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Exact solutions for discrete breathers in a forced-damped chain
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Exact solutions for symmetric on-site discrete breathers (DBs) are obtained in a forced-damped linear chain
with on-site vibro-impact constraints. The damping in the system is caused by inelastic impacts; the forcing
functions should satisfy conditions of periodicity and antisymmetry. Global conditions for existence and stability
of the DBs are established by a combination of analytic and numeric methods. The DB can lose its stability
through either pitchfork, or Neimark-Sacker bifurcations. The pitchfork bifurcation is related to the internal
dynamics of each individual oscillator. It is revealed that the coupling can suppress this type of instability. To
the contrary, the Neimark-Sacker bifurcation occurs for relatively large values of the coupling, presumably due
to closeness of the excitation frequency to a boundary of the propagation zone of the chain. Both bifurcation
mechanisms seem to be generic for the considered type of forced-damped lattices. Some unusual phenomena,
like nonmonotonous dependence of the stability boundary on the forcing amplitude, are revealed analytically for
the initial system and illustrated numerically for small periodic lattices.
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I. INTRODUCTION

Discrete breathers (DBs) or intrinsic localized modes
(ILMs) are well known in many nonlinear lattices [1,2].
Generally, they are exponentially localized (if a coupling
between the neighbors in the lattice has a linear component)
and can demonstrate remarkable stability also in two- and
three-dimensional lattices [2]. Numerous systems which ex-
hibit the DBs include chains of mechanical oscillators [3],
superconducting Josephson junctions [4], nonlinear magnetic
metamaterials [5], electrical lattices [6], michromechanical
cantilever arrays [7], antiferromagnets [8], and many other
physical systems [9].

In the majority of theoretical studies related to the DBs,
Hamiltonian models are considered. Still, in many applications
the damping cannot be neglected; in order to maintain the DB,
one should compensate it by some kind of direct or parametric
external forcing [2]. Experimentally, many of the DBs ob-
served in the experiments were in fact created and maintained
in the presence of damping and under homogeneous forcing
from the external sources.

It is more or less easy to “explain” the nonlinear localization
in a chain of forced-damped oscillators on a qualitative
level. It is well known that single forced-damped nonlinear
oscillators can exhibit stable steady-state responses with
different amplitudes, depending on initial conditions [10].
If one or few oscillators in the lattice are excited at high
amplitude, and if all the others are at low amplitude, and
coupling between the oscillators is weak enough to preserve
this structure—one obtains an example of strongly localized
excitation in conditions of a homogeneous forcing. However,
quantitative description of such breathers remains a major
challenge. Lack of Hamiltonian structure changes the prop-
erties of the DBs. Instead of a continuous family of localized
solutions, one expects to obtain a discrete set of attractors.
Consequently, many of the methods devised for computation
and analysis of the Hamiltonian DBs are not applicable in
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forced-damped systems. Even more important, the DBs in the
forced-damped systems can have some qualitative properties
absent in their Hamiltonian counterparts. For instance, one
can observe stable moving DBs in forced-damped systems
[11]. In Hamiltonian lattices, the existence of such moving
stable DBs is generally denied [2], with the known exception
of the integrable Ablowitz-Ladik model [12]. Also, there
exist some special nonintegrable Hamiltonian discrete models
where the DBs can be computed exactly [13]. To the best of
the author’s knowledge, no such exact solutions are known in
forced-damped discrete lattices. Even in continuous nonlinear
models with forcing and damping, some exact solutions for
the breathers were obtained only for a handful of special cases
[14]. This paper is devoted exactly to this problem and suggests
a model, which allows one to derive exact solutions for the
forced-damped DBs and to study some of their properties.

We are going to demonstrate that the exact solutions can be
derived for the DBs in a vibro-impact (VI) chain. Dynamical
systems involving impacts have an important peculiarity—
they exhibit extreme (actually, the strongest possible) non-
linearity, but the latter reveals itself only at the moments
of impacts; between the impacts the system obeys linear
equations of motion, if other sources of nonlinearity are absent.
Consequently, the VI models can offer a relatively simple
description of complicated nonlinear phenomena. Celebrated
examples of this sort are problems of bouncing ball [15] and
kicked rotor [16], but many other tractable VI models are
known and used for description of realistic physical systems,
such as Bose-Einstein condensates [17]. One of the few exact
solutions for DBs in Hamiltonian systems also uses the VI
model [18]; in the current paper, we extend this result for the
forced-damped case.

II. DESCRIPTION OF THE MODEL AND ANALYTIC
SOLUTION

The model used here is a homogeneous chain with linear
nearest-neighbor interactions; in addition, each particle can
move only between inelastic impacts constraints. Such model
is topologically equivalent to smooth models with linear
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FIG. 1. Sketch of the model system.

interaction and on-site potential, widely used in investigations
devoted to the DBs [7]. A sketch of the model system is
presented in Fig. 1.

