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We study the kicked rotator in the classically fully chaotic regime using Izrailev’s N -dimensional model for
various N � 4000, which in the limit N → ∞ tends to the quantized kicked rotator. We do treat not only the
case K = 5, as studied previously, but also many different values of the classical kick parameter 5 � K � 35 and
many different values of the quantum parameter k ∈ [5,60]. We describe the features of dynamical localization of
chaotic eigenstates as a paradigm for other both time-periodic and time-independent (autonomous) fully chaotic
or/and mixed-type Hamilton systems. We generalize the scaling variable � = l∞/N to the case of anomalous
diffusion in the classical phase space by deriving the localization length l∞ for the case of generalized classical
diffusion. We greatly improve the accuracy and statistical significance of the numerical calculations, giving
rise to the following conclusions: (1) The level-spacing distribution of the eigenphases (or quasienergies) is
very well described by the Brody distribution, systematically better than by other proposed models, for various
Brody exponents βBR. (2) We study the eigenfunctions of the Floquet operator and characterize their localization
properties using the information entropy measure, which after normalization is given by βloc in the interval [0,1].
The level repulsion parameters βBR and βloc are almost linearly related, close to the identity line. (3) We show
the existence of a scaling law between βloc and the relative localization length �, now including the regimes of
anomalous diffusion. The above findings are important also for chaotic eigenstates in time-independent systems
[Batistić and Robnik, J. Phys. A: Math. Gen. 43, 215101 (2010); arXiv:1302.7174 (2013)], where the Brody
distribution is confirmed to a very high degree of precision for dynamically localized chaotic eigenstates, even
in the mixed-type systems (after separation of regular and chaotic eigenstates).
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I. INTRODUCTION

One of the main cornerstones in the development of
quantum chaos [1–3] is the finding that in classically fully
chaotic, ergodic, autonomous Hamilton systems with a purely
discrete spectrum the fluctuations of the energy spectrum
around its mean behavior obey the statistical laws described by
the Gaussian Random Matrix Theory (RMT) [4,5], provided
that we are in the sufficiently deep semiclassical limit. The
latter condition means that all relevant classical transport
times are smaller than the so-called Heisenberg time, or break
time, given by tH = 2πh̄/�E, where h = 2πh̄ is the Planck
constant and �E is the mean energy level spacing, such that the
mean energy level density is ρ(E) = 1/�E. This statement is
known as the Bohigas-Giannoni-Schmit (BGS) conjecture and
goes back to their pioneering paper in 1984 [6], although some
preliminary ideas were published in 1980 [7]. Since �E ∝ h̄f ,
where f is the number of degrees of freedom (the dimension
of the configuration space), we see that for sufficiently small
h̄ the stated condition will always be satisfied. Alternatively,
fixing the h̄, we can go to high energies such that the classical
transport times become smaller than tH . The role of the
antiunitary symmetries that classify the statistics in terms
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of Gaussian Orthogonal Ensemble (GOE), Gaussian Unitary
Ensemble (GUE), or Gaussian Symplectic Ensemble (GSE)
(ensembles of RMT) has been elucidated in Ref. [8]; see
also Ref. [9], and Refs. [1–4]. The theoretical foundation
for the BGS conjecture was initiated first by Berry [10] and
later further developed by Richter and Sieber [11], arriving,
finally, in the almost-final proof proposed by the group of F.
Haake [12–15]. On the other hand, if the system is classically
integrable, Poisson statistics applies, as is well known and goes
back to the work by Berry and Tabor in 1977 (see Refs. [1–3],
and references therein and, for recent advances, Ref. [16]).

In the mixed-type regime, where classical regular regions
coexist in the classical phase space with the chaotic regions,
being a typical KAM scenario, which is the generic situation,
the so-called Principle of Uniform Semiclassical Condensation
(of the Wigner functions of the eigenstates; PUSC) applies,
based on the ideas by Berry [17] and further extended
by Robnik [3]. Consequently, the Berry-Robnik statistics
[18,19] is observed (see also Ref. [3]), again under the same
semiclassical condition stated above requiring that tH is larger
than all classical transport times.

The relevant papers dealing with the mixed-type regime
after the work in Ref. [18] are Refs. [20–27] and the most
recent advance was published in Ref. [28], while Ref. [29] is
the relevant work in progress. If the couplings between the
regular eigenstates and chaotic eigenstates become important,
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due to the dynamical tunneling, we can use the ensembles
of random matrices that capture these effects [30]. As the
tunneling strengths typically decrease exponentially with the
inverse effective Planck constant, they rapidly disappear with
increasing energy or by decreasing the value of the Planck
constant.

Here it must be emphasized that the analogies between
the time-periodic systems (the kicked rotator) and time-
independent systems (like mixed-type billiards) that we are
drawing and studying in this paper refer to the chaotic eigen-
states only, which means that we have to conceptually separate
the regular and the chaotic eigenstates in each system. If the
semiclassical condition is satisfied, then for the subspectrum
of the chaotic eigenstates we find extendedness and GOE
statistics. This should be compared with the extended states in
the finite-dimensional kicked rotator model for K � 7, where
the corresponding classical dynamics is fully chaotic.

However, if the semiclassical condition is not satisfied,
such that tH is no longer larger than the relevant classical
transport time, like, e.g., the diffusion time in fully chaotic
but slowly ergodic systems, we find the so-called dynamical
localization (or Chirikov localization) first observed in time-
dependent systems (see, e.g., Ref. [1]), which are the main
topics of the present work and will be discussed below in
detail but later analyzed quite systematically in autonomous
(time-independent) systems by many authors. For an excellent
review see the paper by Prosen [31], and references therein.
In such a situation it turns out that the Wigner functions
of the chaotic eigenstates no longer uniformly occupy the
entire classically accessible chaotic region in the classical
phase space but are localized on a proper subset of it. In
contradistinction to the tunneling effects, these dynamical
localization effects can survive to very high-lying eigenstates.
Indeed, this has been analyzed with unprecedented precision
and statistical significance by Batistić and Robnik [28] in the
case of mixed-type systems, and this work is being extended
in the analysis of separated regular and chaotic eigenstates
[29,32]. The most important discovery is that the level-spacing
distribution of the dynamically localized chaotic eigenstates
is very well described by the Brody distribution, introduced
in Ref. [33] (see also Ref. [34]), with the Brody parameter
values βBR within the interval [0,1], where βBR = 0 yields the
Poisson distribution in case of the strongest localization and
βBR = 1 gives the Wigner surmise (2D GOE, as an excellent
approximation of the infinite-dimensional GOE). To our great
surprise, the Brody distribution fits the empirical data much
better than the distribution function proposed by F. Izrailev
(see Refs. [35,36], and references therein) characterized by
the parameter βIZ. This is still true also for the improved
Izrailev distribution published in Ref. [37] and recently used
in Ref. [38]. It is well known that Brody distribution so far has
no theoretical foundation, but our empirical results show that
we have to consider it seriously, thereby we are motivated to
seek its physical foundation.

