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A measure to estimate the direct and directional coupling in multivariate time series is proposed. The measure
is an extension of a recently published measure of conditional mutual information from mixed embedding
(MIME) for bivariate time series. In the proposed measure of partial MIME (PMIME), the embedding is on
all observed variables and it is optimized in explaining the response variable. It is shown that PMIME detects
correctly direct coupling and outperforms the (linear) conditional Granger causality and the partial transfer
entropy. We demonstrate that PMIME does not rely on significance test and embedding parameters and the
number of observed variables has no effect on its statistical accuracy; it may only slow the computations.
The importance of these points is shown in simulations and in an application to epileptic multichannel scalp
electroencephalograms.
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I. INTRODUCTION

In recent years the study of causality in multivariate time
series has gained much attention and along with the advances
of complex networks from time series has contributed to the
understanding of complex systems [1]. Considering the global
system as a network, the interest in this work is in the direct
effect a driving subsystem, observed through a variable X,
may have on the evolution of a response subsystem, observed
through a variable Y . This is to be distinguished from an
indirect effect X may have on Y via other subsystems, say,
Z, where the observed variables in Z are referred to as
confounding variables.

There are established linear measures of direct causality
such as the conditional Granger causality index (CGCI) [2].
Though many nonlinear directional coupling measures have
been proposed in the past decade [3], there are only a few
extensions accounting for indirect effects such as the partial
phase synchronization [4] and the partial transfer entropy
(PTE) [5,6]. A possible reason for this unbalanced production
of measures might be the increased data requirements when
adding confounding variables in the calculations. For example,
for the same delay embedding with embedding dimension
m (and delay τ ) for X and Y , the transfer entropy (TE)
measuring the causal effect from X to Y requires the estimation
of a joint probability distribution of dimension 2m + 1 (m
for X, m for Y , and 1 for the future of Y ). Extending
TE to PTE when a total of K variables are observed, the
dimension becomes Km + 1 and eventually PTE fails for a
large m or K . This is indeed a common practical setting, e.g.,
electroencephalograms (EEGs), climatic records, and stock
portfolio, and there have been some suggestions on reducing
the dimension [7–9].

Dimensionality reduction is the first drawback we intend
to successfully address with the proposed measure. The next
drawback is related to the embedding parameters m and
τ . In real settings, one does not know aforehand the best
choice of embedding parameters and recent works have shown
that the measure performance is very much dependent on
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them [10]. The third drawback is the need for a statistical test of
significance, which for nonlinear measures is computationally
intensive requiring a resampling test using surrogate data.

We recently proposed a nonuniform embedding scheme,
bypassing the problem of selecting the embedding parameters,
and derived a measure for bivariate directional coupling:
the conditional mutual information from mixed embedding
(MIME) [11]. For this we used information criteria and found
that the k-nearest-neighbor (kNN) estimate of entropies, and
consequently mutual information (MI), is stable and efficient,
as it adapts the local neighborhood to the dimension of the
state space [12] (for a similar approach based on entropy
and binning estimate see [13]). Here we extend the measure
MIME to multivariate time series and form the partial MIME
(PMIME), which can detect direct coupling. The idea is first
to reconstruct a point (vector) in the subspace of the joint
state space of lagged variables X, Y , and Z, derived from the
nonuniform embedding scheme with the purpose of explaining
best the evolution of Y . The derived mixed embedding vector
contains only the most relevant components from all variables,
avoiding thus a large dimension that would deteriorate the
estimation. The presence of components of X in this vector
indicates that X has some effect on the evolution of Y and then
the derived information measure PMIME is positive, whereas
the absence indicates no effect and then PMIME is exactly
zero.

We explain the measure in detail in Sec. II. In Sec. III
we demonstrate the effectiveness of PMIME, compared also
to PTE and CGCI, on a number of simulated systems and a
multichannel scalp EEG recording. We summarize in Sec. IV.

II. MEASURE OF PARTIAL MUTUAL INFORMATION
FROM MIXED EMBEDDING

Let {xt ,yt ,z1,t , . . . ,zK−2,t }nt=1 be a multivariate time series
of K variables X,Y,Z1, . . . ,ZK−2; we want to estimate the
effect of X on Y conditioned by Z = {Z1, . . . ,ZK−2}. The
future of Y at each time step t is generally represented by a
vector of T feature values yT

t = [yt+1, . . . ,yt+T ]. This is an
extension of the one step ahead y1

t = yt+1 and can be more
appropriate in some settings, e.g. a relatively dense sampling
for continuous-time systems. The lags of X, Y , and Z are
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sought within a range given by a maximum lag for each
variable, e.g., Lx for X and Ly for Y . When all variables are
of the same type, e.g., EEG signals, it is natural to assume the
same maximum lag L for all variables. Let us denote the set of
all lagged variables at time t as Wt , containing the components
xt ,xt−1, . . . ,xt−Lx

of X and the same for the other variables.
We use an iterative scheme to form the mixed embedding

vector wt ∈ Wt starting with an empty embedding vector
w0

t = ∅ [11]. In the first iteration, termed first embedding
cycle, we find the component in Wt being most correlated to yT

t

given by the kNN estimate of MI, w1
t = argmaxw∈Wt

I (yT
t ; w),

and we have w1
t = [w1

t ]. In the second embedding cycle,
the mixed embedding vector is augmented by the compo-
nent w2

t of Wt , giving most information about yT
t addi-

tionally to the information already contained in w1
t , i.e.,

w2
t = argmaxw∈Wt

I (yT
t ; w|w1

t ), where the conditional mutual
information (CMI) is again estimated by kNN, and the
mixed embedding vector is w2

t = [w1
t ,w

2
t ]. The progressive

vector building stops at the embedding cycle j and we have
wt = wj−1

t if the additional information of w
j
t selected at the

embedding cycle j is not large enough. In [11], we quantified
this with the termination criterion

I
(
yT

t ; wj−1
t

)/
I
(
yT

t ; wj
t

)
> A (1)

for a threshold A < 1.
The obtained mixed embedding vector wt may contain any

of the lagged variables X,Y,Z1, . . . ,ZK−2 and the interest
in terms of the causality X → Y is whether there are any
components of X in wt . Let us denote the components of X in
wt as wx

t for Y as wy
t and for the other variables in Z as wz

t . To
quantify the causal effect of X on Y conditioned by the other
variables in Z, we define PMIME as

RX→Y |Z = I
(
yT

t ; wx
t

∣∣wy,wz
)

I
(
yT

t ; wt

) . (2)

TABLE I. Number of times PMIME is positive for 100 realiza-
tions of three coupled Hénon maps (C = 0.1) with true couplings
X1 → X2 and X3 → X2 and false coupling X2 → X1. The parame-
ters are n = 512, L = 5, and T = 1 and the stopping criterion is set
by a fixed threshold A and an adjusted threshold determined by α.