Each particle is subject to the same external forcing.
The forcing function is considered to be 2π -periodic and
antisymmetric, as specified below in the equations of motion.
Between the impacts, displacement un of the nth particle is
described as

ün + γ (2un − un−1 − un+1) = F (t),

F (t) = F (t + 2π ), (1)

F (t + π ) = −F (t).

Without affecting the generality, the clearance � and the
particle mass are set to unity and the only parameter which
characterizes the chain is a coupling coefficient γ . Equation (1)
is valid between successive impacts, i.e., as |un| < 1 for all
particles. If the particle with number n impacts the constraint
at time instance ti ,n, the following conditions are satisfied:

t = ti,n; un(ti,n) = ±1;
(2)

u̇n(ti,n + 0) = −ku̇n(ti,n − 0), 0 � k � 1.

Here k is a restitution coefficient. The notation ± 0 is used
to denote the particle’s velocities immediately after ( + ) and
before (–) the impact. Values of k<1 correspond to inelastic
impacts; it is the only source of damping in the model. The
model is not solvable in a general form. Therefore, we are
going to look for partial solutions for the DBs. In this paper,
the simplest on-site symmetric DB is considered. Our mo-
tivation for this choice is that the DBs of this type are the
most explored ones, both experimentally and numerically.
Hence, we adopt that responses of all particles are periodic
and symmetric, and only a particle with n = 0 impacts each of
its constraints symmetrically with period 2π :

un(t) = un(t + 2πm) = −un [t + π (2m + 1)] ,

ti,0 = ϕ + πm, u0(ϕ) = 1,
(3)

u̇0(ϕ + 0) = −ku̇0(ϕ − 0), u0(ϕ + π ) = −1,

u̇0(ϕ + π + 0) = −ku̇0(ϕ + π − 0).

Here ϕ is a “phase lag” of the impacts with respect to the
external forcing. The effect of each impact is equivalent
to a transfer of a certain amount of momentum to the
impacting particle. Consequently, the solution we look for

should satisfy the following modification of Eq. (1) (in terms
of distributions):

ün + γ (2un − un−1 − un+1)

= F (t) + 2pδn0

∞∑
j=−∞

{δ [t − ϕ + π (2j + 1)]

− δ(t − ϕ + 2πj )} , (4)

where δ(t) is the Dirac delta function, δnm is the Kronecker
symbol. 2p is the yet unknown momentum transferred to the
“central” particle in the course of each impact. For further
analysis, the variables are changed as follows:

un = vn + f (t), f̈ (t) = F (t). (5)

Due to the antisymmetry of F (t), it is always possible to find
a unique function f (t) satisfying Eq. (5) and the antisymmetry
condition f (t + π ) = −f (t). In terms of the new variables,
the external forcing term on the right-hand side of Eq. (4)
disappears:

v̈n + γ (2vn − vn−1 − vn+1)

= 2pδn0

∞∑
j=−∞

{δ [t − ϕ + π (2j + 1)] − δ(t − ϕ + 2πj )}.

(6)

In Eq. (6) the only remaining forcing term is related to the
impacts. The stationary regime is possible only if the impact
is symmetric in terms of variables vn(t):

v̇0(ϕ − 0) = −v̇0(ϕ + 0) = p.

With the account of this relationship, Eq. (2) for the inelastic
impact is rewritten as

v0(ϕ) + f (ϕ) = 1;

u̇0(ϕ + 0) = −p + ḟ (ϕ)

= −k[p + ḟ (ϕ)] ⇒ ḟ (ϕ) = p
1 − k

1 + k
. (7)

Equation (7) has three unknowns, p, ϕ, and v0(ϕ). To define
the solution completely, an additional relationship between p,
ϕ, and the value of v0 in time instance of the impact v0(ϕ) is
required. One obtains it by rewriting Eq. (6) with the help of a
formal Fourier series:

v̈n + γ (2vn − vn−1 − vn+1)

= −4pδn0

π

∞∑
l=0

cos [(2l + 1)(t − ϕ)]. (8)

Equation (8) represents a common linear chain with an external
forcing applied to the particle n = 0. The steady-state solution
will be spatially localized if all frequencies in the forcing term
lie in an attenuation zone of the chain. The latter requirement
will be satisfied if γ ∈ [0,0.25). In this case the steady-state
solution of Eq. (8) may be presented in the following form [17]:

vn(t) = 4p

π

(−1

2γ

)|n| ∞∑
l=0

[(2l + 1)2 − 2γ −
√

(2l + 1)4 − 4γ (2l + 1)2]|n|√
(2l + 1)4 − 4γ (2l + 1)2

cos [(2l + 1)(t − ϕ)]. (9)

