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Dichotomous-noise-induced pattern formation in a reaction-diffusion system
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We consider a generic reaction-diffusion system in which one of the parameters is subjected to dichotomous
noise by controlling the flow of one of the reacting species in a continuous-flow-stirred-tank reactor (CSTR)
-membrane reactor. The linear stability analysis in an extended phase space is carried out by invoking Furutzu-
Novikov procedure for exponentially correlated multiplicative noise to derive the instability condition in the
plane of the noise parameters (correlation time and strength of the noise). We demonstrate that depending on the
correlation time an optimal strength of noise governs the self-organization. Our theoretical analysis is corroborated
by numerical simulations on pattern formation in a chlorine-dioxide-iodine-malonic acid reaction-diffusion
system.
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I. INTRODUCTION

Noise is ubiquitous in natural sciences. While traditionally
noise acts as an impediment for order, signal, or communi-
cation networks, its constructive role has attracted a lot of
attention over the last three decades [1,2]. A closer look reveals
two distinct situations in zero-dimensional systems. First,
noise may assist activation so that a multistable system can
cross a potential barrier and the barrier crossing rate becomes
maximum at an optimal noise strength. Stochastic resonance
[3] and several of its variants such as resonant activation [4],
coherence resonance [5], and ratchets [6] fall in this category.
In the second case noise may destabilize a steady state while
inducing creation of new steady states [7]. Examples include,
among others, noise-induced nonequilibrium transition [7,8],
flashing ratchet [9], and Parrondo’s paradox [10]. When
the system is spatially extended as in reaction-diffusion
systems, the local kinetics gets diffusively coupled and the
scenario encompasses a broader area covering noise-induced
pattern formation. This occurs when an external spatially and
temporally uncorrelated noise in a system parameter induces
a patterned state which otherwise remains homogeneously
stable in the absence of fluctuations [2]. The effects of
additive as well as multiplicative noise have been explored
[11] in various reaction-diffusion systems, electrodynamic
convection in nematic liquid crystals, the Swift-Hohenberg
model for turbulence, and in many other issues. The scope
of techniques ranges from mean-field approximation [2,12],
Langevin-Fokker-Planck hybrid description [13], and higher
order moment approach [14] to renormalization-group meth-
ods [2,15]. For a comprehensive review we refer to Sagués
et al. [2].

The focus of the present work is pattern formation induced
by dichotomous noise. The problem has been addressed
previously by several groups [16–23]. For example, the
switching triggered by dichotomous fluctuations results in an
interplay of two different dynamics, neither of which supports
a patterned state, leading to the formation of Turing patterns.
Turing pattern formation has also been investigated in the
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presence of additive dichotomous noise in diffusively coupled
FitzHugh-Nagumo kinetics [20] for various switching rates.
The major emphasis of these studies lies on a switching
mechanism [16–20] that leads to self-organization. Further-
more, most of the investigations on noise-induced pattern
formation are based on white noise. For a noise process whose
time scale is much faster compared to the time scale of the
deterministic part of the dynamical system, a white-noise limit
serves as a good approximation. On the other hand, when
the two time scales are close to each other one has to go
beyond this limit and resort to appropriate noise correlation.
The question is, how does the interplay of the correlation
time and the strength of the dichotomous fluctuations govern
self-organization in a reaction-diffusion system? The physical
motivation here stems from consideration of the following
situation. We maintain the reaction-diffusion system under
study in a CSTR-membrane reactor [also called a continuous-
flow-unstirred reactor (CFUR)] [24] in which the flow of one
of the species (whose concentration is kept large such that
it can be treated approximately as a constant in the absence
of any fluctuation) can be subjected to stochastic fluctuations.
Such stochastic modulation of concentration of a substrate in a
chemical reaction in a continuous-flow-stirred-tank reactor is
well known, for example, in glycolysis [25]. Our aim is to look
for the bifurcation condition for dichotomous-noise-induced
instability in this reaction-diffusion system. For a dichotomous
noise with zero mean and Ornstein-Zernike correlator we
derive here the critical line in the σ -λ parameter plane,
where σ and λ refer to the noise strength and inverse of
correlation time, respectively. The instability condition is
examined in a prototypical chemical reaction-diffusion system
(chlorine-dioxide-iodine-malonic acid system [26–33]) which
has served as an excellent testing ground for various theories
of pattern formation and related contexts. We show that
depending on the correlation time, an optimal range of noise
strength is necessary for noise-induced self-organization or
stationary pattern formation. Our theoretical scheme has
been corroborated by detailed numerical simulation on this
system.