Threshold X1 → X2 X3 → X2 X2 → X1

noise-free
A = 0.95 1 2 0
A = 0.97 41 25 0
A = 0.99 72 70 3
α = 0.01 21 11 0
α = 0.05 51 35 0
α = 0.1 59 47 0

20% noise
A = 0.95 22 11 0
A = 0.97 59 46 5
A = 0.99 79 92 36
α = 0.01 20 4 0
α = 0.05 48 37 3
α = 0.1 63 57 8
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FIG. 1. Estimated coupling q, where q is any of PMIME, PTE,
and CGCI given in the legend, as a function of coupling strength
C for the system of K = 5 coupled Hénon maps: (a) X3 → X2

and (c) X4 → X2. The parameters are n = 1024 and T = 1 for all
measures and m = 2 for PTE and CGCI. Each error bar denotes the
mean and SD over 100 realizations and the error bars are slightly
displaced horizontally for better visualization. (b) and (d) Estimated
probability P of detecting the coupling in (a) and (c), respectively,
which is the relative frequency PTE and CGCI found significant at
the significance level α = 0.05 using 100 time-shifted surrogates or
the relative frequency of PMIME being positive.

The numerator is the CMI of the future response vector and
the part of the mixed embedding vector formed by lags of
the driving variable accounting for the rest of the vector. The
form of CMI is similar to PTE, but in PTE the uniform delay
embedding vectors of X, Y , and Z are used and the delay
parameters have to be set. The normalization in Eq. (2) with
the MI of the future response vector and the whole mixed
embedding vector restricts RX→Y |Z in [0,1]; it is zero if there
are no driving components in the mixed embedding vector
(wx

t = ∅), meaning there is no direct causal effect from X

TABLE II. Mean of coupling measure and relative frequency for
its statistical significance in parentheses from 100 realizations of
coupled Hénon maps (C = 0.2) with varying number of variables K .
Results are shown for the true direct coupling (first block) and the
indirect coupling (second block) of the variables in the center part
of the chain of the K variables. The parameter setup is the same as
for Fig. 1.

Measure K = 5 K = 15 K = 25

X(K−1)/2 → X(K−1)/2+1

PMIME 0.105(1.00) 0.063(0.92) 0.061(0.79)
PTE 0.021(0.89) 0.001(0.15) 0.000(0.10)
CGCI 0.040(0.85) 0.188(0.68) 0.230(0.67)

X(K−1)/2 → X(K−1)/2+2

PMIME 0.000(0.00) 0.000(0.01) 0.001(0.02)
PTE − 0.005(0.04) 0.001(0.02) 0.000(0.07)
CGCI 0.009(0.15) 0.064(0.44) 0.136(0.45)
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on Y , and it is one if the mixed embedding vector is totally
dominated by the driving variable (wy

t = wz
t = ∅). The latter

is rather unlikely to be met in practice and in general we expect
RX→Y |Z to be closer to zero than to one.

The free parameters in PMIME are the maximum time lags
for each variable, e.g., LX, the time horizon T in the future
response vector yT

t , and the threshold A in the termination
criterion. The selection of maximum lags is not critical and
can be arbitrarily large at the cost of excessive computations.
A rule of thumb is to have a small number of lags for maps
(discontinuous series of observations) and a larger number of
lags for flows (smoothly changing observations), which for
oscillating time series should cover one or more oscillation
periods [14]. The time horizon T is also dependent on the
underlying dynamics. Nevertheless, T = 1 is widely used in
works on linear and nonlinear causality measures, but we have
argued that T > 1 may be more appropriate in cases of densely
sampled time series [11].

The threshold A is the only inherent parameter of PMIME.
For MIME, it was found after a simulation study that
A = 0.95 is an appropriate choice to avoid false positives, i.e.,

components of X entering wt in the absence of coupling. We
extend this study here and compare the fixed threshold A to
an adjusted threshold for the significance of I (yT

t ; wj
t |wj−1

t ),
the CMI for the selected component w

j
t at the embedding

cycle j . As the null distribution for the null hypothesis
H0 [I (yT

t ; wj
t |wj−1

t ) = 0] is not known, we form it empirically
by shuffling randomly the components of the vector w

j
t and

the rows of the matrix wj−1
t . This random shuffling scheme

aims at obtaining the most independent joint distribution
that gives the largest bias in the estimation of CMI, setting a
higher significance threshold and thus making the termination
criterion more stringent. Then if the original I (yT

t ; wj
t |wj−1

t )
is larger than the (1 − α)% percentile of the ensemble of the
randomized I (yT

t ; wj
t |wj−1

t ), we accept w
j
t as significant and

proceed to the next embedding cycle; otherwise the mixed
embedding scheme terminates and wt = wj−1

t .
We found that the adjusted threshold criterion is more

adaptive than the fixed threshold to system complexity, time
series length, and noise level. For illustration, we consider the
system of K coupled Hénon maps, defined as

xi,t =
{

1.4 − x2
i,t−1 + 0.3xi,t−2 for i = 1,K

1.4 − (0.5C(xi−1,t−1 + xi+1,t−1) + (1 − C)xi,t−1)2 + 0.3xi,t−2 for j = 2, . . . ,K − 1,
(3)

where C is the coupling strength. For the example of K = 3,
it is shown in Table I that for weak coupling (C = 0.1), A =
0.95 is too conservative and a larger A, such as 0.97 or even
better 0.99, is needed to include components of the driving
variable in the mixed embedding vector for the two true direct
couplings. However, in the presence of noise [observational
Gaussian white noise with a standard deviation (SD) 20% of
the data’s SD], a larger A allows for components of nondriving
variables entering the mixed embedding vector, giving small
false direct couplings. The choice of A should balance these
two effects and it seems that in practice a fixed threshold cannot
be optimized. In contrast, the adjusted threshold seems to work
well for both noise-free and noisy time series and the choice of
α = 0.05 balances well sensitivity, i.e., probability of having
positive PMIME for true direct couplings, and specificity, i.e.,
probability of having zero PMIME when there is no direct
coupling.