For the sake of completeness, the derivation details of Eq. (9) are presented in Appendix A.
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Fourier series (9) converges for all n and for γ ∈ [0,0.25), i.e., for all values of coupling, for which the forcing frequency
stays in the attenuation zone. An explicit expression for v0(ϕ) is written as

v0(ϕ) = pχ (γ ),χ (γ ) = 4

π

∞∑
l=0

1√
(2l + 1)4 − 4γ (2l + 1)2

. (10)

Taking into account Eq. (10), the system (7) can be closed:

pχ (γ ) + f (ϕ) = 1, ḟ (ϕ) = p
1 − k

1 + k
. (11)

Then, the exact solution for the symmetric one-site DB is expressed as

un(t) = f (t) + 4p

π

(−1

2γ

)|n| ∞∑
l=0

[(2l + 1)2 − 2γ −
√

(2l + 1)4 − 4γ (2l + 1)2]|n| cos [(2l + 1)(t − ϕ)]√
(2l + 1)4 − 4γ (2l + 1)2

. (12)

Parameters p and ϕ can be determined from Eq. (11) for each specific choice of F (t).
In order to study the DB described by Eqs. (11) and (12) in more depth, the case of a simple harmonic forcing is considered.

In this case, one can solve Eq. (11) explicitly:

F (t) = −a cos t ⇒ f (t) = a cos t ; −a cos ϕ = pχ (γ ) − 1, − a sin ϕ = pq, q = 1 − k

1 + k
,

(13)

p = χ (γ ) ±
√

χ2(γ )a2 − q2(1 − a2)

χ2(γ ) + q2
, ϕ = − arcsin

pq

a
.

Here a is the amplitude of the harmonic forcing. A stable response corresponds to a positive sign in expression (13) for p.
From (13) one obtains the condition for minimum forcing amplitude necessary to support the DB solution, as a function of the
restitution coefficient and the coupling:

a � q√
χ2(γ ) + q2

. (14)

To ensure self-consistency of the solution starting from Eq. (4), two conditions should be satisfied:
(1) The particle with n = 0 should impact the barriers only at the time instances t = ϕ, ϕ + π ;
(2) The particles with n �= 0 should never reach the impact constraints.
Condition (1) is satisfied for solution (12)-(13) for not-too-small values of the restitution coefficient. It is demonstrated in

Appendix B that for the values of k � 0.1 the solution is self-consistent for all possible values of the other parameters. To satisfy
Condition (2), it is enough to take care about this condition for particles with n = ±1, since the amplitudes of all particles
with |n| > 1 would be even smaller (a proof of this fact and more detailed exploration of the solution self-consistency are also
presented in Appendix B). Then, for any time instance, one should obtain

|u1(t)| =
∣∣∣∣∣a cos t − 2p

γπ

∞∑
l=0

(2l + 1)2 − 2γ −
√

(2l + 1)4 − 4γ (2l + 1)2√
(2l + 1)4 − 4γ (2l + 1)2

cos [(2l + 1)(t − ϕ)]

∣∣∣∣∣ < 1. (15)

Conditions (14) and (15) determine the zone of existence
of the DB in the space of parameters. This zone is illustrated
in Fig. 4, together with the stability thresholds for the DBs.

III. STABILITY ANALYSIS

The DB solution (12)-(13) is 2π -periodic by construction,
and thus its stability may be established by analysis of
eigenvalues of a monodromy matrix computed on a single time
period [19]. Such matrix cannot be computed for an infinite
chain; therefore, it is commonly accepted to compute it for
a finite chain and to check whether the stability properties
depend on the number of particles [11]. In this paper we
adopt the same approach and consider the system with N

particles and periodic boundary conditions. For systems with
smooth nonlinearity, such monodromy matrices are usually
computed numerically, by solving a complete set of N ordinary

differential equations (ODEs) for 2N independent sets of
initial conditions [11,20]. However, for the vibro-impact chain
considered here, in addition to availability of exact solutions,
one can compute the monodromy matrix in a much simpler
manner. A state vector of the system is defined as

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u0

...

uN−1

w0

...

wN−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (16)

062911-3



O. V. GENDELMAN PHYSICAL REVIEW E 87, 062911 (2013)

FIG. 2. (Color online) Zones of existence and stability for the
symmetric DB on the (γ , a) parameter plane for two different
values of the restitution coefficient: (a) k = 0.8; (b) k = 0.4.
Crosses denote the pitchfork bifurcation line and diamonds denote
the line of Neimark-Sacker bifurcation. Transitions corresponding to
illustrations in Figs. 2 and 3 are marked by arrows in (a). “S” and
“US” denote zones of stability and instability, respectively.