The paper is organized as follows: In Sec. II we introduce
a two-component reaction-diffusion system in which one
of the parameters is subjected to dichotomous fluctuations.
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The instability condition is derived in the noise-strength–
correlation-time parameter space to distinguish between the
homogeneous and the inhomogeneous regimes. The theo-
retical formulation is illustrated in Sec. III in the light of
the chlorine-dioxide-iodine-malonic acid reaction-diffusion
system and its numerical simulations. The paper is concluded
in Sec. IV.

II. THE TWO-COMPONENT MODEL AND
DICHOTOMOUS-NOISE-INDUCED INSTABILITY:

GENERAL SCHEME

We consider a general two-component reaction-diffusion
system characterized by parameters pU and pV (e.g., rate
constants or concentrations of the species treated as constants,
etc.) corresponding to two species with concentration U and
V that react and diffuse as follows:

∂U

∂t
= F (U,V,pU ) + ∇2U,

(2.1)
∂V

∂t
= G(U,V,pV ) + d∇2V,

where U (x,y,t) and V (x,y,t), the concentration variables,
are functions of space and time. F (U,V,pU ) and G(U,V,pV )
express the local reaction kinetics in terms of the functional
dependence on the variables and parameters. d denotes
the ratio of diffusion coefficients of the two species. We
assume that the system admits a homogeneous steady state
at concentrations U0 and V0 such that

F (U0,V0,pU ) = 0, G(U0,V0,pV ) = 0. (2.2)

Applying linear perturbation analysis about the steady
state (U = U0 + ū,V = V0 + v̄), where the spatial pertur-
bation can be expressed as ū = u(t)cos(kxx)cos(kyy) and
v̄ = v(t)cos(kxx)cos(kyy), we obtain

∂u

∂t
= Pu + Qv,

(2.3)
∂v

∂t
= R1u + S1v.

Here P = [FU − (k2
x + k2

y)], Q = FV , R1 = GU , and S1 =
[GV − d(k2

x + k2
y)]. FU , FV , GU , and GV are the respective

partial derivatives of the functions F (U,V ) and G(U,V ) with
respect to U and V . kx and ky are the wave-vector components
along the x and y directions. We further assume that the
homogeneous steady state is linearly stable with respect to
spatially homogeneous perturbations, i.e., stable in the absence
of diffusion. This requires that the sufficient conditions are
given by

FU + GV < 0, FUGV − FV GU > 0. (2.4)

Introduction of diffusion, on the other hand, yields the Turing
condition, i.e., the homogeneous steady state loses its stability
with respect to spatiotemporal perturbation if the following
condition holds good:

[dFU + GV ]2

4d
> FUGV − FV GU. (2.5)

We now consider that one of the parameters, say, pV , is
perturbed by fluctuation or noise, i.e., pV = p0 + ξ (t), where

p0 is the constant part and ξ (t) denotes a dichotomous noise
with zero mean and Ornstein-Zernike correlator,

〈ξ (t)〉 = 0, 〈ξ (t)ξ (t ′)〉 = σ exp(−λ|t − t ′|). (2.6)

Physically, this may be achieved by stochastic variation of the
concentration of one of the species (which is large compared
to u or v in the absence of fluctuation) included in pV

when the reaction is carried out in a CSTR-membrane reactor
[24]. Therefore, Eqs. (2.3) with multiplicative noise take the
following form:

∂u

∂t
= Pu + Qv,

(2.7)
∂v

∂t
= Ru + θ1ξu + Sv + θ2ξ.

