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We explore the fundamental question of the critical nonlinearity value needed to dynamically localize energy
in discrete nonlinear cubic (Kerr) lattices. We focus on the effective frequency and participation ratio of the
profile to determine the transition into localization in one-, two-, and three-dimensional lattices. A simple and
general criterion is developed, for the case of an initially localized excitation, to define the transition region
in parameter space (“dynamical tongue”) from a delocalized to a localized profile. We introduce a method for
computing the dynamically excited frequencies, which helps us validate our stationary ansatz approach and the
effective frequency concept. A general analytical estimate of the critical nonlinearity is obtained, with an extra
parameter to be determined. We find this parameter to be almost constant for two-dimensional systems and prove
its validity by applying it successfully to two-dimensional binary lattices.
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I. INTRODUCTION

Discrete nonlinear systems constitute a useful test bed
to explore many interesting questions and properties of
diverse branches of physics [1–5]. Different dimensions and
topologies are possible, allowing the description of many
different physical phenomena. For instance, in optics, there
are experimental demonstrations of different nonlinear lattice
structures including three-dimensional (3D) photonic lattices
[6,7], 2D ionic-photonic lattices [8], and also spiraled 3D
lattices [9]. Localized structures are natural solutions in
these kinds of systems and exist when a judicious balance
between diffraction and self-focussing effects is reached. At
low nonlinearity levels, initial excitations tend to diffract
(expand) across the lattice due to the excitation of many
extended states; at larger nonlinearity values, diffraction is
inhibited and initial excitations remain localized. Thus a very
fundamental question related to the necessary conditions to
observe a dynamical transition from an extended pattern to a
localized one appears. In other words, how large should the
nonlinearity be in order to dynamically localize the excitation?
Early attempts to solve this question were focused on small
systems of just a few sites. In Ref. [10] Kenkre and Campbell
studied the self-trapping transition on a nonlinear cubic dimer,
finding an exact value for the critical nonlinearity γc = 4.
Then, in Ref. [11] Molina and Tsironis explored systems
ranging from 2 to 100 sites. The general conclusion was that
as the number of sites increases, the transition approaches the
dimer value and therefore is not an increasing function of the
lattice size. In Ref. [12] Dunlap et al. studied this transition
for a nonlinear cubic impurity embedded in a linear lattice
and found that the critical nonlinearity was always lower than
the one for a full nonlinear system. Bernstein et al. [13]
compared the Hamiltonian of a single-site excitation with
the one of a completely homogeneous extended state to find
that, for 1D lattices, again γc = 4. In Ref. [14] Johansson
et al. found numerically a lower critical value for 1D lattices
(γc ≈ 3.45) computed in very large systems and for very long
dynamical time scales. This work also explored the transition
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for 1D binary lattices showing a smaller value compared to the
monatomic case. These authors mentioned that by considering
simple energy-balance conditions [13], a rough estimate can
be obtained for simple lattices, but not for the binary case.
An initial attempt to find a more general criterion was done
in Ref. [15] by comparing γc with the minimum bound-state
energy of a nonlinear impurity problem. They found that for
nonlinear lattices of different dimensions and topologies, there
is a kind of universal ratio of ≈1.3 between these two energies.
Kevrekidis et al. [16] developed an analytical criterion in terms
of Hamiltonian comparisons. This analysis gave a sufficient,
but not necessary, condition of γc = 4 and 7.3 for one- and
two-dimensional lattices, respectively.

In the present work we study the problem of dynamical
localization in discrete nonlinear cubic (Kerr) lattices of
different dimensions and topologies. We develop a simple
but general criterion to define the regions in parameter space
where the dynamical transition, from a completely delocalized
profile to a localized one, occurs. By studying the effective
frequency and participation ratio evolution, we are able to
identify clearly the localization-delocalization transition and
determine numerically the critical value of the nonlinearity.
We develop a method to analyze the frequencies excited during
the propagation, showing perfect agreement with the effective
frequency approach. We analytically find an expression to
predict the necessary nonlinearity to localize energy in any
discrete lattice, obtaining a lower estimate when compared
to all previous analytical estimations. By doing this, an extra
unknown parameter appears that is determined numerically
from our data. We observe that for two-dimensional lattices,
this parameter approaches a constant value and its size
decreases with the dimension of the problem. Finally, we
explore the validity of this constant value by studying 2D
binary (ionic or diatomic) [8] cubic lattices.