We adopt wk = u̇k, k = 0, . . . ,N . The periodic boundary
conditions are imposed as

u0 = uN, w0 = wN. (17)

In the exact solution (12)-(13) the impacts occur only at the site
n = 0 in time instances t = ϕ, ϕ + π . Consequently, between
impacts, the time evolution of the state vector is described by
a linear equation. With account of (1) and (16), this equation
is written as

V̇ = AV + F, A =
(

0N×N IN×N

γLN×N 0N×N

)
, F = F (t)

[
0N×1

IN×1

]

ϕ < t < φ + π, ϕ + π < t < φ + 2π. (18)

Here

LN×N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 0 · · · 0 1

1 −2 1
. . . · · · 0

0 1
. . .

. . . 0
...

... 0
. . .

. . . 1 0

0
...

. . . 1 −2 1

1 0 · · · 0 1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is the discrete Laplacian adjacency matrix accounting for the
linear coupling.

Due to the linearity of Eq. (18), evolution of small
perturbations of the state vector V between the impacts is
described by the exponent of matrix A. At the moments of
impact, the evolution of small perturbations of the state vector
is described by the so-called saltation matrix [21], which takes
into account both the perturbation of the state vector at the
point of discontinuity and the infinitesimal variation of the
impact time instance. For the system under consideration, this
matrix at time instance t = ϕ in the lowest-order (linearized)
approximation [21] may be written as

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−k 0 · · · 0

0 1
. . .

...

...
. . .

. . . 0

0 · · · 0 1

0N×N

ω(1+k)
w0(ϕ−0) 0 · · · 0

0 0
. . .

...

...
. . .

. . .
...

0 · · · · · · 0

−k 0 · · · 0

0 1
. . .

...

...
. . .

. . . 0

0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(19)

where ω = ü0(ϕ − 0). The complete monodromy matrix at the
period 2π is thus expressed as

M = (QS)2, Q = exp(πA). (20)

Values of velocity and acceleration of the impacting particle in
the moment of impact are taken from the exact solution (12)-
(13). Expression (20) still requires the numeric computation
of the exponent matrix and the multiplication of the matrices,
but all of these tasks are much easier from a computational
viewpoint than the solution of N second-order ODEs with 2N

independent sets of the initial conditions.
The loss of stability has been recorded numerically in the

space of parameters, when the eigenvalue of the monodromy
matrix (or couple of the complex conjugate eigenvalues) with
the largest absolute value crossed a threshold of 1.005. For all
explored examples, it was found that for N � 400 the critical
parameter values do not depend on N within a relative margin
of about 0.1%. Thus, it is possible to suggest that these results
on stability of the DBs are also relevant for the infinite chain.
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FIG. 3. Evolution of eigenvalues of the monodromy matrix
corresponding to Neimark-Sacker bifurcation. N = 400, a = 0.2,
k = 0.8; (a) γ = 0.09, (b) γ = 0.11.

Two generic scenarios of the loss of stability were revealed.
The first one corresponds to the transition of two complex
conjugate eigenvalues through the unit circle and is related
to the Neimark-Sacker bifurcation. The other scenario corre-
sponds to the passage of a single eigenvalue through unity.
This scenario corresponds to a pitchfork bifurcation; the latter
results in appearance of a pair of stable asymmetric DBs.
Typical structure of the eigenvalues of the monodromy matrix
for both of these bifurcation scenarios is presented in Figs. 2
and 3.

Therefore, for instance, it is possible to infer from Fig. 2
that for the set of parameters corresponding to case (a) the
symmetric DB will be stable, and for case (b) it will be
unstable.

Examples for zones of existence and stability for the DBs
are presented in Fig. 4. The lower boundary of the zones of
existence is described by Eq. (14); the upper one is described
by Eq. (15).

One can see that for lower values of the restitution
coefficient, the DB exists for a narrower range of amplitudes
of the external forcing, but it is stable in a wider range of the
values of coupling coefficient. The pitchfork bifurcation in the
upper left corner is similar to the loss of symmetry observed
in a single vibro-impact oscillator [22]; naturally, this case is
equivalent to zero coupling. A similar pitchfork bifurcation,
related to a “loss of symmetry,” is also known in the regular
forced-damped Duffing oscillator [10]. Thus, this scenario of
the loss of stability is caused by the internal dynamics of each
individual oscillator. Our computations reveal an interesting

FIG. 4. Evolution of eigenvalues of the monodromy matrix
corresponding to pitchfork bifurcation. N = 400, a = 0.8, k = 0.8;
(a) γ = 0.05, (b) γ = 0.045.

and, it seems, previously unknown fact: The coupling between
the oscillators can suppress this scenario of the loss of stability
and stabilize the symmetric DBs.