III. SIMULATION STUDY

Next we compare PMIME (with the adjusted threshold at
α = 0.05) to the CGCI [2] and the PTE [5,6], respectively.
We report the best obtained results for CGCI and PTE
optimizing the parameter m for the model order in CGCI
and the embedding dimension in PTE. To assess statistically
the sensitivity and specificity of the measures we compute the
measures on 100 realizations from each system. The PMIME is
considered significant if it is positive, whereas the significance
of CGCI and PTE is determined by the surrogate data test
(for the null hypothesis of no coupling) using time-shifted
surrogates at a significance level α = 0.05 [15].

Before we show detailed results on a number of linear
stochastic, nonlinear stochastic, and chaotic systems, we
demonstrate the superiority of PMIME in terms of sensitivity
and specificity on the system of K coupled Hénon maps. As
shown for K = 5 in Fig. 1(a), for the true direct coupling
X3 → X2 PMIME increases more than the other measures
with the coupling strength C and up to C = 0.8. The larger
increase of PMIME with C, particularly for small C, is justified
by the statistical significance of the measures [Fig. 1(b)]. In
contrast, for the indirect coupling X4 → X2 PMIME is zero
for all C (a slight deviation is observed only for very large C),
whereas PTE increases slowly with C and CGCI fluctuates
at some positive level [Fig. 1(c)], both tending to be more
significant with the increase of C [Fig. 1(d)].

A challenging situation is when the number of variables K

increases. We observed that even for the optimal m, PTE loses
significance in detecting the true direct coupling and CGCI
tends to falsely detect direct coupling, whereas PMIME attains
both high sensitivity and specificity, decreasing rather slowly
with the increase of K . These features get more pronounced for
the most interacting variables and as K gets large, as shown
in Table II for the variables in the middle of the chain of
the coupled Hénon maps. We note that regardless of K , the
mixed embedding vector for PMIME always contains few
components, one (more seldom two) of which is from the
driving variable in the presence of causal effect.

In the following, further results for the performance of
PMIME and a comparison to PTE and CGCI are presented for
multivariate time series from different discrete and continuous
systems and for different time series lengths and levels of noise
added to the time series.
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TABLE III. Mean of coupling measure and relative frequency for its statistical significance in parentheses from 100 realizations of the
system VAR4(5) and n = 512. For PTE the results are shown for m = 2, . . . ,5 and for CGCI for m = 2,5. The true direct couplings are shown
in a frame box.

Coupling PMIME PTE(m = 2) PTE(m = 3) PTE(m = 4) PTE(m = 5) CGCI(m = 2) CGCI(m = 5)

X2 → X1 0.348(1.00) 0.034(0.53) 0.073(1.00) 0.116(1.00) 0.115(1.00) 0.175(1.00) 0.750(1.00)

X1 → X3 0.610(1.00) 0.160(1.00) 0.158(1.00) 0.134(1.00) 0.093(1.00) 0.608(1.00) 0.587(1.00)

X2 → X3 0.073(0.99) 0.007(0.07) 0.013(0.25) 0.015(0.18) 0.015(0.09) 0.046(1.00) 0.361(1.00)

X4 → X2 0.487(1.00) 0.048(0.78) 0.049(0.80) 0.081(0.99) 0.126(1.00) 0.089(1.00) 0.622(1.00)
X1 → X2 0.002(0.09) 0.010(0.03) 0.013(0.11) 0.013(0.11) 0.013(0.14) 0.007(0.13) 0.010(0.08)
X3 → X1 0.000(0.02) 0.015(0.06) 0.012(0.07) 0.010(0.07) 0.011(0.05) 0.011(0.28) 0.010(0.07)
X1 → X4 0.003(0.11) 0.007(0.01) 0.012(0.05) 0.015(0.11) 0.017(0.20) 0.004(0.05) 0.010(0.03)
X4 → X1 0.000(0.03) 0.012(0.03) 0.013(0.02) 0.012(0.02) 0.013(0.03) 0.008(0.23) 0.010(0.07)
X3 → X2 0.001(0.03) 0.009(0.05) 0.013(0.10) 0.013(0.09) 0.014(0.06) 0.006(0.07) 0.010(0.07)
X2 → X4 0.002(0.04) 0.010(0.04) 0.013(0.05) 0.018(0.06) 0.021(0.09) 0.004(0.03) 0.010(0.06)
X3 → X4 0.001(0.04) 0.005(0.04) 0.011(0.08) 0.015(0.10) 0.019(0.10) 0.004(0.03) 0.010(0.03)
X4 → X3 0.000(0.00) 0.001(0.07) 0.004(0.01) 0.008(0.07) 0.011(0.06) 0.003(0.10) 0.010(0.03)

A. Linear multivariate stochastic process 1

The first system is a linear vector autoregressive process of
order 5 in four variables VAR4(5) (model 1 in [16]),

x1,t = 0.8x1,t−1 + 0.65x2,t−4 + e1,t ,

x2,t = 0.6x2,t−1 + 0.6x4,t−5 + e2,t ,

x3,t = 0.5x3,t−3 − 0.6x1,t−1 + 0.4x2,t−4 + e3,t ,

x4,t = 1.2x4,t−1 − 0.7x4,t−2 + e4,t ,

where ei,t , i = 1, . . . ,4, are white noise components having
zero mean and unit covariance matrix. The true direct
causality connections are X1 → X3, X2 → X1, X2 → X3, and
X4 → X2.

For all discrete systems we use T =1 and for PMIME L = 5,
which here matches the larger lag in the process. For PTE and
CGCI we vary the embedding dimension and model order,
respectively, m = 2, . . . ,5, in order to investigate for the best
m and show also the dependence of their performance on the

TABLE IV. Mean of coupling measure and relative frequency for its statistical significance in parentheses from 100 realizations of the
system VAR5(4) and n = 512. For PTE the results are shown for m = 2, . . . ,5 and for CGCI for m = 2,5. The true direct couplings are shown
in a frame box.