Here θ1 and θ2 are the parts of GU and GV without p0,
respectively, and R and S refer to the parts of GU and GV

with p0, respectively. Eqs. (2.7) on averaging, take the form

∂〈u〉
∂t

= P 〈u〉 + Q〈v〉,
(2.8)

∂〈v〉
∂t

= R〈u〉 + θ1〈ξu〉 + S〈v〉 + θ2〈ξv〉.

To proceed further we need the correlators 〈ξu〉 and 〈ξv〉.
They can be dealt with using the Furutzu-Novikov [34] pro-
cedure, which, for exponentially correlated random function
[Eq. (2.6)] takes the Shapiro-Logunov [35] form, viz.,

d〈ξu〉
∂t

=
〈
ξ
du

dt

〉
− λ〈ξu〉,

(2.9)
d〈ξv〉

∂t
=

〈
ξ
dv

dt

〉
− λ〈ξv〉.

On multiplying Eqs. (2.7) by ξ , and subsequent averaging, one
obtains〈

ξ
du

dt

〉
= P 〈ξu〉 + Q〈ξv〉,

(2.10)〈
ξ
dv

dt

〉
= R〈ξu〉 + S〈ξv〉 + θ1〈ξ 2u〉 + θ2〈ξ 2v〉.

To get around the higher-order correlators 〈ξ 2u〉 and 〈ξ 2v〉
in Eqs. (2.10), one, in general, may resort to decoupling
approximations. However, we make use of the special case
of the two-state Markov process (dichotomous noise) which
is described by the correlator (2.6) and ξ 2 = σ . Consequently,
Eqs. (2.9) take the following form:

d〈ξu〉
∂t

= P 〈ξu〉 + Q〈ξv〉 − λ〈ξu〉,
(2.11)

d〈ξv〉
∂t

= σ [θ1〈u〉 + θ2〈v〉] + R〈ξu〉 + [S − λ]〈ξv〉.

Equations (2.8) and (2.11) constitute a closed set of linear
equations for four coupled variables 〈u〉, 〈v〉, 〈ξu〉, and
〈ξv〉. We emphasize that because of the appearance of the
additional variables 〈ξu〉 and 〈ξv〉 the phase space for the
linear analysis is now extended [36]. Assuming solutions of
the form 〈u〉 = 〈ū〉e−εt , 〈v〉 = 〈v̄〉e−εt , 〈ξu〉 = 〈 ¯ξu〉e−εt , and
〈ξv〉 = 〈 ¯ξv〉e−εt for each of the four variables and substituting
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them in Eqs. (2.8) and (2.11), we obtain the following equation
for the determinant, |εI − M| = 0, where

M =

⎡
⎢⎣

P Q 0 0
R S θ1 θ2

0 0 P − λ Q

σθ1 σθ2 R S − λ

⎤
⎥⎦ . (2.12)

I is the identity matrix, ε is the eigenvalue to be determined,
and M is the stability matrix in the extended phase space.
Expansion of the above determinant gives

ε4 − 2(P + S − λ)ε3 + {
P (P + 2S − 2λ) + S(P + S − 2λ) + λ2 − (P + S)λ + PS − 2RQ − σθ2

2

}
ε2

+ {
P

[
S(P + S − 2λ) + λ2 − (P + S)λ + PS − RQ − σθ2

2

] + S[λ2 − (P + S)λ + PS − RQ]

+ σθ1θ2Q − σθ2
2 (P − λ) − Q[R(P + S − 2λ) − σθ1θ2]

