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Theoretical calculation of proton mobility for collective surface proton transport
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We present a theoretical study of surface proton mobility at a minimally hydrated array of protogenic surface
groups. At dense packing, the array assembles into a 2D bicomponent lattice that is formed by sulfonate anions,
which are only allowed to fluctuate about fixed equilibrium positions, and mobile hydronium ions. Proton
transport on the lattice proceeds by collective translocations of hydronium ions. This type of motion is described
within the framework of soliton theory. Our main objective in this article is to establish the relation between
microscopic surface structure and effective proton mobility. To this end, we present an approach to calculate
microscopic interaction parameters that determine hydronium ion motion. The developed formalism enables
us to theoretically derive an expression for soliton mobility at a given surface structure and compare it with
experimentally measured mobilities.
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I. INTRODUCTION

Proton transport is of vital interest for a wide range
of phenomena in condensed matter physics, biochemistry,
electrochemistry, and materials science [1–3]. However, the
detailed mechanism of proton transport is often unknown
or highly speculative, with bulk water being the main ex-
ception. Proton-conducting polymer electrolyte membranes
(PEM) like Nafion R© owe their high-proton conductivity to
an extended network of water-filled channels [4]. Under
sufficiently hydrated conditions, proton transport proceeds by
structural diffusion of a protonic defect, which has been studied
extensively for the case of bulk water [5]. Under conditions of
very low relative humidity or elevated temperature T > 90 ◦C,
the conductivity of Nafion-type PEMs drop by several orders of
magnitude due to dehydration, rendering virtually impossible
the operation of polymer electrolyte fuel cells at higher
temperatures [4]. On the other hand, for some materials a
significant proton conductivity has been demonstrated even
under very dry conditions [6]. Such findings allude to a dif-
ferent mechanism of proton transport involving surface water
that is strongly bound to a polymeric host material. A similar
mechanism might be relevant for lateral proton conduction at
surfaces of biological membranes [7] or in recently explored
polymer nanosheet assemblies [8]. Theoretical understanding
of the mechanism of surface proton transport would deepen
our knowledge of the nature of living organisms and it could
enable a wider search for new proton-conducting materials for
industrial use.

In [9], we presented a detailed ab initio molecular dynamics
study of proton transport at a densely packed two-dimensional
array of protogenic surface groups (SG) of the type CF3-SO3H.
The terminating carbon atoms are fixed at vertices of a
hexagonal lattice, allowing the side chains to tilt and rotate.
One water molecule per SG is added to simulate minimal hy-
dration. The water molecules form hydronium ions and bridge
SGs with each other forming a bicomponent, honeycomb-like
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hydrogen-bonded network. Our metadynamics simulations in
[9] showed that a collective motion of hydronium ions, which
conserves the number of interfacial hydrogen bonds, exhibits
a much smaller activation energy compared to a disconcerted
motion, which involves a creation of local hydrogen bond
defects. Therefore, we adopted a soliton transport mechanism,
developed in the past for one-dimensional systems [10–13],
for our two-dimensional system [14]. In the proposed mech-
anism, protons are transferred by solitary traveling waves of
hydronium ion dislocations. This approach was not pursued
further in the aforementioned one-dimensional case because
it predicted a very low proton conductivity. The 2D lattice
circumvents the main problem encountered in 1D systems. Our
analytical results published in [14] nurture expectations that a
soliton mechanism of surface proton transport is feasible. But
questions remain concerning the applicability of the approach
and evaluation of experimentally relevant parameters which
would allow a comparison of theoretical predictions with
experimental data. Some of these questions are addressed in
the present paper.

In [14], we found expressions for soliton energy and
mobility. However, one cannot compare them with experi-
mental data since the soliton theory developed so far uses
phenomenological constants such as a hydronium-hydronium
interaction constant or a viscous friction coefficient. As long as
those constants are unknown, it remains impossible to obtain
any reliable estimate of soliton mobility.