Coupling PMIME PTE(m = 2) PTE(m = 3) PTE(m = 4) PTE(m = 5) CGCI(m = 2) CGCI(m = 5)

X1 → X2 0.224(1.00) 0.012(0.26) 0.010(0.22) 0.019(0.69) 0.017(0.61) 0.023(0.62) 0.108(1.00)

X1 → X4 0.196(1.00) 0.022(0.50) 0.016(0.56) 0.012(0.49) 0.010(0.27) 0.101(1.00) 0.208(1.00)

X5 → X1 0.411(1.00) 0.061(0.99) 0.044(1.00) 0.037(0.99) 0.032(0.96) 0.243(1.00) 0.225(1.00)

X2 → X4 0.110(0.95) 0.008(0.08) 0.009(0.24) 0.005(0.16) 0.005(0.11) 0.033(0.87) 0.119(1.00)

X5 → X2 0.400(1.00) 0.052(1.00) 0.036(0.95) 0.030(0.95) 0.026(0.85) 0.185(1.00) 0.194(1.00)

X5 → X3 0.171(1.00) 0.002(0.00) 0.011(0.39) 0.011(0.30) 0.009(0.26) 0.031(0.86) 0.092(1.00)

X4 → X5 0.494(1.00) 0.070(1.00) 0.048(1.00) 0.039(0.97) 0.032(0.93) 0.405(1.00) 0.320(1.00)
X2 → X1 0.017(0.22) 0.001(0.05) −0.001(0.05) −0.000(0.02) 0.000(0.04) 0.004(0.04) 0.010(0.07)
X1 → X3 0.007(0.13) 0.002(0.05) −0.001(0.04) −0.000(0.02) 0.000(0.03) 0.012(0.24) 0.010(0.04)
X3 → X1 0.013(0.13) −0.001(0.05) 0.000(0.03) −0.001(0.07) −0.000(0.05) 0.004(0.03) 0.008(0.04)
X4 → X1 0.009(0.12) −0.002(0.05) −0.002(0.04) −0.001(0.05) −0.000(0.03) 0.004(0.02) 0.010(0.08)
X1 → X5 0.014(0.16) −0.000(0.03) −0.001(0.06) 0.001(0.03) 0.002(0.07) 0.004(0.08) 0.010(0.04)
X2 → X3 0.004(0.10) 0.003(0.08) −0.001(0.05) 0.001(0.02) 0.000(0.05) 0.016(0.42) 0.010(0.03)
X3 → X2 0.009(0.13) −0.001(0.06) 0.001(0.08) 0.000(0.01) 0.000(0.05) 0.007(0.14) 0.010(0.04)
X4 → X2 0.009(0.15) −0.001(0.06) 0.000(0.02) 0.000(0.05) 0.001(0.03) 0.006(0.11) 0.010(0.02)
X2 → X5 0.009(0.12) 0.001(0.06) 0.000(0.05) 0.003(0.05) 0.002(0.01) 0.004(0.04) 0.011(0.06)
X3 → X4 0.004(0.12) 0.000(0.04) −0.002(0.05) −0.002(0.04) −0.000(0.03) 0.008(0.37) 0.010(0.03)
X4 → X3 0.005(0.07) 0.001(0.05) −0.001(0.05) −0.001(0.03) −0.001(0.04) 0.020(0.50) 0.009(0.06)
X3 → X5 0.013(0.17) −0.001(0.04) −0.001(0.05) 0.002(0.05) 0.001(0.02) 0.004(0.06) 0.011(0.01)
X5 → X4 0.007(0.15) 0.033(0.81) 0.004(0.10) 0.002(0.07) 0.004(0.11) 0.131(1.00) 0.011(0.05)
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TABLE V. Mean of coupling measure and relative frequency for its statistical significance in parentheses from 100 realizations of the
system NLVAR3(1) and n = 512. For PTE the results are shown for m = 2, . . . ,5 and for CGCI for m = 2,5. The true direct couplings are
shown in a frame box.

Coupling PMIME PTE(m = 2) PTE(m = 3) PTE(m = 4) PTE(m = 5) CGCI(m = 2) CGCI(m = 5)

X1 → X2 0.272(1.00) 0.056(0.98) 0.027(0.53) 0.020(0.39) 0.016(0.19) 0.006(0.08) 0.013(0.09)

X1 → X3 0.226(1.00) 0.045(0.86) 0.022(0.45) 0.016(0.26) 0.011(0.13) 0.005(0.07) 0.010(0.03)

X2 → X3 0.171(0.97) 0.033(0.71) 0.018(0.34) 0.015(0.27) 0.014(0.21) 0.090(1.00) 0.096(1.00)
X2 → X1 0.006(0.08) −0.006(0.04) −0.005(0.04) −0.004(0.04) −0.002(0.04) 0.004(0.04) 0.010(0.08)
X3 → X1 0.009(0.15) −0.008(0.01) −0.005(0.05) −0.003(0.04) −0.002(0.09) 0.004(0.00) 0.009(0.02)
X3 → X2 0.004(0.07) −0.009(0.04) −0.007(0.06) −0.002(0.05) 0.000(0.07) 0.004(0.07) 0.010(0.06)

parameter m. The results from 100 Monte Carlo realizations of
the system VAR4(5) are shown in Table III. The PMIME is high
and always positive for the four direct couplings and essentially
zero for the other couplings. The largest frequency of false
positive PMIME is for X1 → X4 (11 in 100 realizations), but
still the PMIME values are very small (the mean is 0.003).
Regarding the true direct couplings, the weakest causal effect
is estimated by PMIME for X2 → X3 (mean 0.073), but still
PMIME is positive almost always (99 in 100 realizations).
This true direct coupling cannot be estimated by PTE for any
m and the best rejection rate of H0 of no causal effect is
for m = 3 (25 rejections in 100 significance randomization
tests using time-shifted surrogates). However, the selection
m = 3 is not appropriate for X4 → X2, as it gives only 80
rejections, which is much less than the highest rejection rate
of 100% obtained by PMIME and CGCI and also by PTE for
m = 5. This example demonstrates how PMIME resolves the
ambiguity in the selection of the appropriate embedding for
PTE. The selection of a suitable order m may be an issue also
for the linear measure CGCI, as a small m does not give good
specificity (for two nonexistent direct couplings the rejection
rate is 23% and 28%) and sensitivity (though the power of the
test is 1.0 for all four true direct couplings, the mean CGCI is
much smaller for m = 2 than for m = 5 in three of the four
couplings).