}
ε + PS[λ2 − (P + S)λ + PS − RQ] + σθ1θ2PQ

− σθ2
2 (P − λ)P − Q

{
R[λ2 − (P + S)λ + PS − RQ] + σθ2

1 Q − σθ1θ2(P − λ)
} = 0. (2.13)

We now invoke the Routh-Hurwitz stability criterion [37] for the characteristic equation

|εI − M| = ε4 + B1ε
3 + B2ε

2 + B3ε + B4 = 0, (2.14)

where B1, B2, B3, and B4 can be directly identified from the coefficients of the powers of ε in Eq. (2.13). The eigenvalues ε of the
4 × 4 square matrix M , have all negative real parts, if �1 > 0, �2 > 0, �3 > 0, and �4 > 0 where, in general, �k is given by

�k =

∣∣∣∣∣∣∣∣∣∣

B1 1 0 0 0 0 · · · 0
B3 B2 B1 1 0 0 · · · 0
B5 B4 B3 B2 B1 1 · · · 0
...

...
...

...
...

...
. . .

...
B2k−1 B2k−2 B2k−3 B2k−4 B2k−5 B2k−6 · · · Bk

∣∣∣∣∣∣∣∣∣∣
. (2.15)

The system looses its stability if at least one of the �k’s
becomes negative. A reasonable estimate of the critical values
of correlation time (τc = 1/λc) and strength (σc) of the
dichotomous noise accompanying such a change in stability
can be made by setting �k = 0 (here k = 1, . . . ,4). Successive
use of the associated relations yields the critical condition for
instability for a given set of system parameters, which can be
written in the following form:

σc = f (λc). (2.16)

The actual form of f (λc) varies from system to system.
The critical σc-λc curve depicts a bifurcation scenario for
noise-induced instability. Our scheme is the following: First,
we select an appropriate homogeneous stable steady state
of the system in the absence of noise outside the Turing
domain. Second, the parameter space for this chosen state
has to be used as an input to the stability matrix (M).
Consequently the coefficients of the characteristic equation
Bi,i = 1,2,3,4,5,6,7 are obtained. By varying the strength
(σc) of the dichotomous noise as a function of correlation time
(τc) or its inverse λc one can select the appropriate region in the
σc-λc plane between the homogeneous state (in the presence of
noise) and the patterned state. We now illustrate the procedure
with the help of the following example.

III. APPLICATION

A. Chlorine-dioxide-iodine-malonic acid system

As an example, we consider the chlorine-dioxide-iodine-
malonic acid(CDIMA) system [26–33], which is one of the
most widely used paradigms for studying spatiotemporal

patterns both numerically and experimentally over the last
decade. Five key species are involved in the chemical reaction,
viz., malonic acid (MA), I2, ClO2, I−, and ClO2

− obeying the
following chemical reactions:

MA + I2 −→ IMA + I− + H+,

ClO2 + I− −→ ClO2
− + 1

2 I2, (3.1)

ClO2
− + 4I− + 4H+ −→ Cl− + 2I2 + 2H2O.

An additional equilibrium between starch (S) and iodide ions
occurs on adding starch from outside in the reaction medium
(K being the equilibrium constant),

S + I− + I2 � SI3
−, K = [SI3

−]

[S][I−][I2]
. (3.2)

Assuming the concentrations of malonic acid, chlorine diox-
ide, and iodine to remain practically constant and identifying
U and V as the dimensionless concentrations of I− and ClO2

−,
respectively, one can write the reduced two-variable model due
to Lengeyl and Epstein [26], as follows:

∂U

∂t
= F (U,V ) + ∇2U,

(3.3)
∂V

∂t
= G(U,V ) + cd∇2V.

Here F and G can be identified as follows:

F (U,V ) = a − U − 4UV

1 + U 2
,

(3.4)

G(U,V ) = c

[
b

(
U − UV

1 + U 2

)]
.
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FIG. 1. (Color online) Bifurcation diagram for the CDIMA
system without noise. The Turing line (square blocks) and the Hopf
line (circles) are shown in the a-b parameter space. The shaded area in
between the Turing and the Hopf line is the Turing region. Below the
Hopf line lies the region for homogeneous oscillations. The region
above the Turing line refers to homogeneous stable states. Three
such states are shown by three points: �, (a0,b0) = (36.0,3.0)); �,
(a1,b1) = (30.0,2.5); and •, (a2,b2) = (40.0,3.5).