In the present paper, we determine the required constants
of microscopic interaction and use them to evaluate the
mobility. The main asset of our approach is that we neither
introduce new parameters nor run any specific simulations.
New parameters would increase the complexity of the model.
Computer simulations can give values only for a specific
potential profile created by the surface groups. Our results are
not based on any particular potential, rendering them rather
universal and applicable to a wide range of systems. This
follows the rationale suggested in [14] that all macroscopic
properties should be expressed via a minimal number of
microscopic parameters. In the ideal case, we should be able
to evaluate the proton mobility solely based on the input
information on the surface chemical composition and surface
group spacing.
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FIG. 1. (Color online) On the left is a schematic diagram of an interfacial system of end-grafted protogenic groups. On the right is a top
view obtained from ab initio molecular dynamics studies in [15]. The shaded hydronium ion represents the position of the hydronium after a
translocation. S1, S2, S3, and S4 are spectator SGs.

In Sec. II, we briefly review our surface soliton model and
provide the main analytical results obtained in [14]. Then we
discuss the physical origin of the phenomenological constants
of interest and calculate them. In Sec. III, we evaluate the
mobility and discuss its value. In the concluding parts, we
point out some unexpected features of soliton dynamics.

II. PROTON TRANSPORT AND SOLITON MOBILITY

We consider a two-dimensional flat array of surface groups
(SG) of the type R-SO3H, where R represents a residual group
or chain of fluorocarbon or hydrocarbon molecules, see Fig. 1.
Terminating carbon atoms of SGs are anchored at positions of
a hexagonal lattice with lattice constant l. One water molecule
is added per SG, simulating minimally hydrated conditions.
As discussed in [9], for most purposes a consideration of the
simplest system with R = CF3 is sufficient. For our analytical
modeling the main feature of the model system is the symmetry
of the ordered state, which controls the structure and dynamics
in the hydrogen-bonded network.

Stable configurations and structural transitions were studied
in [15–17]. At l < 6.5 Å, SGs assemble into an ordered
state with a saturated number of hydrogen bonds, as shown
in Fig. 1. At l > 6.5 Å, hydrogen bonds become too short
relative to l, which makes a tilted structure energetically
more preferable. At l > 8.7 Å, hydrogen bonds can no longer
bridge the separation between SGs, which leads to incomplete
dissociation. The disrupted hydrogen-bonded network at such
large values of l renders interfacial proton translocations
between SGs in the minimally hydrated system virtually
impossible. At l < 6.5 Å, the system is too stiff which
complicates a transition into the tilted structure. The ideal
lattice constant for hydronium transport is in the range of
l = 6.5 Å. At this SG density both the ordered and the tilted
structure are energetically similar, increasing the propensity
for fluctuations in SG and H bond density that could facilitate
interfacial proton transitions. For the time being we will focus
on this case. The influence of a distribution of SG density will
be considered at a later stage.

Hydronium ion motion consists of a sequence of elementary
hops such as depicted in Fig. 1. As shown in [9], the activation
energy of concerted motion of hydronium ions has about half
the value found for a disconcerted single hydronium ion hop.
Therefore, we consider a traveling solitary wave of dislocations
of hydronium ions. As shown in [14], in this case it is sufficient
to consider a one-dimensional Hamiltonian describing the part
of the original two-dimensional system lying on the track of
the 1D soliton. The relevant Hamiltonian reads

H =
∑

i

(
m

2
u̇2

i + k

2
(ui+1 − ui)

2 + V (ui)

)
, (1)

where the index i labels hydronium ions along the soliton
track, u is the displacement of the ith hydronium ion, m

the hydronium ion mass, k the coupling constant between
neighboring hydronium ions, and V (ui) the potential created
by the lattice of SGs and acting on the ith hydronium ion. Due
to the lattice order of the system, V (ui) is a periodic function
consisting of equally spaced and equally deep potential wells
centered at the equilibrium positions of hydronium ions.
Assuming that the number of hydronium ions in a soliton
is much larger than unity, we take the continuum limit. To
describe a soliton, we introduce a wave coordinate ξ ≡ x − vt ,
where x is a coordinate along the soliton and v is the soliton
velocity. Using the Euler-Lagrange formalism of classical
mechanics we derived the equation of motion

∂ξu = ±
√

2�2 (V (u) + ε), (2)

where ε is a potential well depth and �2 ≡ 1
m(v2

0−v2)
, with

v0 ≡
√

ka2

m
being the maximal soliton velocity.