B. Linear multivariate stochastic process 2

The second linear VAR process is of order 4 in five variables
VAR5(4) (model 1 in [17]),

x1,t = 0.4x1,t−1 − 0.5x1,t−2 + 0.4x5,t−1 + e1,t ,

x2,t = 0.4x2,t−1 − 0.3x1,t−4 + 0.4x5,t−2 + e2,t ,

x3,t = 0.5x3,t−1 − 0.7x3,t−2 − 0.3x5,t−3 + e3,t ,

x4,t = 0.8x4,t−3 + 0.4x1,t−2 + 0.3x2,t−2 + e4,t ,

x5,t = 0.7x5,t−1 − 0.5x5,t−2 − 0.4x4,t−1 + e5,t .

The simulation setup is the same as for the first linear
system and the results are shown in Table IV. The re-
sults for VAR5(4) are similar to those for VAR4(5). This
example was included to show that for small time series
from stochastic systems PMIME may be falsely positive
at a rate higher than the nominal rate of α = 0.05. Here
the highest false positive rate was 22% for X2 → X1, but
still PMIME was very small (on average one-tenth of the
weakest true direct coupling). In contrast, PTE does not have
overall high sensitivity and moreover there is no optimal m,
e.g., for X2 → X4 the rejection rate is very small with the
highest rate being 24% for m = 3, while for X1 → X2 the
highest rejection rate is 69% for m = 4. The CGCI is again
smaller for m = 2 and the significance test has large size
(higher false rejection rate than the nominal type I error of
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FIG. 2. (Color online) The PMIME, PTE, and CGCI measures (denoted collectively q) are given as functions of the coupling strength C

for (a) the true direct causality X1 → X2, (b) the nonexistent couplings X2 → X1, and (c) X1 → X3 for the coupled Hénon maps of K = 3
and for time series length n = 512. The number of rejections in 100 realizations of the randomization test determines the size of a symbol
displayed for each measure and C, whereas in the legend the size of the symbols regards 100 rejections.
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FIG. 3. (Color online) Same as Fig. 2, but when white noise with SD 20% of the data SD is added.

α = 0.05) and smaller power, which all improve with the
increase of m.

Note that for the two linear stochastic processes, CGCI
is the most appropriate measure of causality, but PMIME is
comparable to CGCI.

C. Nonlinear multivariate stochastic process

Next we consider the nonlinear VAR process of order 1 in
three variables NLVAR3(1) (model 7 in [18]),

x1,t = 3.4x1,t−1
(
1 − x2

1,t−1

)
e−x2

1,t−1 + 0.4e1,t ,

x2,t = 3.4x2,t−1
(
1−x2

2,t−1

)
e−x2

2,t−1+0.5x1,t−1x2,t−1+0.4e2,t ,

x3,t = 3.4x3,t−1
(
1 − x2

3,t−1

)
e−x2

3,t−1 + 0.3x2,t−1 + 0.5x2
1,t−1

+ 0.4e3,t .

The simulation setup is the same as for the previous systems
and the results are shown in Table V. Here again PMIME
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FIG. 4. (Color online) Matrix plot of all possible couplings of
K = 5 variables of the coupled Hénon maps (n = 1024). Each panel
regards a coupling of the variables with indices as shown at the top of
the panel and the organization of each panel is the same as for Fig. 2.

attains the best possible sensitivity (only for one true direct
coupling there are three zero PMIME values) and good
specificity (only for one false coupling the rate of positive
PMIME values is well above the level of 5%, being 15%, and
again the mean PMIME is almost two orders of magnitude
smaller than for the true direct couplings). The largest lag in
the process is one and therefore PTE loses sensitivity with the
increase of m. For example, for X2 → X3 the rejection rate is
71% (already not high enough) for m = 2 and drops with m

down to 21% for m = 5. As expected, CGCI has very small
sensitivity regardless of m and can only identify one true direct
coupling, the linear one X2 → X3.

D. Coupled Hénon maps

The system of K coupled chaotic Hénon maps was previ-
ously defined in Eq. (3). For K � 3, complete synchronization
is not observed for any pair of variables as C increases, but
the time series of the driven variables explode for C > 1.0
dependent on K , so C is studied in the range [0,0.8]. Again 100
realizations for each system scenario are generated; for PTE
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FIG. 5. (Color online) Same as Fig. 4 but for 20% additive white
noise.
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FIG. 6. (Color online) The PMIME, PTE, and CGCI measures (denoted collectively q) are given as functions of the number of variables
K of the coupled Hénon maps for time series length n = 1024: (a) true direct causality X1 → X2, (b) nonexistent coupling X2 → X1, (c) true
direct causality X2 → X3, and (d) true indirect causality X2 → X4. The number of rejections in 100 realizations of the randomization test
determines the size of a symbol displayed for each measure and C, whereas in the legend the size of the symbols regards 100 rejections.

and CGCI the free parameter is m = 2 (embedding dimension
and model order, respectively), for PMIME the standard
parameter for maps L = 5 is used, and for all measures the
time ahead is T = 1. Note that for this system, the choice
L = 5 is not suitable, as only lags up to 2 are present in
the difference equations, whereas for PTE the parameter m is
optimal.

Some results will be shown is addition to the results shown
earlier. First, the case of K = 3 is presented for small time
series of length n = 512 and for the whole range of C. The
true direct couplings are X1 → X2 and X3 → X2 and they are
equivalent in strength. There is a symmetry in the coupling
structure and therefore only three couplings are shown in
Fig. 2. All measures confidently detect the true direct coupling
for C > 0.1, but have very small power to detect it for
C = 0.1 and their average from 100 realizations is only slightly
above the zero level [see Fig. 2(a)]. Note that the zero level
for PTE is negative. This is better seen for the nonexistent
couplings in Figs. 2(b) and 2(c), while PMIME is always
exactly zero. Moreover, for X2 → X1, PTE increases with
C and for larger C it is found significant more often than
the nominal level (α = 0.05); the same holds for CGCI. The
biased detection of false couplings with PTE (and CGCI) is
more evident in the presence of noise, as shown in Fig. 3,
where white noise with SD being 20% of the data’s SD is
added for each variable. Note that PMIME is not affected by

noise and achieves the same power in detecting the true direct
couplings, while it remains at the zero level when there is no
direct coupling.