The parameters a and b are proportional to the concentration
ratios [MA]/[I2] and [ClO2]/[I2], respectively, and are related
to kinetic parameters. d refers to the ratio of the diffusion
coefficients d = [DClO2

− ]/[DI− ]. c is the dimensionless con-
centration of starch which forms a complex with I− such that
c = 1 + K[S], where [S] is the concentration of starch. In
order to bring the discussions into the present perspective we
now consider the bifurcation diagram for the model CDIMA
reaction as shown in Fig. 1. From the linear stability analysis
it is well known that a Turing bifurcation curve is given by

(3a2d − 5ab − 125d)2 = 100abd(25 + a2). (3.5)

This curve as depicted by the line on the a-b plane with
square blocks in Fig. 1 for d = 1.20 is independent of c. The
homogeneous steady state below it turns out to be unstable
to inhomogeneous perturbation, i.e., to diffusion. The Hopf
curve, on the other hand, is given by

bc = 3a

5
− 25

a
. (3.6)

Below this curve one observes homogeneous oscillations.
By changing the concentration of the complexing agent, i.e.,
by varying c, it is possible to move the Hopf curve up or down
in the a-b plane. A representative Hopf curve is shown in
Fig. 1. by a solid line with circles for c = 9.0. When the Hopf
curve lies below the Turing line, the Turing patterns arise in
the shaded region below the Turing curve and above the Hopf
curve. For further details we refer to [26–33].

B. Parametric dichotomous noise: Critical condition
for noise-induced instability

In order to explore noise-induced instability it is necessary
to select a point in the a-b stability diagram which corresponds
to a homogeneous stable steady state (in the absence of noise).
Three such representative states in Fig. 1 are denoted by the
three points (a0,b0), (a1,b1), and (a2,b2) which lie above the

Turing line, i.e., outside the shaded area of the normal Turing
pattern. We then introduce the dichotomous noise in one of the
kinetic parameters, i.e., b = b0 + ξ (t), where ξ (t) is described
fully by Eqs. (2.6) and set a = a0. Following the scheme
described in Sec. II, we obtain the set of four linear coupled
equations [Eqs. (2.8) and (2.11)] for the CDIMA model when
the dichotomous noise is switched on. Explicit calculation
yields the quantities P , Q, R, S, θ1, and θ2 which are given as
follows:

P =
[

3a2
0 − 125

a2
0 + 25

− (
k2
x + k2

y

)]
, Q = −

[
20a0

a2
0 + 25

]
,

R =
[

2a2
0b0c

a2
0 + 25

]
, S = −

[
5a0b0c

a2
0 + 25

+ cd
(
k2
x + k2

y

)]
, (3.7)

θ1 =
[

2a2
0c

a2
0 + 25

]
, θ2 = −

[
5a0c

a2
0 + 25

]
.

As before, we obtain a quartic equation in ε, Eq. (2.13), with P ,
Q, R, S, θ1, and θ2 as defined above. For the CDIMA system,
the coefficients Bi,i = 1,2,3,4,5,6,7 of Eq. (2.14) reduce to
the following expressions:

B1 = −2(P + S − λ),

B2 = λ2 − 3(P + S)λ + 2(PS − RQ) + (P + S)2 − σθ2
2 ,

B3 = −{
(P + S)[λ2 − (P + S)λ + PS − RQ]

+ (PS − RQ)(P + S − 2λ) − 2σθ1θ2Q

− σθ2
2 (2P − λ)

}
,

B4 = (PS − RQ)[λ2 − (P + S)λ + PS − RQ]

− σθ1θ2(2P − λ)Q − σθ2
2 (P − λ) − σθ2

1 Q2,

B5 = 0, B6 = 0, B7 = 0. (3.8)

The corresponding Routh-Hurwitz coefficient �k’s are

�1 = |B1|. �2 =
∣∣∣∣B1 1
B3 B2

∣∣∣∣ ,

�3 =
∣∣∣∣∣∣
B1 1 0
B3 B2 B1

0 B4 B3

∣∣∣∣∣∣ , �4 =

∣∣∣∣∣∣∣
B1 1 0 0
B3 B2 B1 1
0 B4 B3 B2

0 0 0 B4

∣∣∣∣∣∣∣
.

