer,
which in turn increases the viscosity stratification between
the liquid layers. In consequence, the shear modes become
weaker as the frictional force dominates the inertial influence.
The neutral stability diagram in Fig. 10(b) shows more clearly
the weakening of the shear modes and insurgence of the
interfacial mode with an increase in χ . Curves 1–3 in these
plots confirm that the span of unstable wave numbers for
the shear mode progressively reduces and the same for the
interfacial mode gradually increases with an increase in χ .
The plot also confirms that at lower V , only the sc shear
mode is observed, whereas at intermediate V , both shear
modes coexist (curves 2sc and 2sp). At higher V , the shear
mode combines to show the presence of a single shear mode
with a larger span of unstable wave numbers, as shown by
curve 3sc. Curves 1–3 in Fig. 10(c) clearly highlight that
at low χ the lesser frictional influence ensures a dominant
shear mode of instability for a CFPM with a highly porous
layer. However, with an increase in χ the interfacial mode
becomes the dominant mode because of the increase in the
frictional influence. The plot also suggests that the transition
from a dominant shear to a dominant interfacial mode takes
place at higher values of χ when V is larger. Figure 10(d)
shows that with an increase in χ , the shear (interfacial) mode
progressively move towards the larger- (smaller-) wavelength
regime. Figures 11(a)–11(d) show phase diagrams for V vs the
porous-medium parameters b, Dm, Da, and χ . In this figure we
have identified the dominant mode among the interfacial and
two shear modes of instabilities under varied conditions. The

darker gray zones in the plots clearly depict that the sc mode
is the dominant one when the velocity of the top plate is high.
Further, the sp mode is found to be the dominant mode when
the porous layers are of high porosity or are thick [Figs. 11(a)
and 11(b)]. Figure 11(c) shows that at moderately high Da the
sp mode is the dominant mode, but at high Da the shear mode
diminishes to make the interfacial mode as the dominant mode
of instability, as observed previously in Fig. 9. Figure 11(d)
shows that although the sp mode is the dominant mode at lower
values of χ , at the higher values where the frictional influence
increases, the interfacial mode becomes the dominant mode.
Figure 11 provides an overall idea of the dominance of the
different unstable modes for a wide range of parameters.

VII. CONCLUSION

Instabilities of a pressure-driven two-layer plane Couette
flow on a Darcy-Brinkman porous layer have been explored.
An Orr-Sommerfeld analysis has been carried out by lineariz-
ing the governing equations and the boundary conditions. The
OS system is solved numerically by employing two different
methods to obtain the accurate eigenvalues, which are also
validated against the results of the asymptotic cases that are
available in the literature. The following are the important
conclusions.

The study uncovers that apart from the conventional long-
wave interfacial mode and finite-wave-number shear mode of
instabilities of a two-layer CF, the CFPM may develop at least
two additional finite-wave-number shear modes because of
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FIG. 10. Plots showing the influence of stress-jump coefficient χ . The curves with i and s represent the interfacial and shear modes,
respectively. (a) Variation of KCi with K when V = 90. Curves 1–3 represent χ = 0.0, 0.5, and 1, respectively. (b)–(d) Variations of Kc,
(KCi)max, and Kmax with χ , respectively. Curves 1–3 represent V = 10, 90, and 150, respectively. The other parameters are μr = 5, ρr = 1,
hr = 1, b = 0.9, χ = 0.1, Dm = 1, and Da = 0.01.

the movement of the bounding plate and the flow inside the
porous layer. Thus, for a CFPM, beyond a critical velocity
of the moving plate or beyond some threshold values of the
physical properties of the porous layer, a finite-wave-number
shear mode (or modes) can be observed for almost all possible
combinations of viscosity μr and thickness ratios of the liquid
layers hr . Conditionally, we also observe the presence of twin
shear modes, one of which grows with bounding plate velocity,
whereas the other grows with the increased slippage at the
porous-liquid interface.