For K = 5, the efficiency of PMIME as opposed to PTE
and CGCI persists, as shown in the matrix plot of Fig. 4
for all possible pairs. The off-diagonal panels correspond
to true direct couplings, the panels in columns 1 and 5
correspond to nonexistent coupling, and all the other panels
correspond to indirect couplings. The PMIME estimates with
high confidence the correct direct couplings for all C � 0.1.
The PTE is high and monotonically increasing only for the
direct couplings X1 → X2 and X5 → X4, while for the other
direct couplings it tends to decrease for C > 0.3. It was pointed
in [19] that PTE may not be monotonic to C due to changes
in the interdependence structure, but here PMIME does not
seem to be affected. The interpretation of the PTE results
with regard to the identification of the true direct couplings
is difficult because small and significant PTE is observed for
both true direct couplings and spurious couplings (X2 → X1

and X4 → X2). The same holds for CGCI, which is significant
also for indirect couplings (X1 → X3 and X5 → X3).

About the same results are obtained when 20% white noise
is added to the data, as shown in Fig. 5. The PMIME is some-
how smaller in magnitude but still can distinguish clearly the
true direct couplings even for small C. In contrast, PTE tends
to be significant for more nonexistent direct couplings than
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FIG. 7. (Color online) Same as Fig. 6 but for 20% additive white noise.

for the noise-free case (X1 → X3 and X5 → X3) following
closely CGCI to spurious detection of couplings.

In Table II the performance of the measures of PMIME,
PTE, and CGCI was shown for K = 5,15,25, coupled Hénon
maps. In Fig. 6 more detailed results are shown. For the two
true direct couplings X1 → X2 and X2 → X3 for different K

in Figs. 6(a) and 6(c), respectively, PMIME is at the same
significantly positive magnitude even when K increases up
to 35, an impressive result for a relatively small time series
of length n = 1024. The same holds for CGCI, which for
the second coupling is smaller for smaller K , possibly due
to the additional causal effect of other neighboring variables.
In contrast, PTE decreases in both magnitude and statistical
significance with K . In the case of the nonexistent coupling
X2 → X1 in Fig. 6(b), PMIME is always zero for any K ,
PTE is also statistically insignificant for any K , and CGCI is
positive and statistically significant at about half of the 100
realizations. For the indirect causal connection X2 → X4 in
Fig. 6(d), PMIME and PTE are again at the zero level and
CGCI gets larger but less statistically significant. Thus CGCI
is biased towards giving spurious direct causality, PTE cannot
identify the direct causal effects, and PMIME attains optimal
sensitivity and specificity.

The proper performance of PMIME persists also when
noise is added to the time series, as shown for the same
examples in Fig. 7 in the presence of additional 20% white
noise. The CGCI and PTE exhibit the same shortcomings and
CGCI actually improves its specificity as it decreases in the
case of indirect coupling. For the latter case, PMIME gets
positive in a small percentage of the 100 realizations, which

is at the level of significance of the surrogate data test for the
termination criterion.

E. Coupled Lorenz system

Next we study the system of three coupled identical Lorenz
subsystems defined as (with i = 2,3)

ẋ1 = −10x1 + 10y1, ẋi = −10xi + 10yi + C(xi−1 − xi),

ẏ1 = −x1z1 + 28x1 − y1, ẏi = −xizi + 28xi − yi,

ż1 = x1y1 − 8/3z1, żi = xiyi − 8/3zi .

The system of differential equations is solved using the explicit
Runge-Kutta (4, 5) method in MATLAB and the time series are
generated at a sampling time of 0.01 time units. The first
variable of each subsystem is observed, denoted, respectively,
as X1, X2, and X3, and the direct couplings are X1 → X2

and X2 → X3. The same coupling strength C is used for both
couplings and for this setting it was assessed by observing
the generated trajectories and characteristics of the observed
time series (delay mutual information, correlation dimension,
and cross correlation) that complete synchronization is ap-
proached for C > 8, so the measures were computed for
C = 0,0.5,1, . . . ,8. For each C, 100 realizations are generated
and we set m = 3 for PTE and CGCI, L = 15 for PMIME,
and for both PMIME and PTE the future vector is formed
for the time horizon T = 3, i.e., y3

t = [yt+1,yt+2,yt+3] for the
response variable Y , where Y is any of the variables X1, X2,
and X3. The three steps ahead are chosen to represent better
the time evolution of the continuous system, as suggested also
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FIG. 8. (Color online) Matrix plot of all possible couplings of the Lorenz systems of K = 3 subsystems and noise-free time series of length
n = 1024 (left panel) and n = 4096 (right panel). The organization of the panels is the same as for Fig. 4.

in [11]. For CGCI, the option of a larger step ahead T > 1 is
not considered and it is computed for T = 1.

The results of the simulations on noise-free time series of
lengths n = 1024 and 4096 are shown in Fig. 8 and when 20%
white noise is added in Fig. 9. It should be noted that the scale
is not the same for the three measures and their magnitude
is not a safe criterion for comparison. All three measures
capture well the two true direct couplings for C � 2 with a
rejection rate of the null hypothesis of no coupling at about
100%. For example, for noise-free data C = 2 and n = 1024,
the rejection rates for X2 → X3 are 99% for PMIME, 87%
for PTE, and 49% for CGCI and change to 100% for all

measures when n = 4096. However, for weaker coupling
with C = 1 only PMIME detects confidently the true direct
courplings; for X2 → X3 it is 100% for n = 4096 dropping to
23% for n = 1024, whereas for PTE the respective rejection
rates are 47% and 11%, while for CGCI they are 64% and
13%. Thus, although for stronger coupling all measures can
detect well the direct true couplings, for smaller C PMIME
shows significantly better sensitivity. Regarding specificity,
the PMIME results are best. For example, for the indirect
coupling X1 → X3 and C = 2, PMIME and CGCI give a
small rejection rate at the nominal significance level 5%,
while PTE gives a rejection rate of 16% for n = 1024, getting
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FIG. 9. (Color online) Same as Fig. 8 but with 20% white noise added to the time series.
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FIG. 10. The PMIME measures with adapted threshold (α = 0.05) and fixed threshold (A = 0.97) are given as functions of the time series
length n for the true direct causalities (a) X1 → X2 and (b) X2 → X3, (c) the indirect causality X1 → X3, and the nonexistent couplings (d)
X2 → X1, (e) X3 → X1, and (f) X3 → X2, for three Lorenz subsystems coupled with coupling strength C = 2. The number of times in 100
realizations PMIME is positive determines the size of a symbol displayed for each threshold type and n, whereas in the legend of (a) the size
of the symbols regards the maximum of 100 positive PMIME values.