II. MODEL

The propagation of waves in nonlinear cubic lattices is well
described by a discrete nonlinear Schrödinger equation [1–4]

−i
du�n
dz

= ε�nu�n +
∑
�m�=�n

u �m + γ |u�n|2u�n, (1)
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where u�n corresponds to the wave amplitude at site �n in
a D-dimensional lattice of N sites. The coupling between
different lattice sites is restricted to the nearest neighbors of
site �n. [For example, for 1D lattices the coupling interaction is
given by (un+1 + un−1), while for 2D rectangular ones become
(un+1,m + un−1,m + un,m+1 + un,m−1).] The parameter ε�n cor-
responds to the energy (propagation constant) at the �nth site
and z corresponds to the dynamical coordinate [1–4]. We will
vary the nonlinear coefficient γ in order to study the necessary
amount of nonlinearity to transit from a delocalized profile to
a localized one. Model (1) possesses two conserved quantities:
the norm

Q ≡
∑

�n
|u�n|2

and the Hamiltonian

H ≡
∑

�n

[
ε�n|u�n|2 +

(∑
�m

u �mu∗
�n + c.c.

)
+ (γ /2)|u�n|4

]
.

Extended linear (γ = 0) stationary solutions of model (1)
exist inside the linear spectrum ({λbottom,λtop} for constant
ε�n). Throughout this work, we will focus on the following
lattices: 1D (λtop = 2), 2D honeycomb (λtop = 3), 2D square
(λtop = 4), 2D triangular (λtop = 6), and 3D square (3λtop =
6).

We will study the self-trapping transition by considering
a single-site (δ-like) excitation: u�n(z = 0) = δ�n,�n0 , where �n0

corresponds to a position well inside the lattice (i.e., a
bulk excitation for which the reflection from boundaries
is negligible). Considering that Q and H are dynamical
constants, this input condition implies fixed values Q0 = 1
and H0 = ε�n0 + γ /2. (A variation of γ is equivalent to
changing Q, the key parameter when considering experimental
realizations [17–23].) We use the participation ratio, defined as
R ≡ Q2/

∑
�n |u�n|4, as an indicator of the degree of localization

of a wave packet (e.g., R = 1 for a single-site excitation and
R = N for an equally excited array).

A. Effective frequency

To study the dynamical evolution and its relation with the
stationary solutions of the system we consider an approxi-
mation introduced in Ref. [24,25]. This approach assumes
every instantaneous profile as a set of different, linear and
nonlinear, stationary modes characterized by a single instan-
taneous effective frequency. We consider a given profile as a
stationary solution of the form u�n(z) = u�n exp (iλez), with λe

the effective or average frequency of the excited modes on
this profile. By replacing this in (1), multiplying by u∗

�n, and
summing in all the sites along the lattice, we get an expression
similar to the Hamiltonian. We rewrite this expression in terms
of the fundamental quantities and parameters of model (1),
obtaining that λeQ = H + γQ2/2R. However, Q = Q0 and
H = H0, therefore, we obtain a closed and simple expression
for the effective frequency

λe = ε�n0 + γ

2

(
1 + 1

R

)
. (2)

Before the self-trapping transition, the wave packet diffracts
or delocalizes over the whole lattice and R(zmax) ∼ N �

1 ⇒ λe(zmax) ≈ ε�n0 + γ /2 (zmax depends on the particular
dimension, size, and topology of the lattice). In contrast,
after the self-trapping transition, localization dominates and
R(zmax) ∼ 1, implying that λe(zmax) ≈ ε�n0 + γ . Therefore, for
nonlinear cubic lattices, we have a region in parameter space,
the dynamical tongue, inside of which all the dynamics is
contained: γ /2 � λe − ε�n0 � γ .