In the present study of the kicked rotator, besides the above-
mentioned results on the relevance of the Brody distribution,
we go beyond Izrailev’s results in that we study not only the
case of the classical kick parameter K = 5 but also many
other K ∈ [5,35], and many different values of the quantum
parameter k, and consider the relevance of the classical

diffusion in greater depth, allowing also for the anomalous
diffusion. In so doing we greatly generalize and improve the
evidence for the linear relationship between the information
entropy localization measure βloc and βBR, and also for the
scaling relationship between βloc and the scaling variable �,
which is the theoretical localization length divided by the
dimension of the system.

Our work corroborates the view (see Ref. [36], and refer-
ences therein, especially Refs. [39–41]) that time-independent
and time-periodic chaotic systems have many properties
in common when it comes to the statistical properties of
discrete energy spectra and the discrete quasienergy spectra
(or eigenphases), respectively. We think that this view can be
extended also to quantifying the degree of localization in such
systems. Very recent results confirm this expectation [29] and
will be published separately.

The paper is organized as follows: In Sec. II we introduce
the model system, and in Sec. III we describe the aspects of
generalized diffusion in the classical system (standard map),
including the accelerator modes and the anomalous diffusion
and relate it to the quantum localization properties, deriving the
new formula for the localization length. In Sec. IV we define
the finite-dimensional quantum model system, introduced by
Izrailev and study not only the cases of quantum resonance
but also the generic cases. In Sec. V we define the information
entropy localization measure βloc, in Sec. VI we study the
statistical properties of spectra (eigenphases), and in Sec. VII
we analyze the relationship between the localization parameter
βloc and the spectral level repulsion parameters βBR and βIZ

and also study the scaling relationship between βloc and the
scaling parameter �. In Sec. VIII we draw the final conclusions
and discuss the results. In Appendix A we define and explain
the U function of the level spacings and in Appendix B we
show some additional results on energy level statistics of the
quantum kicked rotator.

II. INTRODUCING THE MODEL

One of the main models of time-dependent systems is
the kicked rotator introduced by Casati, Chirikov, Ford, and
Izrailev in 1979 [42]. We introduce it here in detail for the
purpose of defining and fixing the variables and the notation.
The Hamiltonian function is

H = p2

2I
+ V0 δT (t) cos θ. (1)

It is one of the most important paradigms of classical
conservative (Hamiltonian) systems in nonlinear dynamics.
Here p is the (angular) momentum, I the moment of inertia,
V0 is the strength of the periodic kicking, θ is the (canonically
conjugate, rotation) angle, and δT (t) is the periodic Dirac δ

function with period T . Since between the kicks the rotation is
free, the Hamilton equations of motion can be immediately
integrated, and, thus, the dynamics can be reduced to the
standard mapping, or so-called Chirikov-Taylor mapping,
given by

pn+1 = pn + V0 sin θn+1, θn+1 = θn + T

I
pn, (2)
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and introduced in Refs. [43–45]. Here the quantities (θn,pn)
refer to their values just immediately after the n-th kick.
Obviously, by introducing new dimensionless momentum
Pn = pnT /I , we get

Pn+1 = Pn + K sin θn+1, θn+1 = θn + Pn, (3)

where the system is now governed by a single classical
dimensionless control parameter K = V0T/I and the mapping
is area preserving.

The quantum kicked rotator (QKR) is the quantized version
of Eq. (1), namely

Ĥ = − h̄2

2I

∂2

∂θ2
+ V0 δT (t) cos θ. (4)

The physics of the QKR is extremely rich and it is a paradigm
of quantum chaos in Floquet (time-periodic) systems [36]. It
is also relevant for the autonomous Hamilton systems as indi-
cated above. For such a Floquet system, the Floquet operator
F̂ acting on the wave functions (probability amplitudes) ψ(θ ),
θ ∈ [0,2π ), on each period (of length T ) can be written as
(see, e.g., Ref. [1], Chap. 4)

F̂ = exp

(
− iV0

h̄
cos θ

)
exp

(
− ih̄T

2I

∂2

∂θ2

)
, (5)

where now we have obviously two dimensionless quantum
control parameters,

k = V0

h̄
, τ = h̄T

I
, (6)

which satisfy the relationship K = kτ = V0T/I , K being the
classical dimensionless control parameter of Eq. (3). By using
the angular-momentum eigenfunctions

|n〉 = an(θ ) = 1√
2π

exp(i n θ ), (7)

where n is any integer, we find the matrix elements of F̂ ,
namely

Fmn = 〈m|F̂ |n〉 = exp

(
− iτ

2
n2

)
in−mJn−m(k), (8)

where Jν(k) is the ν-th order Bessel function. For a wave func-
tion ψ(θ ) we shall denote its angular-momentum component
(Fourier component) by

un = 〈n|ψ〉 =
∫ 2π

0
a∗

n(θ )ψ(θ ) dθ

= 1√
2π

∫ 2π

0
ψ(θ ) exp(−inθ ) dθ. (9)

The QKR has very complex dynamics and spectral properties.
As the phase space is infinite (cylinder), p ∈ (−∞,+∞),θ ∈
[0,2π ), the spectrum of the eigenphases of F̂ , denoted by φn,
or the associated quasienergies h̄ωn = h̄φn/T , introduced by
Zeldovich [46], can be continuous, or discrete. It is quite well
understood that for the resonant values of τ

τ = 4πr

q
, (10)

q and r being positive integers without common factor, the
spectrum is continuous, as rigorously proven by Izrailev and

Shepelyansky [47–50], and the dynamics is (asymptotically)
ballistic, meaning that starting from an arbitrary initial state
the mean value of the momentum 〈p̂〉 increases linearly in
time, and the energy of the system E = 〈p̂2〉/(2I ) grows
quadratically without limits. For the special case q = r = 1
this can be shown in an elementary way. Such behavior is a
purely quantum effect, called the quantum resonance. Also,
the regime of quadratic energy growth manifests itself only
after very large time, which grows very fast with the value of
the integer q from Eq. (10), such that for larger q this regime
practically cannot be observed.