A permeable thick porous layer with high porosity is found
to reduce frictional influence in the liquid layers especially
when the lower layer is of low viscosity. The study shows
that the influence of the porous layer affects the shear mode
than the interfacial mode. The shear mode is more unstable at
high porosity, whereas a porous layer with constant porosity
and permeability can only increase the strength of the shear
mode until a threshold thickness. The strength of the shear
mode is found to increase and then decrease with the increase
in permeability. The increased frictional influence with the
increase in the stress-jump coefficient causes the reduction
in strength of the shear modes and increase in strength of
the interfacial modes. The analysis confirms that a transition
from a dominant interfacial to a dominant shear mode can be
performed only by tuning the velocity of the moving plate and
the porous layer parameters for all possible μr and hr .

Concisely, the study shows that the CFPM can be more
unstable than conventional pressure-driven two-layer CF or
PPF due to the flow inside the underlying porous layer coupled

with the movement of the bounding plate. The augmented
inertia (reduced friction) due to the presence of the porous
layer or due to the movement of the bounding plate can more
readily develop the shear modes of instabilities, which can
eventually lead to a larger mixing, heat and mass transfer,
and emulsification of the immiscible phases. The reported
parameter bounds for the various unstable modes of the
porosity, permeability, and thickness of the porous layer can be
of importance in future studies related to the two-layer channel
flow inside microfluidic devices.
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APPENDIX

The base-state governing equations are

Ū1ZZ = P0X − G sin α, (A1)

Ū2ZZ = (1/μr )P0X − (1/νr )G sin α, (A2)

(1/b)ŪmZZ − (1/Da)Ūm = P0X − G sin α. (A3)
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FIG. 11. (Color online) Contour plots showing the conditions for dominant interfacial i and shear sp and sc modes of the instabilities in the
phase planes having V and porous-medium parameters for different (a) b, (b) Dm, (c) Da, and (d) χ . The other parameters are μr = 5, ρr = 1,
hr = 1, b = 0.9, χ = 0.1, Dm = 1, and Da = 0.01.

The dimensionless no-slip boundary condition at the porous-
solid interface (Z = −Dm) is

Ūm = 0. (A4)

The dimensionless no-slip boundary condition at the liquid-
solid interface (Z = B) is

Ū2 = V. (A5)

The dimensionless form of the continuity of velocity and the
stress-jump condition at the liquid-porous interface (Z = 0)
are

Ū1 = Ūm, (A6)

(1/b)ŪmZ − Ū1Z − (χ/
√

Da)Ūm = 0. (A7)

The dimensionless form of the continuity of velocity and the
tangential stress balance at the liquid-liquid interface (Z = 1)
are

Ū1 = Ū2, (A8)

Ū1Z = μr (Ū2Z). (A9)

The above governing equations and boundary conditions yield

Ū1 = C11Z
2 + C12Z + C13, 0 � Z � 1, (A10)

Ū2 = C21Z
2 + C22Z + C23, 1 � Z � B, (A11)

Ūm = Cm1e
MZ + Cm2e

−MZ + Cm3, −Dm � Z � 0, (A12)

C11 = (P0X − G∗)/2, (A13)

C12 = a2(P0X − G∗) + C13φ

a1
, (A14)

C13 =
(

a4

2a3

)
(P0X − G∗) −

(
a1a5

2a3

)
(P0X − ρrG

∗), (A15)

C21 = P0X − ρrG
∗

2μr

, (A16)

C22 = a2 + a1

a1μr

(P0X − G∗) − 1

μr

(P0X − ρrG
∗) + φ

a1μr

C13,

(A17)

C23 = − (P0X − ρrG
∗)B2

2μr

− C22B, (A18)

Cm1 = −
(

Da (F− − 1) (P0X − G∗) + C13F−
a1

)
, (A19)

Cm2 = Da (F+ − 1) (P0X − G∗) + C13F+
a1

, (A20)

Cm3 = −Da( P0X − G∗), (A21)
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where φ = F−J+ + F+J−, ψ = χ (F+ − F−)Da−1/2 −
2(b Da)−1/2, G∗ = G sin α, F+ = e

√
b/Da Dm , M = √

b/Da,
F− = e−√

b/DaDm , J+ = (
√

1/b Da + χ/
√

Da), J− =

(
√

1/b Da − χ/
√

Da), a1 = (F+ − F−), a5 = (B − 1)2,
a2 = [Da(φ − J− − J+) + a1χ

√
Da], a3 = (B − 1) φ +

(φ + a1) μr , and a4 = (1 − B − μr ) 2a2 + (2 − 2B − μr ) a1.
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