III. NUMERICAL RESULTS

By differentiating (2) with respect to z we obtain ∂λe/∂z =
−(γ /2R2)∂R/∂z. Therefore, below the transition we must
observe (on average) an evolution with an increasing R

(diffusion) and a decreasing λe, if γ > 0. Figure 1 shows an
example for a 2D square lattice where we observe that before
the self-trapping transition [black (thick solid), blue (thick
dashed), and green (thin solid) curves], the effective frequency
decreases from γ to ≈γ /2 and that R increases from R = 1 to
R ∼ N � 1. For small values of γ [black (thick solid) and blue
(thick dashed) curves], the wave packet approaches the lattice
boundary at zmax , where R is a maximum [see in Fig. 1(b)
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FIG. 1. (Color online) Example for a 2D square lattice: (a) λe and
(b) R versus z for γ = 0, 3, 7.17, and 7.18 represented by black (thick
solid), blue (thick dashed), green (thin solid), and red (thin dashed)
lines, respectively. Dynamical evolution |un,m(z)|2 examples for (c)
γ = 3, (d) γ = 7.17, and (e) γ = 7.18. Here N = 31 × 31 sites and
ε�n0 = 0.
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that for z > zmax ∼ 7, R decreases due to the reflections at the
boundaries]. Since λe is not a conserved quantity of model (1),
its evolution will show some oscillations around an average
value [not observed in the scale of Fig. 1(a)], implying that
different, linear and nonlinear, frequencies are being excited.
When the transition into localization takes place [red (thin
dashed) curves] the final average frequency becomes larger
than γ /2 and stays outside the linear band (λe > λtop). The
profile starts to excite more nonlinear frequencies reducing the
excitation of linear modes and, as a consequence, it becomes
localized (a similar process occurs in disordered lattices when
studying nonlinear delocalization transitions [24]). For the 2D
square example, self-trapping is observed for γ � γc = 7.18.
The oscillation in λe implies an oscillation (of opposite sign)
of the R value [see red (thin dashed) curves in Figs. 1(a) and
1(b)]. Figures 1(c)–1(e) show some dynamical propagation
examples for different values of γ .

A. Effective versus average frequency

We interpret λe as an average frequency of the profile that
includes all the modes excited during the propagation. To
validate this interpretation, we integrate system (1) directly and
compute the longitudinal Fourier transform of the amplitude
evolution in each waveguide ũn(λ) ≡ ∫

dz un(z) exp(−2πiλz)
to obtain the normalized spectral density

g(λ,γ ) =
∑

n

|ũn(λ)|2
/ ∑

n,λ

|ũn(λ)|2. (3)

Figure 2(a) shows this quantity for a 1D lattice. We see
how a positive nonlinearity modifies the original distribution
of frequencies, exciting more modes closer to λtop = 2. For
γ � 3.6 [see the horizontal line in Fig. 2(a)], an emerging
nonlinear mode is strongly excited (brightest peak) and
self-trapping starts to occur. In addition, we calculate a
mean frequency, defined as 〈λ〉 = ∑

λ λ g(λ,γ ), and plot in
Fig. 2(b) a comparison between this quantity and λe. We
see how both curves deviate from the γ /2 line in almost the
same region (γ � 3.6) [see Fig. 2(b) inset]. In general, there is
very good agreement between both quantities. Only above the
threshold, there is some disagreement due to the fluctuations in
λe. For higher-dimensional lattices, we found better agreement
because fluctuations are reduced. These results validate our
assumption of λe as an effective and average frequency and
thus are useful when studying different dynamical processes
[24].

B. Dynamical tongue and self-trapping transition

In Fig. 3, we collect our numerical results for different cubic
lattices. Figure 3(a) shows that for each lattice, all the dynamics
is contained inside the dynamical tongue (shaded area), in
agreement with our analytical prediction. When nonlinearity
is small, the effective frequency is ≈γ /2 because the wave
packet has diffracted [Figs. 1(c) and 1(d)]. When self-trapping
occurs [see Fig. 1(e)], λe increases in the direction of γ . For
most of the lattices studied, we observe that the transition
implies a rather abrupt jump in frequency (∂λe/∂γ � 1). For
one-dimensional systems, the transition is softer due to the
absence of power thresholds to create a nonlinear localized

(a)

(b)