For generic values of τ/(4π ), being irrational numbers, the
spectrum is expected to be discrete but infinite. But the picture
is very complicated. Casati and Guarneri [51] have proven that
for τ/(4π ) sufficiently close to a rational number, there exists
a continuous component in the quasienergy spectrum. So the
absence of dynamical localization for such cases is expected
as well. Without a rigorous proof, we finally believe that for
all other (“good”) irrational values of τ/(4π ) we indeed have
discrete spectrum and quantum dynamical localization. In such
a case the quantum dynamics is almost periodic, and because
of the effective finiteness of the relevant set of components un

and of the basis functions involved, due to just the exponential
localization (see below), it is even effectively quasiperiodic
(effectively there is a finite number of frequencies), and any
initial state returns, after some recurrence time, arbitrarily
close to the initial state. Thus, the energy cannot grow
indefinitely.

III. LOCALIZATION AND DIFFUSION PROPERTIES

In the generic (nonresonant) case we observe in the
semiclassical regime of large k 
 1 and in the classically
chaotic regime K � Kcrit ≈ 0.9716 . . . , the so-called dynami-
cal localization, also called the Chirikov localization: Starting
from an initial semiclassical wave packet of a width smaller
than the localization length, to be precisely defined below, the
average energy grows, first, according to the classical diffusion
but stops after a finite time, i.e., the localization time tloc

(physical time divided by the period of kicking T , that is,
the number of kicks, which is, thus, dimensionless), which is
derived below.

The asymptotic localized eigenstates are quasistationary,
they oscillate under the action of F̂ , as the quantum recurrence
time is very large. They are very special, as their expansion
coefficients in the basis of the angular-momentum eigenstates
|n〉 must be highly correlated. In fact, more can be said about
these asymptotic eigenstates: They are exponentially localized.
The (dimensionless) localization length in the space of the
angular-momentum quantum numbers is derived below and is
equal (after introducing some numerical correction factor αμ)
to the dimensionless localization time tloc [Eq. (17)]. We denote
it, like in Ref. [36], by l∞. Therefore, an exponentially local-
ized eigenfunction centered at m in the angular-momentum
space [Eq. (7)] has the following form:

|un|2 ≈ 1

l∞
exp

(
− 2|m − n|

l∞

)
, (11)

where un is the probability amplitude [Eq. (9)] of the localized
wave function ψ(θ ). The argument leading to tloc in Eq. (17)
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originates from the observation of the dynamical localization
by Casati et al. [42], and in particular from Ref. [52], and
is well explained in Ref. [1], in the case of normal diffusion
μ = 1, while for general μ we give a theoretical argument in
this section.

Since the spectrum is discrete we can ask questions about
the statistical properties of the spectrum of the quasienergies
(or eigenphases). However, since the system is infinite with
infinitely many exponentially localized eigenstates, we have
infinitely many eigenphases on the interval [0,2π ), resulting
in an infinite level density, and, thus, all level spacings are
zero. Nevertheless, for any finite but arbitrarily large number
of eigenstates N , everything is well defined. In the classically
fully chaotic regime one would naively expect the applicability
of the RMT, in our case the GOE statistics. However, this is
not observed. On the contrary, the statistics is Poissonian,
which is the consequence of the finite localization length
at any k in the infinite basis of the angular momentum.
Following the heuristic argument by Izrailev, we can say
that eigenstates can be quasienergetically very close to each
other, an almost degenerate pair, although they are located in
the angular-momentum space very far from each other and
practically do not overlap due to the exponential localization.
Therefore, they do not “feel” each other; they do not interact,
in the sense that changing slightly one of them does not
change the other one and, thus, contribute to the spectrum in
a completely uncorrelated way. This results in the Poissonian
statistics.

The question arises as to where we see the analogous
phenomena predicted by the RMT and observed in the
quantum chaos of time-independent bound systems with a
discrete spectrum. To see these effects, the system must have
effectively finite dimension. Truncation of the infinite matrix
Fmn in Eq. (8) in tour de force is not acceptable, even in
the technical case of numerical computations, since after
truncation the Floquet operator is no longer unitary.

The only way to obtain a quantum system which shall
in this sense correspond to the classical dynamical system
[Eqs. (1)–(3)] is to introduce a finite N -dimensional matrix,
which is symmetric unitary and which in the limit N → ∞
becomes the infinite-dimensional system with the Floquet
operator [Eq. (5)]. The semiclassical limit is k → ∞ and
τ → 0, such that K = kτ = constant. As it is well known [36],
for the reasons discussed above, the system behaves very
similarly for rational and irrational values of τ/(4π ). Such
an N -dimensional model [35] will be introduced in Sec. IV.

Let us now derive the semiclassical estimate of the
localization time tloc and the localization length l∞, both being
dimensionless. It turns out that they are equal, as shown in
Eq. (16). The generalized diffusion process of the standard
map [Eq. (3)] is defined by

〈(�P )2〉 = Dμ(K)nμ, (12)

where n is the number of iterations (kicks) and the exponent
μ is in the interval [0,2), and all variables P , θ , and K

are dimensionless. Here Dμ(K) is the generalized classical
diffusion constant. In case μ = 1 we have the normal diffusion,
and D1(K) is then the normal diffusion constant, while in
case of anomalous diffusion we observe subdiffusion when
0 < μ < 1 or superdiffusion if 1 < μ � 2. In case μ = 2

we have the ballistic transport which is associated with the
presence of accelerator modes (see below).