In [14], based on Eq. (2), we derived an expression for the
soliton energy,

E = E0√
1 − (

v
v0

)2
, (3)

where E0 =
√

2εka2

3 is the energy of a static soliton. This ex-
pression can also be derived by minimizing the action integral,
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as done in [7]. To find the soliton mobility we followed a
standard approach: we added two terms representing a viscous
friction and an external force acting on each hydronium into
the equation of motion. Then we calculated the terminal drift
velocity and took its ratio to the external force, f , in the limit
f → 0. Thereby, we obtained an expression for the mobility,

μ = 1

b

√
ka2

2ε
, (4)

where b is a viscous friction coefficient. It turned out that,
up to a prefactor close to unity, Eqs. (3) and (4) are universal
for different functional forms of the potential profile V (u).
For a detailed description of the model system, discussion of
transport mechanisms, and derivation of the above equations
the reader is referred to [14].

In the present paper, we use the previously obtained
results as a starting point. The main objective is to develop
a formalism for calculating the proton mobility. The ability
to predict theoretically the proton mobility will be vital
for evaluating the proposed concerted mechanism of proton
transport in comparison to experimental data. Some of the
parameters needed in Eq. (4) have been already determined.
The elementary transfer distance of a hydronium ion, a, is
related to the lattice constant l by a = l√

3
, see Fig. 1. Since

we consider specifically l = 6.5 Å, we have a = 3.75 Å. The
parameter corresponding to the depth of the potential well, ε,
was found in [9], ε = 0.3 eV.

The constants b and k are still unknown. An estimate of
k was provided in [14], k � 2 kN m−1. Therefore, we will
focus on finding b. This constant describes viscous friction,
i.e. the energy losses due to a particle motion in a viscous
medium. Such losses can be calculated in two different but
equivalent ways: phenomenologically and microscopically. To
illustrate this aspect, let us consider a standard example—the
motion of a sphere in still water. In this case, since the viscous
friction force is known, one can calculate the work against the
friction and thereby determine the associated energy loss. On
the other hand, the resistance to the object’s motion stems from
molecular interactions between sphere and water molecules. If
we could find a molecular-level description of this interaction,
we could calculate the amount of energy transferred to water
molecules from the sphere. This energy corresponds to the
energy loss by friction. If there are no other sources of energy
dissipation, the losses calculated by both methods must be
the same. So, first we will express the phenomenologically
calculated energy losses via b. Then, after comparison with the
microscopically calculated losses, we will get an expression
of b via microscopic parameters of the system.

A. Phenomenological calculation

Let us consider a soliton traveling with velocity v. Accord-
ing to Eq. (3), an energy loss leads to a change of velocity. To
avoid this complication we will consider a differential energy
loss, dEb, since an infinitesimal change of the energy should
not change the soliton velocity noticeably. The subscript b

points out that the value is found in the framework of the
phenomenological approach. At each instant, hydroniums in
the soliton have a certain displacement, u. The differential

energy loss is

dEb = 1

3a

∫ ∞

−∞
(Fdu)dx, (5)

where 3a is the distance between hydroniums, see Fig. 1.
Fdu is the energy lost by one hydronium ion overcoming the
distance du. F is the viscous friction force, F = bu̇. Here, to
simplify the notation, we omitted the minus sign indicating
that the energy is lost but not gained due to friction. Hence,
dEb is positive. The integration sums up the contributions from
all the hydronium ions. Then, replacing du by u̇dt , inserting
the expression for F , and dividing the equation by dt gives

Ėb = b

3a

∫ ∞

−∞
u̇2dx. (6)

To obtain the final expression we introduce the traveling wave
coordinate ξ = x − vt , which leads to

Ėb = bv2

3a

∫ ∞

−∞
(∂ξu)2dξ. (7)

This is a general expression; it holds for an arbitrary potential
function V (u). To evaluate the integral for a particular V (u),
one can use the equation of motion, Eq. (2).

We note that Ėb is proportional to v2. This is consistent
with the result for motion of a sphere in water.

B. Microscopic model of energy dissipation

Let us consider a soliton traveling with velocity v. If we
were to neglect the energy loss by friction, the soliton would
continue to travel over infinite time and distance. To describe a
realistic soliton motion, a microscopic mechanism must exist
by which the soliton loses energy. One requirement for such a
mechanism is that the energy loss rate should be proportional
to v2, as remarked at the end of the previous subsection.