(3.9)

The critical values of λ and σ are obtained by setting

�1 = B1 = 0,

�2 = B1B2 − B3 = 0,

�3 = B1B2B3 − B2
1B4 − B2

3 = 0,

�4 = B1B2B3B4 − B2
1B2

4 − B2
3B4 = 0. (3.10)

�1 = 0 gives unphysical λ (hence unacceptable τ ). Using the
remaining equations, we obtain a quadratic equation in λ:

(PS − RQ)λ2−[(P + S)(PS − RQ) − σθ2(θ1Q + θ2P )]λ

+ (PS − RQ)2 − 2σθ1θ2PQ − σ
[
θ2

2 P 2 + θ2
1 Q2

] = 0.

(3.11)

Considering small but finite correlation time τ (i.e., large λ),
and thus retaining only the highest power of λ, we obtain the

062924-4



DICHOTOMOUS-NOISE-INDUCED PATTERN FORMATION . . . PHYSICAL REVIEW E 87, 062924 (2013)

critical line σc = f (λc) [see Eq. (2.16)] in the following form:

σc = (PS − RQ)λ2
c + (PS − RQ)2[

2θ1θ2PQ + θ2
2 P 2 + θ2

1 Q2
] . (3.12)

The critical bifurcation curve is given by Eq. (3.12). The region
above this critical line corresponds to the homogeneous steady
state in the presence of noise, while below it refers to the noise-
induced patterned state. To realize the dichotomous-noise-
induced spatiotemporal instability as given by the condition
(3.12) we first depict the critical bifurcation line in the
λc-σc plane. To draw this line we choose the homogeneous
stable state above the Turing line in the absence of noise
corresponding to the point (a0,b0) = (36.0,3.0). The other
parameters are set as c = 9.0 and d = 1.20. σc is calculated as
a function of λc(= 1

τc
) and the resulting critical line is shown

in Fig. 2(a) by solid stars. The other two bifurcation lines
are drawn and shown in the figure for the states (a1,b1) =
(30.0,2.5) and (a2,b2) = (40.0,3.5); parameters c and d are
kept the same. We conclude this section with a comment.
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FIG. 2. (Color online) (a) Critical bifurcation curves [see
Eq. (3.12)] for noise-induced instability for three different homo-
geneous stable states (in the absence of noise) shown in Fig. 1 for
c = 9.0 and d = 1.20. (b) Critical bifurcation curve [see Eq. (3.12)]
for dichotomous-noise-induced instability for the state (a0,b0) =
(36.0,3.00) (homogeneous stable in the absence of noise) with
c = 9.0 and d = 1.20. The region above the line corresponds to
homogeneous states in the presence of noise (representative points
i and ii), while below it corresponds to the noise-induced patterned
state (representative points iii–viii).

Care must be taken to distinguish between two kinds of
homogeneous states: one corresponding to the region above
the Turing line in Fig. 1 where noise has no role to play with
and the other corresponding to the region above the bifurcation
line in the σc-λc plane. They are distinct because of dynamical
considerations.