As the real physical angular momentum p and P are
connected by P = pT/I , we have for the variance of p the
following equation:

〈(�p)2〉 = T 2

I 2
Dμnμ. (13)

Now we argue as follows: The general wisdom (golden rule)
in quantum chaos is that the quantum diffusion follows the
classical diffusion up to the Heisenberg time (or break time or
localization time), defined as

tH = 2πh̄

�E
, (14)

where �E is the mean energy level spacing. In our case we
have the quasienergies and �E = h̄�ω, where �ω = �φ/T ,
and �φ is the mean spacing of the eigenphases. This might
be estimated at the first sight as �φ = 2π/N , but this is
an underestimate, as effectively we shall have, due to the
localization, only l∞ levels on the interval [0,2π ). Therefore,
�φ = 2π/l∞ and we find

tH = 2πT

�φ
= T l∞. (15)

Since T is the period of kicking, and tH is the real physical
continuous time, we get the result that the discrete time
[number of iterations of Eq. (3) at which the quantum diffusion
stops], the localization time tloc, is indeed equal to the
localization length in momentum space, i.e.,

tloc ≈ l∞. (16)

Since our derivation is not rigorous, we use the approximation
symbol rather than equality, in particular as the definition
depends linearly on the definition of the Heisenberg time.
The final step is as follows: By inspection of the dynamics
of the Floquet quantal system [Eqs. (4) and (5)], one can see
(see also the derivation in the Stöckmann’s book [1]) that the
value of the variance of the angular momentum at the point
of stopping the diffusion 〈(�p)2〉 is proportional to h̄2l2

∞, and
to achieve equality we introduce a dimensionless numerical
(empirical) factor αμ by writing 〈(�p)2〉 = h̄2l2

∞/αμ, which,
on the other hand, must be equal just to the classical value at
stopping time tloc, namely equal to (T/I )2Dμl

μ
∞. From this it

follows immediately

l∞ ≈ tloc =
[
αμ

Dμ(K)

τ 2

] 1
2−μ

. (17)

The numerical constant αμ is found empirically by numerical
calculations, for instance, in the literature, the case K = 5 with
μ = 1 is found to be α1 = 0.5 (however, we find numerically
α1 = 0.45, taking into account Eq. (17) when studying the
model’s localization properties). Thus, we have the theoretical
formula for the localization length in the case of generalized
classical diffusion [Eqs. (12) and (13)], which we use in
defining the scaling parameter [Eq. (31)].

As for the classical system [Eq. (3)], we mention that the
fraction of the regular part of the classical phase space has been
systematically explored using the Generalized ALignment
Index (GALI) method [53] for the distinction between chaotic
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and regular classical motion and its quantification for simple
(and even for coupled) standard map(s) (see Refs. [54–56], and
references therein), showing that this fraction decreases with
K relatively slowly, and then faster around Kcrit, and has some
smaller oscillations, at K = 5 this amounts to about 2.2%, and,
finally, for K � 7 it is zero for all practical purposes (much
less than 1%). Thus, at K � 7 we have no problems with the
effects of the divided classical phase space. However, there are
important subtleties about the classical diffusion process and
Dμ(K) which we now discuss.

We show the phase portraits of the standard map from
Eq. (3) for K = 5 and for K = 7 in Fig. 1 in order to
demonstrate that at K = 5 we still have islands of stability
of relative area about 2.2%, which means that the effects
of divided phase space cannot be neglected, while at K = 7
there are no large islands of stability. However, there are still
two tiny islands of stability around (θ,P ) = (≈4.25,0) and
(θ,P ) = (≈4.25,2π ) (near a period one stable orbit) whose
relative fraction in the phase space is found with the GALI
method to be ≈0.0162%. The K = 7 is the most widely used
parameter value for the model in this paper.

 0

 1

 2

 3

 4

 5

 6

 0  1  2  3  4  5  6

P
(m

om
en

tu
m

)

θ (angle)

(a)

 0

 1

 2

 3

 4

 5

 6

 0  1  2  3  4  5  6

P
(m

om
en

tu
m

)

θ (angle)

(b)

FIG. 1. (Color online) The phase portrait of the standard map
[Eq. (3)] for K = 5 in (a) and K = 7 in (b). In (b) we can see two
tiny islands of stability of a period one orbit near (θ,P ) = (≈4.25,0)
and (θ,P ) = (≈4.25,2π ) (see text for more discussion). The other
stable fixed point at (θ,P ) = (≈2.13,0) is hardly visible.

In case of the normal diffusion μ = 1 the theoretical value
of D1(K) is given in the literature, e.g., in Refs. [36] or [57],

D1(K)

=
{

1
2K2[1 − 2J2(K)(1 − J2(K))], if K � 4.5

0.15(K − Kcrit)3, if Kcrit < K � 4.5
,

(18)

where Kcrit � 0.9716 and J2(K) is the Bessel function. Here
we neglect higher terms of order K−2. However, there are
many important subtle details in the classical diffusion further
discussed below.

The dependence of the diffusion constant for the growth
of the variance of the momentum on K is very sensitive, and
described in the theoretical result [Eq. (18)], and fails around
the accelerator mode intervals (2πn) � K �

√
(2πn)2 + 16,

where n is any positive integer. In these intervals, for the
accelerator modes n = 1 we have two stable fixed points
located at p = 0, θ = π − θ0 and p = 0, θ = π + θ0, where
θ0 = arcsin(2π/K). There are two unstable fixed points at
p = 0, θ = θ0 and p = 0, θ = 2π − θ0. In the case K = 7
in Fig. 1(b) we have θ0 = 1.114. Moreover, as the diffusion
might even be anomalous, we have recalculated the diffusion
constant numerically, and the results are shown in Fig. 2. We
see that the dotted theoretical curve stemming from Eq. (18)
describes the diffusion constant well outside the accelerator
mode intervals. In general, however, the diffusion might be
non-normal, described in Eq. (12). For the case K = 7, which
is the main case that we study classically and quantally in
this paper, we find three different regimes of diffusion as
shown in Fig. 3. As will be shown below, for our purposes
the middle regime with μ ≈ 0.9 and Dμ ≈ 169.82 is relevant
and important, because l∞ is in the range of N , the dimension
of the N -dimensional matrix model introduced in the next
section.