The soliton model considered so far assumes an ener-
getically isolated hydronium ion subsystem which does not
exchange energy with the surroundings. A possible mechanism
for energy losses is the energy transfer from the hydronium
ion subsystem to the SG subsystem. Such a transfer should
be conducted by a change in the SG subsystem caused by the
soliton motion. To accommodate the soliton motion, two SG
located at the soliton sides should tilt. These SG, indicated
in Fig. 2, are called spectator SG. While tilting, they pull
neighboring hydronium ions and SGs, which will shift and
pull their next neighbours, and so on. In other words, each
tilting spectator SG generates a propagating spherical wave of
dislocations in the coupled hydronium ion and SG subsystems.
Each emitted wave consumes a portion of the soliton energy,
comprising the mechanism of energy loss.

In the following, we assume that the soliton velocity
remains constant during the time of one hydronium ion
relocation. We will justify this assumption a posteriori in
Sec. III. The energy lost by one hydronium ion during a single
relocation step is el . The energy loss rate is, therefore,

Ėl = v

3a
el, (8)

where the subscript l shows that the value is calculated in the
frame of the microscopical approach. We will evaluate only
the energy transmitted from the soliton to the SG subsystem.
The energy transmitted from the soliton to the hydronium
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FIG. 2. (Color online) Defect structure on an ordered bicom-
ponent lattice of hydronium ions and SGs, created by collective
hydronium ion translocations along a 1D chain. Obtained from ab
initio molecular dynamics studies [22], it demonstrates a propagation
of a 1D soliton. S1, S2, S3, and S4 are spectator SG shown in Fig. 1.
The soliton run from left to right.

ion subsystem, i.e., to hydronium ions that do not lie on the
soliton track, could be calculated using the same formalism
and added afterwards. However, this energy is smaller because
hydronium ions are easy to relocate whereas SG motions are
restricted by grafting their endpoints; therefore, their motion
requires more energy.

As defined above, u is a displacement of a hydronium
ion in the soliton. In the same manner, n is defined as a
displacement variable of SGs in the emitted wave. Both n

and u are functions of spatial coordinates and time. For
convenience, these dependences will be shown explicitly only
when necessary. Because details of the tilting dynamics of
the spectator SGs are unknown, we assume that they move
simultaneously with hydronium ions, which is reasonable due
to the strong hydrogen bonds between these species. This gives
a boundary condition for the emitted wave,

n(y = 0) = δ

a
u(x = 0), (9)

where x denotes a coordinate in the direction of solution
propagation, y a coordinate perpendicular to the direction of
soliton propagation, and δ is the maximal displacement of
the SG, i.e., the difference of its coordinates in the tilted and
up-right structures.

Another simplifying assumption concerns the emitted wave
propagation. Despite the emitted wave propagates over a 2D
network of SG, we will consider a 1D string of SGs connected
by springs. In other words, instead of considering a spherical
wave, we will consider a 1D wave traveling perpendicular to
the soliton along the y−axis. This simplifies the mathematical
treatment significantly but gives out approximately the same
value of the lost energy, because in the vicinity of the soliton
both spherical and plain waves should look similar and possess
same energies. The perturbation propagates according to the
wave equation,

n̈ = c2n′′, (10)

where c is the sound velocity, c2 = Kl2

M
, K is an elastic constant

describing the interaction of SGs with each other in nearest
neighbor approximation, and M is the mass of a SG. One
should be aware that M is an effective mass introduced for the
sake of the spring-mass model. In reality, SGs do not move but
tilt. However, if the magnitude of the SG oscillations is small,
M should not differ much from the actual SG mass.

With these preparations, we can calculate el . The solution
of the wave equation is well known, n = G(η), where G

is an arbitrary function, and η = y − ct is a traveling wave
coordinate similar to ξ = x − vt . We do not consider a wave
coming from the infinity to the soliton which corresponds to
an unphysical solution. The function G(η) is defined by the
initial condition Eq. (9),

n(y − ct) = δ

a
u

(
v

c
(y − ct)

)
. (11)

This equation defines a functional relation between n and u,
valid for any arbitrary potential V (u). The energy of the emitted
wave can be found in exactly the same way as the energy of
the soliton was found in [14],

el

2
= M

2l

∫ ∞

−∞
ṅ2dy + Kl

2

∫ ∞

−∞
(n′)2dy = Kl

∫ ∞

−∞
(∂ηn)2dη.