C. Numerical simulations: Noise-induced patterns

Since the critical line clearly makes a separation between
the spatiotemporally stable and unstable regions, we choose
several points (i, ii, iii, iv, v, vi, vii, and viii) in Fig. 2(b) in
the parameter space on both sides of the line [drawn for the
homogeneous stable state (a0,b0) = (36.0,3.0) in the absence
of noise] to carry out numerical simulations of Eqs. (3.3) with
a = a0 and b = b0 + ξ (t). Here ξ (t) is the dichotomous noise
with statistical properties given by Eq. (2.6). The numerical
algorithm followed for generation of dichotomous noise with
exponential correlation is given in Ref. [38]. The dichotomous
noise ξ (t) which can assume only two random values, say, α

and β, constitute a random number sequence satisfying (2.6).
Fig. 3(a) shows the illustrative dichotomous noise profiles for
α = 1 and β = −1 for three different values of correlation
time τ . We emphasize that the time interval �t between
the two states is much smaller than τ (�t � τ ). It is clear
from the figures that with an increase in correlation time, the
residence time of a particular state increases on an average. The
numerical accuracy of the method is checked by calculating the
first moment 〈ξ (t)〉. In Fig. 3(b) we calculate the normalized

2 4 6 8 10
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τ=1.00
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 Analytical τ =1.00

(b)

FIG. 3. (Color online) (a) Dichotomous noise profiles for two
states α = 1 and β = −1, for three different τ values. (b) Plots of the
normalized correlation function versus t ′ for α = 1.0 and β = −1.0,
for three different noise profiles.
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FIG. 4. Dichotomous-noise-induced stationary patterns for the parameter set a = 36.0, b = 3.00, c = 9.0, and d = 1.20 for various values
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autocorrelation function 〈ξ (t)ξ (t + t ′)〉/〈ξ (t)2〉 corresponding
to the noise profiles shown in Fig. 3(a).

Having generated the exponentially correlated dichotomous
noise processes we are now in a position to explore noise-
induced instability and pattern formation. The numerical
simulation of Eq. (3.3) is done in two dimensions using the
explicit Euler method. The computations have been performed
on a 100 × 100 array with grid spacing � x = � y = 0.50 and
a time step � t = 0.0025 using a zero-flux boundary condition
for the states represented by the points i, ii, iii, iv, v, vi, vii,
and viii of Fig. 2(b) for a range of noise strength σc keeping
τc fixed. The parameter set chosen is (a0,b0) = (36.0,3.0)
representing a homogeneous stable steady state in the a-b plane
in the absence of noise (Fig. 1) with c = 9.0 and d = 1.20.
With gradual lowering of noise strength σc as one approaches
the bifurcation line from above no pattern appears for noise
strength σc above the critical curve as shown in Figs. 4(i)
and 4(ii). Instability sets in when the noise strength σc lies on
the bifurcation curve. This is characterized by the appearance
of precursors for the patterned state as shown in Fig. 4(iii).
On further lowering of σc when the system is well below the
bifurcation line the fully developed patterns appear for a range
of noise strength. These are shown in Figs. 4(iv)–4(vii). The
simulations are performed from a homogeneous state to an in-
homogeneous patterned state, each state being considered after
the system reaches the stationarity. The typical time to attain
steady state is 4 × 105 time units. With further diminishing of
the noise strength the pattern disappears [Fig. 4(viii)]. In order
to corroborate this lack of patterns for very weak noise with
our theoretical scheme we now return to the critical condition,
Eq. (3.12). A closer look into this condition clearly suggests
that as

σc → 0, λ2
c → −(PS − RQ).

Explicit evaluation of P , Q, R, and S from Eq. (3.7) shows
that (PS − RQ) is positive for the parameter set chosen and
therefore λc turns out to be purely imaginary. This implies that
patterns cannot form at very low noise strength σc as observed
in the numerical simulation shown in Fig. 4(viii).

We now explore the possible mechanism behind the
dichotomous-noise-induced pattern formation. It is well
known that the Turing pattern owes its origin to the interplay
of short-range activation and long-range diffusion of two
interacting species. Choosing a homogeneous steady state
in the absence of noise just outside the normal Turing
domain amounts to allowing the dominance of the diffusive
behavior over the kinetics of activation. The introduction of
dichotomous noise now acts in two different ways. Since noise
is multiplicative it is expected to induce a drift in the kinetics
and therefore can effectively modify the local activation.
On the other hand, the correlation between the noise and
the system variables which appear as additional phase-space
variables in the extended dynamics brings in modification of
diffusion since the correlations take care of fluctuations beyond
the mean-field limit. Therefore the presence of dichotomous
noise with optimal strength and finite correlation time brings
the local activation and long-range diffusion into an appropri-
ate interacting condition where neither of these factors tend to
overwhelm the other.