It is also possible to conjecture that the Neimark-Sacker
bifurcation in the lower right corner is related to four-wave
interaction with the boundary of the propagation zone [7].
One can also see that the size of the interval of existence of the
DBs shrinks and approaches zero as the frequency approaches
the boundary of the propagation zone. This observation also
correlates with numeric and experimental findings presented
in Ref. [7], where the amplitude of the DB was seen to decrease
as the forcing frequency gets closer to an optical band. These
results allow us to conjecture that both bifurcation mechanisms
described above are generic for forced lattices with nonlinear
on-site potentials, and not only relevant for the VI chain studied
here.

In Fig. 4(a) one can see that for relatively low damping
(k = 0.8) the stability threshold on the parameter plane is not
monotonic. It is not clear whether this property is generic. In
the next section, this finding is illustrated by direct numeric
simulations.

IV. NUMERIC SIMULATIONS

Usually, experiments with the DBs are performed with a
relatively small number of particles or nodes. Therefore, in
order to illustrate the analytic findings, numeric simulations
are performed for a system with N = 20 particles and periodic
boundary conditions. Additionally, the inelastic impacts were
replaced by strongly nonlinear smooth force and damping,
which exactly correspond to the Newtonian model of the
inelastic impact in the limit case specified below [23]. Also,
small on-site linear damping with coefficient μ = 0.005
was included. Thus, the following smooth system has been
simulated:

ün + γ (2un − un−1 − un+1) + μu̇n

+ λ(2m + 1)u2m
n u̇n + (2m + 1)u4m+1

n = a cos t,

u0 = uN. (21)

Here m is a natural number. In Ref. [23] it was proved that
the two last terms on the left-hand side of Eq. (21) in the
limit m → ∞ faithfully model the inelastic impact with a
velocity-independent restitution coefficient. The value of this
coefficient is related to parameter λ as follows [23]:

k = exp

(
−πλ

2
√

1 − λ2/4

)
. (22)

The system has been simulated numerically by the Rosenbrock
method suitable for stiff systems. It was observed that for
values of m>5 the simulation results ceased to depend on the
exact choice of m.

Convergence to the exact DB solution has been simulated
for a = 0.1, k = 0.8, and γ = 0.08. The system has been initial-
ized by initial velocity u̇0(0) = 3; remaining initial conditions
were set to zero. The simulated response of the system after
an initial transient is compared to the exact solution (12)-(13)
for the vibro-impact counterpart in Figs. 5(a)–5(c).

One can conclude that the DB for the given set of
parameters is a genuine attractor of the dynamics and that
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FIG. 5. (Color online) Comparison between exact solution for
infinite chain (12)-(13) and numeric simulation of system (22) for N

= 20; periodic boundary conditions, a = 0.1, k = 0.8, γ = 0.08, and
μ = 0.005. The plots present almost indistinguishable exact solution
(red, solid line) and numeric result (black, circles) for (a) u0(t);
(b) u1(t); (c) u10(t).

the exact solution (12)-(13) is robust in a sense that it nicely
approximates similar excitation in a smooth system with a
relatively small number of degrees of freedom.

In order to illustrate the nonmonotonic dependence of
stability on the coupling revealed in Fig. 4(a), system (22)
was simulated for initial conditions exactly corresponding to
solution (12)-(13), the restitution coefficient k = 0.8, coupling
γ = 0.104, and three different values of the external forcing
− a = 0.1, 0.2, 0.7. From Fig. 4(a) it is clear that all these values
of the forcing and coupling are rather close to the boundary of
stability. The results of this simulation are presented in Fig. 6.

For cases (a) and (c), the system settles in the attractor
corresponding to the symmetric DB after some initial transient.
For case (b), the system preserves the localization for some
time, but then the response becomes delocalized and the

FIG. 6. (Color online) Numeric simulation of the DBs in small
system with smoothened potentials and damping, N = 20, k = 0.8,
γ = 0.104; (a) a = 0.1, (b) a = 0.2, (c) a = 0.7. Time series for five
central particles (−2 � n � 2) are presented.

DB structure is eventually lost. The results of simulations
completely correspond to predictions in Fig. 4(a), including
the nonmonotonous behavior of the stability threshold.