IV. THE FLOQUET MODEL SYSTEM: A FINITE UNITARY
MATRIX AS THE FLOQUET OPERATOR

(IZRAILEV MODEL)

The motion of the QKR [Eq. (4)] after one period T of
the ψ wave function can be described also by the following
symmetrized Floquet mapping, describing the evolution of the
kicked rotator from the middle of a free rotation over a kick to
the middle of the next free rotation:

ψ(θ,t + T ) = Ûψ(θ,t),

Û = exp

(
i
T h̄

4I

∂2

∂θ2

)
exp

(
−i

V0

h̄
cos θ

)

× exp

(
i
T h̄

4I

∂2

∂θ2

)
. (19)

Thus, the ψ(θ,t) function is determined in the middle of
the rotation between two successive kicks. The evolution
operator Û of the system corresponds to one period. Due to
the instant action of the kick, this evolution can be written
as the product of three noncommuting unitary operators, the
first and third of which correspond to the free rotation during
half a period Ĝ(τ/2) = exp(i τ

4
∂2

∂θ2 ), τ ≡ h̄T /I , while the
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FIG. 2. Diffusion in the Chirikov map. We show the value of the
classical diffusion constant as a function of K for two discrete times
n, i.e., the number of the iterations of the standard map, n = 1000
(a) and n = 5000 (b). The smooth background (dotted line) agrees
perfectly with the theory [Eq. (18)], while the peaks are due to the
anomalous diffusion associated with the accelerator modes and other
sticky objects around them. We have used 5000 initial conditions
uniformly distributed in a grid of a square unit [0,1] × [0,1].

second B̂(k) = exp(−ik cos θ ), k ≡ V0/h̄, describes the kick.
The system’s behavior depends only on two dimensionless
parameters, namely τ and k, and its correspondence with the
classical system is described by the relation K = kτ = V0T/I .
In the case K ≡ kτ 
 1 the motion is well known to be
strongly chaotic, for K � 7 almost without any regular islands
of stability, as explained in the previous section. The transition
to classical mechanics is described by the limit k → ∞, τ → 0
while K = const. We shall consider mostly the semiclassical
regime k � K , where τ � 1.

In order to study how the localization affects the statistical
properties of the quasienergy spectra, we use the model’s
representation in the momentum space with a finite number
N of levels [35,36,39–41],

un(t + T ) =
N∑

m=1

Unmum(t), n,m = 1,2, . . . ,N. (20)

The finite symmetric unitary matrix Unm determines the
evolution of an N -dimensional vector, namely the Fourier
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FIG. 3. (Color online) The variance of the momentum P in the
standard map [Eq. (3)] with K = 7 for the same initial conditions as
in Fig. 2 as a function of the discrete time n (number of iterations)
in log-log representation. The three slopes associated with different
types of diffusion are μ = 1.7 (dotted line), μ = 0.9 (solid line), and
μ = 1.45 (dashed line).

transform un(t) of ψ(θ,t), and is composed in the following
way:

Unm =
∑
n′m′

Gnm′Bn′m′Gn′m, (21)

where Gll′ = exp(iτ l2/4)δll′ is a diagonal matrix correspond-
ing to free rotation during a half period T/2, and the matrix
Bn′m′ that describes the one kick has the following form:

Bn′m′ = 1

2N + 1

2N+1∑
l=1

{
cos

[
(n′ − m′)

2πl

2N + 1

]

− cos

[
(n′ + m′)

2πl

2N + 1

]}

× exp

[
−ik cos

(
2πl

2N + 1

)]
. (22)

The model in Eqs. (20)–(22), which we refer to as the Izrailev
model, with a finite number of states is considered the quantum
analog of the classical standard mapping on the torus with
closed momentum p and phase θ , where Unm describes
only the odd states of the systems, i.e., ψ(θ ) = −ψ(−θ ),
provided we have the case of the quantum resonance, namely
τ = 4πr/(2N + 1), where r is a positive integer, as in Eq. (10).
The matrix [Eq. (22)] is obtained by starting the derivation
from the odd-parity basis of sin(nθ ) rather than the general
angular-momentum basis exp(inθ ).

Nevertheless, we shall use this model for any value of τ

and k, as a model which in the resonant and in the generic case
[irrational τ/(4π )] corresponds to the classical kicked rotator,
and in the limit N → ∞ approaches the infinite-dimensional
model [Eq. (19)], restricted to the symmetry class of the odd
eigenfunctions. It is of course just one of the possible discrete
approximations to the continuous infinite-dimensional model.

The difference of behavior between the generic case and
the quantum resonance shows up only at very large times,
which grow fast with (2N + 1), as explained in Sec. II.

062905-6



DYNAMICAL LOCALIZATION IN CHAOTIC SYSTEMS: . . . PHYSICAL REVIEW E 87, 062905 (2013)

It turns out that the eigenfunctions and the spectra of the
eigenphases at finite dimension N of the matrices that we
consider do not show any significant differences in structural
behavior for the rational or irrational τ/(4π ), which we have
carefully checked. Indeed, although the eigenfunctions and the
spectrum of the eigenphases exhibit sensitive dependence on
the parameters τ and k, their statistical properties are stable
against the small changes of τ and k. This is an advantage, as
instead of using very large single matrices for the statistical
analysis, we can take a large ensemble of smaller matrices for
values of τ and k around some central value of τ = τ0 and
k = k0, which greatly facilitates the numerical calculations
and improves the statistical significance of our empirical
results. Therefore, our approach is physically meaningful. A
similar approach was undertaken by Izrailev (see Ref. [36],
and references therein). In Fig. 4 we show the examples
of strongly exponentially localized eigenstates by plotting
the natural logarithm of the probabilities wn = |un|2 versus
the momentum quantum number n for two different matrix
dimensions N . By calculating the localization length l∞ from
the slopes σ of these eigenfunctions using Eq. (11) we can
get the first quantitative empirical localization measure to be
discussed and used later on. Here l∞ = 2/σ ≈ 2.5 � N =
398 for Fig. 4(a) and ≈2.2 � N = 796 for Fig. 4(b).
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FIG. 4. (a) A sample of strong localized eigenstates for K = 7,
r = 222, k ≈ 2.00, and N = 398. (b) Same for K = 7, r = 444,
k ≈ 2.00, and N = 796.
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FIG. 5. (a) A sample of weak localized eigenstates for K = 7,
r = 63, k ≈ 7.05, and N = 398. (b) Same for K = 7, r = 127, k ≈
6.99, and N = 796.