(12)

The factor two on the left-hand side comes from the fact that
each hydronium has two spectator SGs and, therefore, emits
identical waves to either side of the soliton. The two terms in
the central part represent the kinetic and potential energies of
the emitted wave. The limits of integration could be 0 to ∞
because there is no wave at y < 0. However, the limits −∞
to ∞ make the treatment simpler. To obtain the expression on
the right of Eq. (12), we changed variables from y and t to η.
The integral is similar to the integral in Eq. (7). Inserting the
functional relation between n and u from Eq. (11) and using
Eq. (8), we can transform Eq. (11) into

Ėl = 2Kv2

√
3c

δ2

a2

∫ ∞

−∞
(∂zu(z))2dz, (13)

where z is a new integration valuable. This equation is valid
for an arbitrary potential V (u) and it gives a dependence on
v2, as required.

Now we have to understand how we could estimate K ,
the coupling constant of SG displacements. If a SG is
displaced, it pulls the neighboring hydronium ion due to
a strong H bond connection. The hydronium ion pulls the
neighboring SG, accomplishing the coupling. We refer to
this as a SG-hydronium-SG coupling. Using similar reason-
ing, the coupling between hydronium ions, described by k,
corresponds to a hydronium-SG-hydronium coupling. The
coupling constants K and k are therefore derived from the
same elementary steps, taken, however, in different sequence.
For small relative displacements, the system is linear and the
sequence of coupling steps is irrelevant. In this case, we expect
K = k. As a matter of fact, the assumption of linearity was
already invoked in the definition of the Hamiltonian, Eq. (1),
when the term k(ui+1 − ui)2 was introduced.

There are two problems with the reasoning showing above.
First of all, other interactions, neglected so far, may contribute
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to the coupling like, for example, Coulomb interactions. How-
ever, the mechanism described above should be predominant
due to an exceptional strength of H bonds. Moreover, the
contribution of Coulomb interaction will affect the values of K

and k equally, due to the same charges of SGs and hydronium
ions. In the linear approximation, due to the symmetry of the
system, SG and hydronium ions are interchangeable and their
Coulombic coupling must preserve K = k.

The second problem is that K is assumed to describe the
interaction between the neighboring SGs separated by l. On
the other hand, in the Hamiltonian Eq. (1), k describes the
coupling between hydroniums in the soliton, whose separation
is

√
3l, as can be easily seen from the geometry shown in Fig. 1,

which should lead to a different value of the coupling constant.
However,

√
3 is not much different from unity and, if we

consider the pathways which pass on the interaction between
hydroniums in the soliton, one can expect that they are not
very different from the once connecting two SGs. Therefore,
we believe that the reasoning is correct up to a factor close to
unity. Note, the original equations, Eqs. (3) and (4), are also
approximate up to a prefactor close to unity. Currently we are
running simulations to obtain k and K , which will evaluate
the assumptions made. For the time being, we could rely on
the assessment made in [13]. The authors were facing the
same problem of defining the constants in a similar 1D model.
Different from our approach, they represent each constant as
a product of a mass and a corresponding frequency in order to
make clear a connection with spectroscopic data. So, instead
of our k and K they use mω2

1 and M�2
1. To find ω1, they used a

similar approach as we did. To find �1, they considered a range
of possible reasonable displacements of atoms in the system
and found a window of corresponding frequencies. It turned
our that ω1 does not belong to the window for �1. However,
the treatment in terms of frequencies obscured the fact that
mω2

1 falls in the middle of the window for M�2
1.

Finally, summarizing the reasoning and discussion above,
Eq. (13) reads

Ėl = 2kv2

√
3c

δ2

a2

∫ ∞

−∞
(∂zu(z))2dz. (14)

III. MOBILITY OF SOLITONS

In the previous section we found Ėb and Ėl . From equating
the expressions obtained, Ėb = Ėl , we can determine the
viscous friction coefficient,

b = 2
√

kM
δ2

a2
. (15)

We did not use an explicit expression for u which is determined
by V (u), therefore b is the same for any potential V (u). This
is a consequence of the soliton adaptation to a change of V (u).
In [14], we found that a soliton changes its shape in response
to a change of V (u) in order to minimize its energy. Now we
see that this adaptation also minimizes the energy loss rate.