One can mention that in the simulation presented in
Fig. 6(b) the DB is destroyed. It does not turn out to be
quasiperiodic, as one would expect from the generic Neimark-
Sacker bifurcation scenario described above. This result
suggests more careful study of the DB structure transformation
when the stability boundary is crossed. For this sake, the
symmetric DB was created according to the exact solution
in the region of stability. Then, the amplitude of the forcing
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FIG. 7. (Color online) Comparison between exact solution for
the symmetric DB in the infinite chain (12)-(13) (red, solid line)
and numeric simulation of system (22) (black, circles) for N = 20;
periodic boundary conditions, a = 0.82, k = 0.8, γ = 0.04, and μ =
0.005. The time series are depicted for (a) u0(t); (b) u1(t); (c) u10(t).

was varied (at the rate of about 10−3 with respect to the
forcing frequency), in a way that the system has crossed the
stability threshold. It was revealed that the localized DBs
in such conditions could persist for a rather large variation
of the forcing amplitude; however, their structure undergoes
significant changes. The simulations were performed for both
stability boundaries (corresponding to the pitchfork and the
Neimark-Sacker bifurcations). The time series for the final
DB shape are presented in Figs. 7 and 8, respectively.

The time series obtained in both simulations correspond
to the DBs, but the latter are no more symmetric. Analytic
solutions for the unstable symmetric DBs are depicted in these
figures by solid lines for the sake of comparison. In Fig. 7
one can observe that the numeric solution is still periodic,
but asymmetric. The solution presented in Fig. 8 is no more
2π -periodic, but still spatially localized. One can suppose that
this solution might be either quasiperiodic or phase locked
with some large period. Both results presented in Figs. 7
and 8 completely conform to the predictions of the stability
analysis presented above. A study of precise structure and
stability properties of the asymmetric and quasiperiodic DBs

FIG. 8. (Color online) Comparison between exact solution for
the symmetric DB in the infinite chain (12)-(13) (red, solid line)
and numeric simulation of system (22) (black, circles) for N = 20;
periodic boundary conditions, a = 0.15, k = 0.8, γ = 0.104, and μ =
0.005. The time series are depicted for (a) u0(t); (b) u1(t); (c) u10(t).

requires many additional analytic and numeric efforts and will
be presented elsewhere.

V. CONCLUDING REMARKS

As was demonstrated above, the vibro-impact model allows
derivation of exact analytic solutions for discrete breathers
in forced-damped essentially nonlinear chain, without any
simplifications or approximations. The zone of existence and
stability of the DB solution in the space of parameters has
been computed. Two mechanisms of the loss of stability
(pitchfork and Neimark-Sacker bifurcations) were revealed.
Existence of the asymmetric and quasiperiodic DBs was
predicted analytically and verified numerically. It is interesting
to mention that the increase of the coupling can both stabilize
and destabilize the symmetric DB in different zones on the
plane of parameters and for different bifurcation mechanisms.
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Also, nonmonotonic behavior of the stability boundary in the
space of parameters was revealed analytically for the infinite
chain and illustrated numerically for small smooth systems
with periodic boundary conditions.

One should note that the numeric simulations were
performed for the model with smooth, rather that vibro-
impact, on-site potentials. The results were very similar to
the theoretical counterparts obtained for the vibro-impact
model. This coincidence allows one to suggest that the
results concerning the behavior of the on-site DBs (generic
bifurcations, “topography” of the existence and stability zones
on the plane of parameters) are in fact relevant for a wider class
of systems with topologically similar potentials of interaction.
This suggestion will be explored in a future work.
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APPENDIX A

In this Appendix we present the detailed derivation of
Eq. (9). It is natural to look for the steady-state solution of
Eq. (8) in the form of the Fourier series:

vn(t) =
∞∑
l=0

vn,l cos [(2l + 1)(t − ϕ)]. (A1)

Substituting this expression into Eq. (8), one obtains

−(2l + 1)2vn,l + γ (2vn,l − vn−1,l − vn+1,l) = −4pδn0

π
.

(A2)

For n �= 0 Eq. (A2) is homogeneous. If one requires vanishing
of the solution as n → ±∞, then the appropriate solution
of (A2) is expressed as

vn,l = v0,lξ
−|n|,

ξ = − (2l + 1)2 − 2γ −
√

(2l + 1)4 − 4γ (2l + 1)2

2γ
. (A3)

For n = 0 one substitutes Eq. (A3) into Eq. (A2) and obtains
the following expression for v0,l :

v0,l = 4p

π
√

(2l + 1)4 − 4γ (2l + 1)2
. (A4)

Substituting Eqs. (A3) and (A4) into Eq. (A1), one obtains
Eq. (9).

APPENDIX B

In this Appendix the proof of the self-consistency of
analytic solution (12)-(13) for not-too-small values of the
restitution coefficient k is presented for the case of simple
harmonic forcing. The proof is based on two statements, which
will be analyzed separately:

(1) The particle with n = 0 undergoes impacts with the
constraints at time instances t = ϕ, ϕ + π and does not
impact the constraints at any other time instance;

(2) The upper boundary for existence of the single-site DB
is limited by the curve corresponding to the condition

max
t

[u1(t)] = 1. (B1)

This condition implies

max
t

[un(t)] � 1 (B2)

for all values of |n| > 1.