At larger k the localization length can become comparable
to N and the size effects start to play a role, therefore l∞
is more difficult to determine as the fluctuations of 2/σ are
larger but still can be done to some extent. Such a case is
shown in Fig. 5(a) with l∞ = 2/σ ≈ 57 � N = 398 and in
Fig. 5(b) with ≈20 � N = 796, where the quantification is
difficult even if the localization length 2/σ is well below N .
We must be aware of the fact that the fluctuations in 2/σ are
very large, as was observed already in the pioneering works of
Chirikov, Casati, Izrailev, and Shepelyansky.

Nevertheless, as long as the localization length is small
enough, it is correctly predicted by the theory [Eq. (17)] and
is independent of the dimension N . As N increases with l∞
being fixed we approach the regime of strong localization
and Poissonian statistics for the eigenvalues. Only when l∞
becomes comparable to N or larger do we observe a gradual
transition to the full quantum chaoticity, namely to GOE [or
circular orthogonal ensemble (COE)] behavior, and anything
in between. This transition is of central interest and is the main
subject of the next sections.

In Fig. 6(a) we show the relationship between the 2/σ

and the theoretical l∞ for a variety of matrices [Eqs. (20)–
(22)] and K = 7. We have a statistically significant linear
relationship with the slope ≈0.9 close to unity (identity). Thus,
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FIG. 6. (a) 2/σ vs l∞, where σ is the slope of the eigenfunctions
in momentum space, namely of wn = |un|2 vs n, for several k values
and N = 398(�) and N = 796(+) (fit slope ≈ 0.89). (b) b vs βloc for
N = 398(�) and N = 796(+) (fit slope ≈ 0.404).

the theoretical l∞ from Eq. (17) agrees reasonably with the
empirical localization length 2/σ as long as they are both
sufficiently smaller than N .

We can define also the relative exponential localization
measure, defined as the ratio of 2/σ and N ,

b = 2

Nσ
, (23)

which has meaning only if b � 1, because 2/σ is well defined
only if it is much smaller than N , but even then we must be
aware of large statistical fluctuations of 2/σ .

There is another way to empirically quantify the degree
of localization based on the information entropy which is
less sensitive to the finite-size effects, denoted by βloc, and
discussed in the next section. In Fig. 6(b) we show the
relationship between b and βloc. It is seen to be a linear
relationship, but it must be emphasized that it applies only to
sufficiently small values of b, because empirical exponential
localization length 2/σ completely loses its meaning at values
�N , or in fact, even much earlier. This is the reason why the
slope in Fig. 6(b) σ ≈ 0.404 does not agree with Eq. (45) of
Sec. VII, namely the slope is 1/γ ≈ 0.25, γ = 4.04, which is
due to large fluctuations in σ .

V. DYNAMICAL (CHIRIKOV) LOCALIZATION OF THE
EIGENSTATES AND ITS MEASURE

Based on the examples of the eigenstates shown in the
previous section, and following [36], and references therein,
we introduce the information entropy of the eigenstates as
follows.

For each N -dimensional eigenvector of the matrix Unm the
information entropy is

HN (u1, . . . ,uN ) = −
N∑

n=1

wn ln wn, (24)

where wn = |un|2 and
∑

n |un|2 = 1.
In the case where the random matrix theory is applied to our

system [Eqs. (19) and (20)–(22)], namely the COE (or GOE),
due to the isotropic distribution of the eigenvectors of a COE
of random matrices, we have the probability density function
of |un| on the interval [0,1],

wN (|un|) = 2�(N/2)√
π�((N − 1)/2)

(1 − |un|2)(N−3)/2. (25)

It is easy to show that in the limit N → ∞ this becomes a
Gaussian distribution,

wN (|un|) =
√

2N

π
exp

(
−N |un|2

2

)
, (26)

and the corresponding information entropy [Eq. (24)] is equal
to

H GOE
N = ψ

(
1
2N + 1

) − ψ
(

3
2

)
� ln

(
1
2Na

) + O(1/N ), (27)

where a = 4
exp(2−γ ) ≈ 0.96, while ψ is the digamma function

and γ the Euler constant (�0.57721 . . . ). For a uniform
distribution over M states wn = 1/M we get HN ≈ log M

and, thus, M ≈ exp(HN ). Thus, we get the insight that
the correct measure of localization must be proportional
to exp(HN ), but properly normalized, such that in case of
extendedness (GOE/COE) it is equal to N .

Therefore, the entropy localization length lH is defined as

lH = N exp
(
HN − H GOE

N

)
. (28)

Indeed, for entirely extended eigenstates lH = N . Thus, lH can
be calculated for every eigenstate individually. However, all
eigenstates, while differing markedly in detail, are exponen-
tially localized and, thus, statistically very similar. Therefore,
in order to minimize the fluctuations one uses the mean
localization length d ≡ 〈lH 〉, which is computed by averaging
the entropy over all eigenvectors of the same matrix (or even
over an ensemble of similar matrices),

d ≡ 〈lH 〉 = N exp
(〈HN 〉 − H GOE

N

)
. (29)

The localization parameter βloc is then defined as

βloc = d

N
≡ 〈lH 〉

N
. (30)

Its relationship to b at small values βloc is shown in Fig. 6(b)
and discussed in the previous section.

The parameter that determines the transition from weak
to strong quantum chaos is neither the strength parameter k
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nor the localization length l∞, but the ratio of the localization
length l∞ to the size N of the system in momentum p,

� = l∞
N

= 1

N

(
αμDμ(K)

τ 2

) 1
2−μ

, (31)

where l∞ ≈ tloc, the theoretical localization length, was
derived in Eq. (17). � is the scaling parameter of the system.
This is one of the main results of the present work as
it incorporates normal diffusion μ = 1 and the anomalous
diffusion μ �= 1. The relationship of � to βloc is discussed
in Sec. VII.