doubled for n = 4096. For larger C, the rejection rate gets
larger for all measures, indicating that for stronger coupling
the indirect causal effects cannot be distinguished. For the
cases of no coupling, all measures are at about the zero level,
but only PMIME is statistically insignificant. For example,
for the nonexistent coupling X2 → X1, the rejection rate of
PTE is 16% for n = 1204 and is doubled for n = 4096, while
for CGCI the respective rejection rates are much higher (87%
and 97%), but PMIME gives no positive value for both n.
The PMIME has high rejection rates for C = 8 because then
the three variables are almost completely synchronized and the
lagged variables may exhibit similar causal effects and thus the
algorithm for mixed embedding does not systematically pick
up a particular set of lagged variables.

The performance of the measures turns out to be persistent
to the presence of noise (see Fig. 9). The PMIME tends to
be biased towards detecting false direct couplings for small
time series lengths (n = 1024), but improves for larger time
series lengths (n = 4096). However, PTE and CGCI seem to
suffer from a lack of specificity for increasing C also when n
increases.

Further investigation of the low specificity of PMIME for
small n indicates that this is merely due to the use of the adapted
threshold for the termination criterion, i.e., the significance test
for the conditional mutual information regarding the selected
candidate lagged variable at a significance level α = 0.05. It
seems that for this particular case (coupled Lorenz system,
20% noise), a fixed threshold of A = 0.97 is more suitable, as
shown in Fig. 10 for C = 2. For the two true direct couplings
[Figs. 10(a) and 10(b)] both threshold types give positive

PMIME for all 100 realizations, but the adapted threshold gives
larger PMIME values, which indicates that the termination
criterion is less stringent and allows more components of the
driving variable in the mixed embedding vector. This seems to
have a negative consequence for the cases of indirect coupling
X1 → X3 [Fig. 10(c)] and nonexistent coupling X3 → X2

[Fig. 10(f)], as the adapted threshold allows components
other than the lagged response variable components to enter
in the mixed embedding vector, which results in positive
PMIME more often than chance when n is small. Nevertheless,
this effect decreases with n. The use of the fixed threshold
A = 0.97 is more appropriate here as it does not produce this
effect. However, as shown in Table I and suggested by other
simulations not shown here, the fixed threshold does not adapt
to different interdependence structures and data conditions.
For example, when 20% white noise is added to the system
in Fig. 10, the fixed threshold of A = 0.97 still gives the
highest specificity but has much lower sensitivity than the
adapted threshold, e.g., for the weak coupling with C = 1
and n = 4096 the adapted threshold with α = 0.05 detects the
true direct couplings (68 positive PMIME for X1 → X2 and
58 for X2 → X3) and gives zero PMIME otherwise, while the
fixed threshold A = 0.97 gives zero PMIME also for the direct
couplings.

F. Coupled Mackey-Glass system

The last simulated system is a continuous system of coupled
identical Mackey-Glass delayed differential equations defined
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FIG. 11. (Color online) Matrix plot of all possible couplings of the K = 3 coupled Mackey-Glass subsystems and noise-free time series of
length n = 2048 (left panel) and with 20% additive white noise (right panel). The organization of the panels is the same as for Fig. 4.

as

ẋi(t) = −0.1xi(t)+
K∑

j=1

Cijxj (t − �j )

1 + xj (t − �j )10
for i = 1, . . . ,K.

For K = 2 the system was first used in [20] and then in [11].
The system is solved using the solver dde23 for delayed
differential equations in MATLAB and the time series are
generated at a sampling time of four time units. For K

delayed differential equations K time series are generated
and the corresponding variables are denoted Xi , i = 1, . . . ,K .
When �j = �, j = 1, . . . ,K , the K coupled subsystems are
identical and we consider this case here. We also set Cii = 0.2
and let Ci,j for i �= j determine the coupling structure.

For the future vector we set y3
t = [yt+1,yt+τ1 ,yt+τ2 ], where

τ1 and τ2 are, respectively, the first minimum and maximum
of the delayed mutual information for the response variable Y

(where Y stands for any of Xi , i = 1, . . . ,K). This choice is
found in [11] to better represent the short-term time evolution
of the response system as the Mackey-Glass system exhibits
irregular oscillations. This future vector is used in PMIME and
PTE, while for CGCI the option of a larger step ahead T > 1
is not considered and it is computed for T = 1.

We consider the case of K = 3, �1 = �2 = �3 = 20,
C1,2 = C1,3 = C2,3 = C, and C2,1 = C3,1 = C3,2 = 0. The
results of the three measures on 100 realizations of length
n = 2048 of this system for varying coupling strength C are
shown in Fig. 11 for noise-free and noisy time series. For the
noise-free data, PMIME detects best the three direct couplings
(upper triangular panel components) and only for strong
coupling C � 0.4 the number of positive values decreases for
the coupling X2 → X3. The latter holds also for PTE, which is
less sensitive for smaller coupling strengths, e.g., for C = 0.3
and X2 → X3 PMIME gives 99 positive values and PTE only
34 statistically significant values. The CGCI gives the highest

sensitivity of 100% rejection rate of the null hypothesis of no
coupling, but this is of little benefit as it is followed by a very
low specificity giving about the same highest rejection rate
when there is no causal effect. The PTE has also low specificity
for all C, but PMIME only for C � 0.4. For example, for the
nonexistent connection X3 → X2 and C = 0.3 PTE gives 91
statistically significant values and PMIME 31 positive values;
these are 61 and 20, respectively, for C = 0.2, whereas CGCI
gives constantly 100 statistically significant values.