Inserting Eq. (15) into Eq. (4) we obtain an expression for
the soliton mobility,

μ = a3

δ2
√

8εM
. (16)

Note that the mobility does not depend explicitly on the
coupling constant between hydronium ions, k, nor on the
hydronium ion mass, m; but it depends on the SG mass, M .
This is due to the fact that we expressed k and b via K and
M . We thus managed to get rid of k and K which are the only
constants we do not know from simulations yet. M is estimated
as the mass of an SO−

3 ion, for which we use M = 80mp, where
mp is the proton mass. An estimate of ε was obtained in [9],
ε = 0.3 eV. The parameter δ represents the SG dislocation
by tilting during hydronium ion transfer and can be found
by a simple geometry optimisation simulation, δ = 0.09a,
[22]. These parameter estimates provide a mobility μ ≈ 2 ×
1014 m (Ns)−1 ≈ 3 × 10−5 m2 (Vs)−1 which corresponds
to a proton diffusion coefficient D ≈ 10−2 cm2 s−1 at
T = 100 ◦C. This value is quite large in comparison to
the diffusion coefficient in bulk water at room temperature,
9.3 × 10−5 cm2 s−1, as well as it is larger than experimentally
found values [18–21] observed, though, in chemically different
systems.

We have considered an idealized model without any defects
at the optimal interfacial density of SGs. These conditions will
provide the optimal value of proton mobility. Nonidealities in
real experimental systems due to variations in interfacial SG
spacing and SG lengths diminish the efficiency of interfacial
proton transport and lead to smaller values of proton mobility.
We will consider the influence of these factors in our later
publications. So far we have found the mobility for our
“perfect” system and theoretically demonstrated the benefit
of optimal density of SGs for proton transport.

Many parameters of solitons depend on the constant k which
is still unknown. In [14] we used an estimation k ≈ 2 kN.
Using Eq. (3) one can calculate the energy of a static soliton,
E0 ≈ 18 eV. The energy is high due to a large number of
hydronium ions in the soliton. It is still unclear what makes all
those hydroniums move simultaneously, and we will discuss
it in our next paper. For now, we can specify the rate of energy
loss of a soliton and use it to estimate the the soliton life time.
The rate of energy loss can be found by taking the integral in
Eq. (14) or, which is the same, in Eq. (7). The integration was
performed in [14] where it was shown that the result does not
depend on the potential V (u). Hence, Eq. (14) becomes

Ėl = v2δ2

3a3

√√√√ 8εM

1 − (
v2

v2
0

)2 . (17)

One can see that the rate of energy loss is strongly dependent
on soliton velocity, Ėl ∼ v2. Fast solitons lose energy more
rapidly. To simplify the formalism, we will consider a slow
soliton having energy E(t) = E0 + A(t), where A(t) � E0

for each t . Expressing v
v0

via E from Eq. (3), Eq. (17) gives a
simple differential equation for A(t). Its solution is

A(t) = A(0) exp

(
−4δ2v2

0

√
2εM

3a3E0
t

)

= A(0) exp

(
− 2b√

3m
t

)
≡ A(0) exp(−λt), (18)

where λ ≡ 2b√
3m

≈ 1013 s−1. Assume for estimation A(0) =
3kBT ≈ 0.1 eV which corresponds to v ≈ 0.1v0 ≈ 104 m s−1
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as seen from Eq. (3). Note that this amount of energy is
distributed over the whole soliton, so each hydronium will
lose only a tiny portion of energy. Let us find the distance s

that a soliton overcomes until it loses its energy:

s =
∫ ∞

0
v(t)dt ≈ v0

√
2

E0

∫ ∞

0

√
A(t)dt = v0

√
8A(0)

λ
√

E0
. (19)

Inserting the values we find that during its lifetime a soliton can
overcome only s

l
≈ 100 hydronium ions which is comparable

with the size of the static soliton estimated in [14], N0 > 50.
This is an unexpected result because in the literature solitons
are thought of as a more or less long-living perturbation
running without changes with a constant velocity, hence the
coined term soliton. However, it turns out that such kinks lose
their energy very fast and stop moving after overcoming a
relatively short distance. Note that the proposed mechanism
of energy loss is essentially two-dimensional. Therefore, in
one-dimensional systems solitons might lose energy slower
and live longer due to a different mechanism of energy losses.
Concerning our two-dimensional system, we believe that we
found the most relevant, i.e., most efficient, mechanism of
energy losses. Indeed, there is only a very narrow window for
b. If b were much smaller than we found, then the mobility
would be unreasonably large, see Eq. (4). On the other hand,
if b were much larger than we found, then solitons would
not move in the system at all due to a very short live time,
see Eq. (18).