VI. THE QUASIENERGY SPECTRUM AND ITS
STATISTICAL PROPERTIES

In this section we study the statistical properties of the spec-
trum of the eigenvalues λj corresponding to the eigenstates
u

(j )
n , labeled by j , of the Floquet operator Fnm introduced in

Eq. (8), namely

λju
j
n =

∞∑
−∞

Fnmuj
m, (32)

where, due to the unitarity of Fnm, all eigenvalues λj must
be on the complex unit circle, λj = exp(iφj ). Thus, our
analysis concerns the statistical properties of the spectrum
of the eigenphases φj ∈ [0,2π ). This is equivalent to the
quasienergies h̄ωj = h̄φj /T [46], where T is the period of
the time-periodic Hamiltonian. As mentioned in Sec. II, the
spectrum can be continuous [in the case of quantum resonance
with rational τ/(4π ) = r/q having extended states and no
dynamical localization] or discrete [in the generic case of
sufficiently irrational τ/(4π )] with dynamical localization.
Even then, the spectrum has infinite level (eigenvalue) density
as we have infinitely many eigenphases φj on the interval
[0,2π ), and, consequently, all level spacings are zero. How-
ever, for any finite dimension N , no matter how large, the mean
level spacing is 2π/N and, thus, finite, and we can begin the
statistical analysis of the quasienergy spectrum.

Therefore, instead of using the infinite-dimensional system
[Eq. (8)], we study the finite-dimensional Izrailev model
[Eqs. (20)–(22)]. It is a discrete approximation to the exact
initial infinite-dimensional system [Eq. (5)] or its symmetrized
version [Eq. (19)]. In this case, we can best use irrational
τ/(4π ) to ensure that we are away from the quantum
resonance.

The most important statistical measure of the eigenvalues is
the level-spacing distribution. We study only the level-spacing
distribution, but in three different ways of analyzing it, namely
as the probability density function P (S), its cumulative distri-
bution function W (S), and the so-called U function, introduced
by Prosen and Robnik in Refs. [22,23] (see Appendix A).

In so doing we come to the central point of this work,
namely the empirical, almost identity, relationship between
localization measure βloc of the eigenstates and the spectral
level repulsion parameter (exponent) in the level-spacing
distribution P (S), proposed by Izrailev in Refs. [35,36,41].
The localization length l∞, derived by the semiclassical
argument [Eq. (17)], through the βloc-� relationship directly

gives a prediction for the level repulsion parameter in the
semiclassical regime of k � K and large N .

Here we reproduce all Izrailev’s findings (for K = 5),
generalize them (for many other values of K , predominantly
at K = 7), sharpen his results, and put them in broader
perspective, including the autonomous (time-independent)
Hamiltonian systems. We find that the Brody distribution
captures the numerically found level-spacing distribution
statistically highly significantly, notably better than the dis-
tribution function proposed in Refs. [35,36,41], also Ref. [37],
and this is entirely in line with the results on the dynamically
localized chaotic eigenstates in time-independent Hamiltonian
systems, like billiards [28,29,32], even in the mixed-type
regime (after separating the regular and chaotic eigenstates).

A. Level-spacing distribution: P(S), W (S), and U(S)

To study the eigenvalue statistics of quantum Floquet
systems and quantum maps, one considers the eigenphases
φn ∈ [0,2π ) defined by λn = eiφn . In such a case, the spectral
unfolding procedure is very easy, as the mean level density is
N/(2π ), i.e., the mean level spacing is 2π/N . The histogram
of the level-spacing distribution P (S) is the distribution of
the spacings Sn := N

2π
(φn+1 − φn), with n = 1, . . . ,N and

φN+1 := φ1, in the bins of certain suitable size �S. The factor
N/2π ensures that the average of all spacings Sn is 1, and,
thus, P (S) is supported on the interval [0,N ], and its upper
limit goes to ∞ when N → ∞.

The cumulative distribution W (S), or integrated level spac-
ing distribution, preserving the full accuracy of all numerical
eigenvalues and spacings, useful especially when the number
of levels N is small, is defined as

W (S) =
∫ S

0
P (x)dx ≡ No.{n|Sn � S}

N
. (33)

Finally, we shall use also the so-called U function (see
Appendix A),

U (S) = 2

π
arccos

√
1 − W (S). (34)

The U function has the advantage that its expected statistical
error δU is independent of S, being constant for each S and
equal to δU = 1/(π

√
Ns), where Ns is the total number of

objects in the W (S) distribution. The numerical prefactor 2/π

in Eq. (34) is determined in such a way that U (S) ∈ [0,1]
when W (S) ∈ [0,1]. The U function is an excellent and refined
criterion used to assess the goodness of the fit of the theoretical
level-spacing distribution.

The important special level-spacing distributions that we
are using are as follows:

(1) The Poisson distribution:

PPoisson(S) = e−S, WPoisson(S) = 1 − e−S. (35)

(2) The COE or GOE distribution:

PCOE(S) ≈ PWigner(S) = π

2
S exp

(
− π

4
S2

)
,

(36)

WCOE(S) = 1 − exp

(−πS2

4

)
.
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(3) The Brody distribution [33,34]:

PBR(S) = C1S
β exp(−C2S

β+1), (37)

where the two parameters C1 and C2 are determined by the
two generic normalization conditions that must be obeyed by
any P (S),∫ ∞

0
P (S)dS = 1, 〈S〉 =

∫ ∞

0
SP (S)dS = 1, (38)

thus, with 〈S〉 = 1 being the mean distance between neighbor-
ing levels (after unfolding). Hence,

C1 = (β + 1)C2, C2 =
[
�

(
β + 2

β + 1

)]β+1

, (39)

where �(x) denotes the � function. In the strongly localized
regime β = 0 we observe Poissonian statistics while in the
fully chaotic one β = 1 and the RMT applies. The Brody
cumulative level-spacing distribution is

WBR(S) = 1 − exp(−C2S
β+1). (40)

(4) Izrailev distribution: In Refs. [35,41], Izrailev suggested
the following distribution in order to describe the intermediate
statistics, i.e., the noninteger β in the following PDF could
be associated with the statistics of the quasienergy states
with chaotic localized eigenfunctions, also approximating the
level-spacing distribution arising from the Dyson COE joint
probability distribution [58],

PIZ(S) = A
(

1
2πS

)β
exp

[ − 1
16βπ2S2 − (

B − 1
4πβ

)
S
]
, (41)

where again the two parameters A and B are determined by
the two normalization conditions 〈1〉 = 〈S〉 = 1 given above.