For the noisy data, the sensitivity of the measures remains
about the same, but the specificity gets lower for PTE and
PMIME, with PMIME still performing better than PTE. For
the setting X3 → X2 and C = 0.3 the positive PMIME values
are 63 and the statistically significant PTE values are 100;
the same holds for C = 0.2 and the other two nonexistent
couplings.

For larger K the differences of PMIME from PTE and
CGCI become clearer. In Fig. 12, the results are shown in
the form of color maps for the statistical significance of the
three measures for increasing number K of weakly coupled
Mackey-Glass subsystems. The variables (subsystems) have
all the same delay � = 20 and each variable Xi drives the
variable next in the left (Xi → Xi−1) and in the right (Xi →
Xi+1) with the same coupling strength C, where X1 only drives
X2 and XK only drives XK−1. The time series are noise-free
and have length n = 2048. An interesting feature of PMIME
is that for any of K = 4,5,6, there is no driving to the first
variable X1 and the last variable XK , which are designed not
to receive any causal effect from another variable, and the
corresponding PMIME values are zero for all realizations.
This is not preserved for the other two measures, with CGCI
scoring close to PMIME with regard to driving of X1 and XK

for K = 6. With further regard to specificity, PMIME gives
positive values for the indirect couplings, but this inadequacy
of PMIME improves with K and for K = 6 PMIME is zero
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FIG. 12. Color maps for the statistical significance of the three measures—PMIME in the first column, PTE in the second column, and
CGCI in the third column—for all possible couplings of the K coupled Mackey-Glass subsystems, where K = 4 in the first row, K = 5 in the
second row, and K = 6 in the third row. The time series are noise-free and have length n = 2048 and the subsystems all have the same delay
� = 20 and each subsystem Xi drives Xi−1 (Xi → Xi−1) and Xi+1 (Xi → Xi+1) with the same coupling strength C (X1 only drives X2 and
XK only drives XK−1). The statistical significance of PMIME is given by the number of positive values in the 100 realizations and for PTE and
CGCI by the number of rejections of the null hypothesis of no coupling. The gray color scale is from 0 (black) to 100 (white).

for most of the indirect couplings. The sensitivity of PMIME is
the highest for all K and PMIME is positive at all realizations
(almost all for K = 5) for all direct couplings. In contrast, PTE
and CGCI fail to detect the coupling structure of the system
for any K with PTE giving very low sensitivity and specificity.

We note here that the coupled Mackey-Glass system may
involve complicated scenarios of coupling structures that
are difficult to detect; indeed, PMIME mistakenly identifies
spurious couplings. We observed this especially when the
subsystems are not identical, setting different �i . For such
situations, it remains an open problem whether the Granger
causality measures can distinguish intrinsic dynamics from
the interdependent structure (see, e.g., the discussion in [21]).

It should also be noted that the performance of PMIME could
possibly be improved if we would choose a maximum lag
L > 15; e.g., in [11] L = 50 was used, giving good results for
K = 2, but such large L was not used here due to increased
demand of computation time. However, for the simulations
with K > 3 we experienced that the computation of PTE with
m = 5 using 100 surrogates for the significance test is much
more time demanding than for PMIME.

G. Real world example

Finally, we demonstrate the robustness of PMIME and
its appropriateness in connectivity analysis and complex
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FIG. 13. (Color online) Mean average strength S for (a) PMIME,
(b) PTE, and (c) CGCI, on sliding windows along the period before
and after the start of an ED (marked with a vertical line at time
zero) for the number of channels as shown in the legend. The vertical
dashed line denotes the end of the ED.

networks with an example of a human scalp multichannel
EEG recording during an epileptic discharge (ED), i.e.,
an electrographic seizure of short duration.1 After artifact
rejection, filtering, and re-referencing, a set of 45 EEG signals
was obtained and downsampled to 200 Hz frequency, covering
10 sec before and 10 sec after the start of an ED of duration
5.7 sec. We computed in each of the two periods PMIME,
PTE, and CGCI (m = 5), all for T = 1 and for all possible
channel pairs on sliding windows of 2 sec with a step of 1 sec.
To assess the strength of connectivity in the brain network
estimated by each causality measure at each 2-sec window, we
computed the average strength S (mean of the measure values
over all channel pairs). In an attempt to test the robustness of
the causality measures to the network size, we repeated the
same analysis 12 times on randomly selected subsets of the
set of 45 channels. The results are shown in Fig. 13 for subset
sizes 5, 15, 25, and 35.

1The data were provided by V. K. Kimiskidis at the Department of
Neurology III, Medical School, Aristotle University of Thessaloniki.

We observe that only PMIME gives a stable pattern of
connectivity strength over the two periods for any subset
(some deviation can be seen for subset size 5). Moreover,
PMIME distinguishes readily the period before ED, during
ED, and after ED. Similar results were obtained using the
average degree, i.e., the mean binary connections obtained by
the significance test for PTE and CGCI for α = 0.05 and when
PMIME is positive.

IV. CONCLUSION

The presented measure PMIME addresses successfully the
problem of identifying direct causal effects in the presence
of many variables. Intensive simulations on discrete- and
continuous-time coupled systems have confirmed this. While
Taken’s embedding theorem advocates against the estimation
of direct Granger causality in nonlinear systems [21] and
a vector with lagged components only from the response
variable may represent equivalently the mixed embedding
vector, in practice PMIME pinpoints the set of the most and
significantly contributing lagged components, identifying thus
the direct causal effects.

The PMIME does not rely on embedding parameters
and the structure of the mixed embedding vector allows for
identification of the active lags of the driving variable affecting
the response. The latter is currently an active research direction
[22,23], but we did not take it up in this study. Our initial results
for detecting the true active lags in the bivariate analysis with
MIME were promising.

We have improved the termination criterion in the progres-
sive building of the mixed embedding vector, initially set for
the bivariate measure MIME, and instead of using a fixed
threshold we let the threshold be adjusted by the estimated
bias using randomized replicates.

We have shown that PMIME scores highest in sensi-
tivity and specificity as compared to PTE and CGCI and,
moreover, it does not require a computationally intensive
randomization (surrogate) significance test. While PMIME
is much slower than PTE, it is less computational intensive
if PTE has to be combined with a randomization test or
when the number of observed variables gets large. The
example on an EEG record of epileptic discharge demonstrates
the usefulness of PMIME in analyzing multivariate time
series from real complex systems and constructing causal
networks.
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