If Statements 1 and 2 are correct, they guarantee that
no particle besides the one with n = 0 is engaged in the
impacts with the constraints, and the central particle meets the
constraints only at t = ϕ, ϕ + π . Thus, the transition from
Eqs. (1) and (2) to Eq. (4) and all analytic treatment that
follows would be justified.

Let us first consider Statement 1. It is equivalent to the
statement that

|u0(t)| < 1 for t �= ϕ + πj, j ∈ Z. (B3)

Due to the symmetry of the considered solution, it is
enough to prove (B3) for ϕ < t < ϕ + π . If one recalls that
u0(ϕ) = 1, u0(ϕ + π ) = −1, it is clear that it is sufficient
to demonstrate a monotonous decrease of u0(t) for ϕ < t <

ϕ + π .
From Eq. (12), velocity of the particle with n = 0 is written

as

V0(t) = u̇0(t) = −a sin t − 4p

π

∞∑
l=0

sin [(2l + 1)(t − ϕ)]√
(2l + 1)2 − 4γ

.

(B4)

Due to a discontinuity of the velocity at the impacts,
series (B4) does not converge uniformly. In order to obtain
suitable estimations of the velocity, this series should be
presented in somewhat modified shape:

4p

π

∞∑
l=0

sin [(2l + 1)(t − ϕ)]√
(2l + 1)2 − 4γ

= 4p

π

[ ∞∑
l=0

sin [(2l + 1)(t − ϕ)]

2l + 1
+

∞∑
l=0

sin [(2l + 1)(t − ϕ)]

{
1√

(2l + 1)2 − 4γ
− 1

2l + 1

}]

= p + 16γp

π

∞∑
l=0

sin [(2l + 1)(t − ϕ)]

(2l + 1)(2l + 1 +
√

(2l + 1)2 − 4γ )
√

(2l + 1)2 − 4γ
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= p + 16γp

π

(
sin(t − ϕ)√

1 − 4γ [1 + √
1 − 4γ ]

+
∞∑
l=1

sin [(2l + 1)(t − ϕ)]

(2l + 1)[2l + 1 +
√

(2l + 1)2 − 4γ ]
√

(2l + 1)2 − 4γ

)

� p + 16γp sin(t − ϕ)

π

(
1√

1 − 4γ (1 + √
1 − 4γ )

−
∞∑
l=1

1

[2l + 1 +
√

(2l + 1)2 − 4γ ]
√

(2l + 1)2 − 4γ

)

� p + 16γp sin(t − ϕ)

π

(
1

2
− 1

8

∞∑
l=1

1

l2

)
= p + 16γp sin(t − ϕ)

π

(
1

2
− π2

48

)
. (B5)

The first inequality in (B5) explores the fact that sin [(m + 1)x] � (m + 1) sin x for all non-negative whole numbers m and
for x ∈ [0,π ]. This fact easily follows from recurrence relationships for the second-order Chebyshev polynomials [24]. In the
last transformation we took into account that γ ∈ [0,0.25). Using estimation (B5), one obtains from Eq. (B4)

V0(t) = −a sin t − 4p

π

∞∑
l=0

sin [(2l + 1)(t − ϕ)]√
(2l + 1)2 − 4γ

� −a sin t − p − 16γp sin(t − ϕ)

π

(
1

2
− π2

48

)
� −a sin t − p. (B6)

The last transformation holds since sin(t − ϕ) is non-negative for ϕ � t � ϕ + π . It follows from (B6) that u0(t) will
monotonously decrease in the interval ϕ < t < ϕ + π for all values of γ ∈ [0,0.25) if it monotonously decreases for γ = 0. It
is clear from (B6) that the latter condition will be fulfilled if p > a in the interval 1 � a � q√

χ2(0)+q2
; from expression (13), it is

easy to derive that the inequality holds for all k � 0.1. So, one can conclude that Statement 1 is correct for not-too-small values
of the restitution coefficient. It should be mentioned that for very small values of k Statement 1 really turns out to be wrong—that
happens, for instance, for the set of parameters k = 0.005, a = 0.99, γ = 0. Therefore, although it might be possible to tighten
the estimations used in inequalities (B5) and (B6), still the consistency of solution (12)-(13) will be violated for small values of
the restitution coefficient k.

The proof of Statement 2 essentially relies on the fact that the harmonic component with unit frequency is dominant in all
sums un(t) for n �= 0.