So far we assumed that there is a soliton in the system and
we found the energy loss rate. But what happens when the
soliton loses all its energy and stops? In fact, static solitons are
unlikely to exist since their formation involves the creation of
local hydrogen bond defects which carry a huge energy burden,
as determined in [9]. On the other hand, as we just saw, even
a few kBT per soliton, so a very tine amount of energy per
each hydronium in the soliton, can make the soliton overcome
a noticeable distance. Therefore, once appeared, solitons will
always be in motion due to thermal fluctuations. In other words,
we have a number of mobile thermal excitations transferring
protons and responsible for a high conductivity.

All the results mentioned in the present paper are based on
the assumption made after Eq. (8) that the velocity of a soliton
is constant within the time slot corresponding to a single hop
of one hydronium ion. However, as we just saw, a soliton
loses its energy very fast. Therefore, the assumption must be
verified. Let us consider a soliton traveling with a velocity v.
Provided v is constant, the time necessary for a relocation
of one hydronium ion τ = a

v
. We will evaluate whether

the velocity change due to the energy loss corresponding
to this value of τ is indeed negligible. From Eq. (18) we
have

�A = A(0) exp

(
−λa

v

)
, (20)

where �A is the energy lost during one hop. Using the relation
between A and v in Eq. (3), we obtain

�v = v exp

(
−λa

v

)
, (21)

where �v is the change of velocity during a hop. Our
assumption requires �v

v
� 1 which holds if v < 0.1v0. As

we pointed out in [14], it is unlikely to have a soliton with
a velocity close to v0. Therefore, despite solitons losing
energy very fast, all the results presented here and in [14]
are applicable.

IV. CONCLUSIONS

In the present paper we have made further strides in the
theoretical analysis of the collective mechanism of interfacial
proton transport at a dense array of protogenic surface groups
(SG), started in [14]. The model system is described by a
Hamiltonian which contains unknown interaction constants
and other coefficients that should be found separately. In [14]
we solved the equation of motion and expressed the soliton
mobility through microscopic parameters. In the present paper
we showed how to treat the unknown constants in this theory.
To evaluate the mobility, we proposed and explored a micro-
scopic mechanism of energy loss. It involves perturbations of
the SG subsystem caused by the traveling soliton. Values of
soliton mobility, estimated with this theory, are in reasonable
agreement with experimental results. However, because we
consider an idealized defectless system, the theoretical for-
malism overestimates the proton mobility. Nevertheless, we
consider the reasonable value of mobility as an argument in
favour of the proposed collective transport mechanism.

Within the formalism, we could also estimate the soliton
lifetime. In our model, solitons lose energy rapidly and are able
to overcome a distance only a few times larger than their our
size. However, static solitons are unstable and tend to move at
slightest thermal excitations. Therefore, the system contains a
number of very mobile perturbations transmitting protons.

Despite the reasonable value of the calculated mobility and
the overall consistency of the collective transport mechanism
with molecular simulations and relevant experimental data for
interfacial systems, unresolved problems remain. First of all,
each soliton consists of a relatively large number of hydronium
ions corresponding to the total soliton energy exceeding 18 eV.
Therefore, the mechanism of soliton creation is of foremost
interest since spontaneous accumulation of this amount of
energy is problematic. Also the number of solitons in the
system is important because it can link the mobility to the
conductivity. We will address this problem in the paper devoted
to a soliton statistics.

There are two last constants we have not found yet—k and
K . Knowledge of these constants will allow us to evaluate any
parameter of a soliton. Currently we are performing molecular
dynamics simulations to find them. In the Hamiltonian we
assume a harmonic coupling between hydroniums and between
SGs as well. In fact, this assumption is made throughout the
literature but has not been verified. However, as we showed
earlier, if k ≈ K , the coupling must be harmonic, which proves
the assumption.
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