FIG. 2. (Color online) Example for a 1D lattice with N = 401:
(a) spectral density versus γ and λ and (b) λe(zmax) (black) and 〈λ〉
[red (gray)] versus γ , inside the dynamical tongue (shaded area).

mode [26,27]. The excited nonlinear modes emerge from the
top of the band [see Fig. 2(a)] and the interaction with linear
modes is stronger (in fact, for γ ∼ 3.6, the average frequency
is smaller than λtop, implying that there is a mixture of linear
and nonlinear excited modes). For dimension D � 2 there is a
threshold to excite nonlinear modes [26], causing a fast jump in
λe above the band edge (the interaction of linear and nonlinear
modes is weaker and the transition becomes sharper).

Figure 3(b) summarizes the results for the participation
ratio normalized to R0 ≡ R(γ = 0,zmax), which corresponds
roughly to the size of the diffracted profile in the linear regime.
We see that the self-trapping transition implies a fast change
in the participation ratio (∂R/∂γ � −1) from values of the
order of the lattice size to values of the order of few lattice sites.
This figure shows that R is a very useful parameter to trace
the self-trapping transition by showing the effective number
of excited sites. This figure also shows that the transition is
always abrupt and its sharpness increases with dimension. By
collecting the data from Fig. 3, we obtain the approximate
numerical γc values shown in Table I. We define each one
as the value of γ for which λtop = λe(zmax). These values are
obtained for fixed lattice sizes and fixed propagation distances,
However, for different parameters we obtain essentially the
same γc values. Our aim is to obtain a robust numerical
estimation for this transition. We should keep in mind that
these transitions may occur and be observed in real physical
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FIG. 3. (Color online) Plots of (a) λe(zmax) and (b) R(zmax)/R0

versus γ for 1D [black (thin solid line)], 2D honeycomb [blue (thin
dashed line)], 2D square [green (thin dotted line)], 2D triangular
[red (thick solid line)], and 3D [orange (thick dashed line)] lattices.
Horizontal lines in (a) represent λtop . Vertical lines in (b) denote γc.
For all lattices ε�n0 = 0.

systems, where an estimation range is more relevant [1–4]. In
fact, if we use another quantity as an indicator (for instance,
the space-averaged fraction of power [15]), we observe the
occurrence of the self-trapping transition in similar regions.

IV. ANALYTICAL ESTIMATES

Now we tackle the nontrivial problem of getting an ana-
lytical estimation of the critical nonlinearity γc for which the
self-trapping transition occurs. In general, previous analysis
observed that at least |γc| ∼ |λtop − λbottom| (which depends
strongly on the particular dimension and topology of the
lattice). This criterion essentially says that when the nonlinear

TABLE I. Numerical results of γc and Rc.

Lattice

1D 2D honeycomb 2D square 2D triangular 3D

γc 3.8 5.46 7.18 10.8 9.5
Rc 19 10.1 8.8 9 3.8

contribution γQ is larger than the linear one (approximately
the size of the band), the localization tendency will be more
important than the diffractive one and the wave packet will
tend to localize. This rough criterion predicts γc values larger
than the actual numerical ones [14,16]. Figures 1 and 3
show that the transition implies an abrupt change of the size
of the wave packet (determined by R) with a final effective
frequency λ(zmax) moving out of the band. Our hypothesis is
quite simple: If the effective frequency is inside the band, the
profile interacts with more linear modes (which are extended),
tending to delocalization. However, if the effective frequency
is outside the linear band, the wave packet excites a set of
nonlinear frequencies and only a few linear modes, tending
to localization. In general, the transition will depend on the
particular linear properties of the lattice but also on the sign
of the nonlinearity. In this work we focus only on the case
γ > 0 and on lattices possessing symmetric linear bands with
respect to λ = 0 (i.e., |λtop| = |λbottom|). In this case, the |γc|
value is independent of the sign of the nonlinearity and the data
from Table I also apply for γ < 0. (For nonsymmetric linear
bands, our method also applies, with γc different depending on
the sign of the nonlinearity.) Thus, for γ > 0, we conjecture
that the critical nonlinearity is obtained when the effective
frequency (2) coincides with the border of the linear band, i.e.,
when