IV. DISCUSSION AND CONCLUSION

We have presented a general class of reaction-diffusion
systems where a spatiotemporal instability can be induced
by the application of dichotomous noise. The noise is
characterized by zero mean and an exponential correlator.
We have derived the bifurcation condition for noise-induced
instability leading to stationary pattern formation, in the
noise-strength–noise-correlation time parameter space for the
dynamical state, which being above the normal Turing regime,
remains homogeneously stable in the absence of noise. The
general theoretical scheme has been applied to a CDIMA
reaction-diffusion system. A major motivation behind such
an application is the scope for experimental verification of the
theoretical prediction, by stochastic modulation of a parameter
of the model. The parameter of relevance is proportional to
the ratio of the concentration of the two species, [ClO2]/[I2].
Earlier spectrophotometric analysis [39] shows that ClO2 is
a key species in the dynamics. It would seem natural that
the concerned parameter can be stochastically modulated by
controlling the flow of ClO2, in the form b → b0 + ξ (t) as
required. Here ξ (t) is the dichotomous noise with properties
defined in Eq. (2.6). A possible design may be a CSTR-
membrane reactor [24], which comprises a thin gel layer
which lies on one wall of a CSTR which provides the
continuous flow of reactants of the chlorine-dioxide-iodine-
malonic acid system. With gel thickness of the order of 1/4
mm as demonstrated before [24], the diffusion time of the
reactants into and out of the gel can be made very short
(compared to the total residence time in the stirred flow
reactor) which otherwise would be long for a standard open
gel reactor, necessitating consideration of the details of flow
processes involving gradients [40]. An advantage of such a
design is that the concentration of feed chemicals for the
reaction-diffusion process can be determined fairly accurately
so that the dichotomous fluctuation of the concentration of
ClO2 can be controlled by varying the residence time (this is
not to be confused with the residence time of a CSTR) of the
two states of the noise. The diffusion time must also be short
compared to the residence times of the two states of the noise. A
CSTR-membrane reactor has been used previously in the study
of Turing patterns [24]. The stochastic control of concentration
of substrate was carried out earlier in experiments on glycolytic
oscillations [25]. The role that dichotomous noise played in our
study is different from the switching mechanism that operates
between two different dynamical processes as investigated
in earlier studies [16–20]. We now summarize the main
conclusions of this study.

(i) The bifurcation condition and the associated numerical
simulation reveal the existence of optimal strength and corre-
lation time of dichotomous noise for noise-induced instability
and pattern formation. Patterns disappear for very high and
for very low values of noise strength. The optimal value of
noise strength for a given correlation time is a reflection
on the closeness of the time scales of the fluctuation of
concentration and the deterministic dynamics of the chemical
reaction.

(ii) An important element of the present formulation is that
unlike the mean-field approaches, where the correlations are
neglected, it takes care of the noise correlations by invoking
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the Furutzu-Novikov procedure for exponentially correlated
random fluctuations in an appropriate way.

(iii) The analysis is a generalization of the linear stability
analysis of the reaction-diffusion systems subjected to fluctu-
ations of one of its parameters in an extended phase space.
The additional phase-space variables appear as a result of the
correlation between the system variables and the noise degree
of freedom.

Our theoretical results on noise-induced instability are in
good agreement with numerical simulations of the underlying
CDIMA model which has played a key role in exploring
many aspects of nonlinear chemical dynamics in spatially

extended systems. We conclude by stressing that apart from
activator-inhibitor dynamics the method can be easily im-
plemented to other kinds of models in ecology and biology.
The experimental verification of the theoretical predictions on
pattern formation poses a challenge for ongoing research in
this field.
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