Solution (12)-(13) may be transformed as follows:

un(t) = a cos t + 4p

π

(−1

2γ

)|n| ∞∑
l=0

((2l + 1)2 − 2γ −
√

(2l + 1)4 − 4γ (2l + 1)2)|n| cos [(2l + 1)(t − ϕ)]√
(2l + 1)4 − 4γ (2l + 1)2

= An(t) + Rn(t).
(B7)

An(t) = a cos t + (−1)n4pξn
0

π
√

1 − 4γ
cos(t − ϕ).

Rn(t) = (−1)n4p

π

∞∑
l=1

ξn
l cos [(2l + 1)(t − ϕ)]√
(2l + 1)4 − 4γ (2l + 1)2

.

In this expression An(t) is the component with the unit frequency, and Rn(t) denotes the sum of all other harmonics,

ξl = (2l + 1)2 − 2γ −
√

(2l + 1)4 − 4γ (2l + 1)2

2γ

= 2γ

(2l + 1)2 − 2γ +
√

(2l + 1)4 − 4γ (2l + 1)2
= 2l + 1 −

√
(2l + 1)2 − 4γ

2l + 1 +
√

(2l + 1)2 − 4γ
. (B8)

Note that we consider only n>0; the opposite case is similar due to the symmetry of the exact solution. Using the former
notations, Eq. (15) can be transformed in the following way:

max
t

[u1(t)] � 1 ⇔ max
t

[A1(t) + R1(t)] � 1 ⇒ max
t

[A1(t)] � 1 + max
t

[R1(t)] . (B9)

Further, the following notations will be used:

Ân = max
t

An(t), R̂n = max
t

Rn(t).

As for R̂n, the following estimation may be obtained:

R̂n = max
t

[Rn(t)] = max
t

{
(−1)n4p

π

∞∑
l=1

ξn
l cos [(2l + 1)(t − ϕ)]√
(2l + 1)4 − 4γ (2l + 1)2

}

� 4p

π

∞∑
l=1

ξn
l√

(2l + 1)4 − 4γ (2l + 1)2
� p

π

(γ

4

)n

ζ (2n + 2) = pγ nμn, μn = ζ (2n + 2)

4nπ
. (B10)
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To derive estimation (B11), we used expression (B8) and the fact that γ ∈ [0,0.25). ζ (x) denotes the Riemann zeta function.
For values of Ân one can obtain exact expressions from definition (B7) with the help of conditions (13) as follows:

An(t) = a cos t + (−1)n4pξn
0

π
√

1 − 4γ
cos(t − ϕ) = a cos ϕ cos(t − ϕ) − a sin ϕ sin(t − ϕ)

+ (−1)n4pξn
0

π
√

1 − 4γ
cos(t − ϕ) =

[
1 − pχ (γ ) + (−1)n4pξn

0

π

]
cos(t − ϕ) + pq sin(t − ϕ)

⇒ Ân = max
t

[An(t)] =
√

(1 − prn)2 + p2q2,

rn = χ (γ ) − (−1)n4ξn
0

π
√

1 − 4γ
. (B11)

From inequality (B9) it follows that

Â2
1 � (1 + R̂1)2 � 1 + 2pγμ1 + p2γ 2μ2

1 ⇔ p � 2(r1 + γμ1)

r2
1 + q2 − γ 2μ2

1

. (B12)

If one considers inequality (B2) in a similar manner, it is possible to derive the following estimation:

max
t

[un(t)] = max
t

[An(t) + Rn(t)] � Ân + R̂n � 1 ⇔ p � 2(rn − γ nμn)

r2
n + q2 − γ 2nμ2

n

. (B13)

In order to prove the latter inequality [and, consequently, inequality (B2)] it is enough to demonstrate that

2(r1 + γμ1)

r2
1 + q2 − γ 2μ2

1

� 2(rn − γ nμn)

r2
n + q2 − γ 2nμ2

n

. (B14)

Then, (B13) would follow from (B12). Inequality (B13) can be rewritten as

(r1 − rn)(r1rn − q2) − (
γ nμnr

2
1 + γμ1r

2
n

) + γ 2nμ2
1r1 − γ 2μ2

1rn + γ n+2μ2
1μn + γ 2n+1μ2

nμ1 � 0. (B15)

From (B11) one can derive the following estimations:

4

π

[
1 − (−1)nξn

0√
1 − 4γ

+ π2

8
− 1

]
� rn <

4

π

[
1 − (−1)nξn

0√
1 − 4γ

+ π2

24

]
. (B16)

Using these estimations, one can easily demonstrate the
correctness of inequality (B15) for all γ ∈ [0,0.25),q ∈
[0,1]. It should be mentioned that the equality in (B10)

and (B15) holds only for γ = 0 and in (B13), and,
consequently, in (B2)—only for a degenerate case with
a = 1, γ = 0.
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