λe = λtop ⇒ γc = 2
(
λtop − ε�n0

) (
Rc

1 + Rc

)
. (4)

In other words, we will be able to excite a nonlinear localized
state when the average frequency stays outside the band and
resonances with linear modes are reduced or canceled. We see
that Eq. (4) predicts a lower value of the critical nonlinearity
than previous estimates. However, we get an extra parameter
defined as Rc. We conjecture that this parameter corresponds
to a critical size of the wave packet for which self-trapping
starts to occur, a kind of minimum volume for a profile
to be considered as localized. In Table I we present our
computation of Rc for all the studied lattices using Eq. (4)
and the numerically obtained γc values. From these data we
see that the critical effective size decreases as the dimension
increases, which is in agreement with the localization tendency
of localized states in nonlinear cubic lattices. Close to the band,
1D nonlinear stationary solutions are very broad, while for
2D lattices, and even more for 3D ones, nonlinear stationary
solutions are very localized above the norm threshold. For
2D lattices, we numerically find that this value is around 10,
leading to an estimation for γc that is ≈90% of the previous
analytical predictions. It is interesting to notice that Rc is nearly
constant for two-dimensional discrete nonlinear cubic lattices,
which are the most explored lattices nowadays in different
contexts of experimental physics [1–5].

V. BINARY 2D SQUARE LATTICES

Finally, we want to go further and explore the validity
and robustness of our findings in more complex settings,
particularly in binary lattices [8]. We focus on a 2D square
array with site energies ε2�n+1 = 0 and ε �2n = �ε, with �ε

the site-energy contrast. In this case, the location of the input
excitation plays a fundamental role in the determination of
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FIG. 4. (Color online) Results for a binary 2D square lattice: R

versus {γ,�ε} for (a1) ε�n0 = �ε and (b1) ε�n0 = 0 and λe(zmax) − ε�n0

versus {γ,�ε} for (a2) ε�n0 = �ε and (b2) ε�n0 = 0 for N = 31 × 31
sites.

the transition. The factor λtop − ε�n0 in expression (4) implies
a lower critical value for a larger ε�n0 . After a straightfor-
ward calculation, we obtain the band-edge frequency λtop =
0.5(�ε + √

64 + �ε2). Considering the critical effective size
as constant for 2D lattices (Rc = 10), we get the following
estimation for the critical nonlinearity:

γc ≈ 0.9(
√

64 + �ε2 + �ε − 2ε�n0 ). (5)

Therefore, for ε�n0 = �ε we expect a reduction of γc if
the contrast increases (�ε � 1 ⇒ γc → 0). In contrast, for
ε�n0 = 0 we expect an increment of the critical nonlinearity
if the contrast increases. Figure 4 collects our findings for
these cases. The density plots in Figs. 4(a1) and 4(b1) show
the participation ratio versus γ and �ε; the dark (bright) color
means a smaller (larger) R value and the estimate (5) is plotted
by orange straight lines. We see almost perfect agreement

between the numerics and the analytical estimation, validating
the use of a constant Rc value for 2D lattices. Figures 4(a2)
and 4(b2) show the transition in terms of the effective fre-
quency. We clearly see the opposite tendencies depending on
the input site energy. The quantity λe(zmax) − ε�n0 is effectively
γ /2 below the transition (bright flat surface), increasing in the
direction of γ above γc. The transition in participation ratio and
frequency is very abrupt and is described with great accuracy
by (5).

VI. CONCLUSION

We have studied the problem of the self-trapping transition
for different nonlinear cubic lattices, giving a rather general
panorama of this very fundamental issue. We showed the-
oretically and numerically that by considering a single-site
input excitation, all the dynamics is contained in a very
precise parameter region in the shape of a dynamical tongue.
We have found approximate numerical values for the critical
nonlinearity where this transition occurs. We showed that the
effective frequency can be understood as an average quantity,
giving good insight into the frequencies participating in the
dynamics. We developed analytically a formula to predict the
self-trapping transition that makes use of an extra parameter
(effective critical size) that depends strongly on the dimension
of the system, which is smaller for higher dimensions. Binary
lattices are well described by our analytical prediction when
combined with the obtained effective size value.
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