Of course, we must be fully aware of the fact that both,
Brody and Izrailev distributions, are approximations. It is clear
that at βBR = 1 we get precisely the Wigner surmise [Eq. (36)],
which is the exact GOE only for two-dimensional Gaussian
random matrices and, thus, only an (excellent) approximation
for the infinite-dimensional GOE case. Indeed, if we try to fit
the exact infinite-dimensional GOE level-spacing distribution
with the Brody distribution, we do not get βBR = 1 but instead
βBR = 0.953, see Ref. [34]. Also, we should mention that
Izrailev et al. have published an improved distribution function
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FIG. 7. (Color online) Intermediate statistics (a) for distribution P (S) (histogram, black line) of the model fitted with distribution PBR

(blue-solid line), PIZ (red-dashed line pointed by the arrow in the inset figure), and P new
IZ (black-dotted line) for M × N = 641 × 398, K = 7,

and k = 11 (see text for discussion). In panels (b), (c), and (d) we show the difference of the numerical data and the best-fitting Brody (blue
thick line), “old” Izrailev (red medium line), and Izrailev “new/improved” (black thin line; always the outer one) PDFs by using the U function
and W distribution. Thus, in case of the ideal fitting, the data would lie on the abscissa. In this case, based on the P (S) fit, we get βBR = 0.421,
βIZ(old) = 0.416, and βIZ(new) = 0.376, and based on the W (S) fit we get βBR = 0.421, βIZ(old) = 0.401, and βIZ(new) = 0.350.
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TABLE I. Results of the best-fitting procedure using Brody (BR)
and Izrailev (IZ) distributions. The index PDF or CDF means that
the fitting was done by using P (S) or W (S). The check marks
indicate which fitting (BR or IZ) is statistically better, based on the
χ 2 procedure.

K = 7 and M × N = 161 × 398

k βPDF
BR βCDF

BR βPDF
IZ βCDF

IZ

5 0.131197 0.139808 0.121197� 0.109808�
8 0.280887� 0.286922� 0.265887 0.256920
11 0.421398� 0.420996� 0.416398 0.400996
14 0.581301� 0.574325� 0.596301 0.574325
17 0.670686� 0.659891� 0.705686 0.679891
20 0.713984� 0.699906� 0.763984 0.739906
23 0.791288� 0.778780� 0.861288 0.838780
26 0.812993� 0.797852� 0.892993 0.867852
29 0.832067� 0.821543 0.912067 0.891543�

[37], which we have also tested and is defined by

P new
IZ (S) = ASβ (1 + BβS)f (β)

× exp

[
−π2

16
βS2 − π

2

(
1 − β

2
S

)]
, (42)

where f (β) = 2β (1− β

2 )
β

− 0.16874 and A and B are the nor-
malization parameters. We found (see below) that in our
applications it is even worse than the original version (41).

B. Analysis of the level-spacing distribution
of numerical spectra

For the numerical calculations and results regarding the
spacing distributions P (S) [and W (S)] for the eigenphases φj ,
we have considered a range of 41 values of the quantum param-
eter k (= 2,3, . . . ,42), keeping fixed the classical parameter
K = 7 (where the phase space is fully chaotic as shown in
Sec. II). In order to ameliorate the statistics we considered
a sample of 161 matrices Unm of size N = 398 (≈64 000
elements), in a manner similar to that in Ref. [35]) with slightly
different values of k (with the step size �k = ±0.00125 � k).
For some samples we reached up to 641 matrices Unm of size
N = 398, acquiring qualitatively the same results.

For the ensemble of M = 641 matrices of size N = 398,
in the case where K = 7 and k = 11, using the χ2 best-fitting
procedure (described in more detail below), we found βBR =

TABLE II. Results of the best-fitting procedure. The same as in
Table I but for N = 796 and other parameter values k.

K = 7 and M × N = 81 × 796

k βPDF
BR βCDF

BR βPDF
IZ βCDF

IZ

6 0.094946 0.102980 0.084946� 0.082980�
7 0.122990 0.135550 0.11299� 0.1079550�
12.5 0.316602� 0.319169� 0.306602 0.289169
15 0.407302� 0.400864� 0.402302 0.380864
17.5 0.500219� 0.491786� 0.505219 0.481786
20 0.570621� 0.560884� 0.585621 0.560884
25 0.696955� 0.680933� 0.741955 0.710933
30 0.778601� 0.761853� 0.848601 0.821853
35 0.831750� 0.816494� 0.911750 0.886494

0.421 and all three representations clearly show excellent
agreement with the best-fitting Brody distribution.

In Fig. 7(a) we show the histogram. It is seen that the Brody
distribution better fits the data than the Izrailev distribution.
Since the deviations are really small, the statistical significance
is very high, and we plot in Fig. 7(b) the differences
Udata − UBR,IZ versus UBR. Thus, if data are on the abscissa, the
agreement is perfect. As can be seen, the deviations from that
are really small and clearly smaller for Brody. In Fig. 7(c) we
show the fine differences of Wdata − WBR,IZ versus WBR, and
again we clearly see that Brody is better. Finally, in Fig. 7(d),
we show the same thing as in Fig. 7(c), except not versus W

but versus S instead. It must be emphasized that the improved
Izrailev distribution (42) exhibits even larger deviations from
the data than the original one (41), as depicted in Fig. 7 by
the outermost lines in Figs. 7(b)–7(d). This is the main reason
why we have not considered the new Izrailev distribution (42)
any further, in addition to being compatible with the previous
related results in the literature.

More data for various k are shown in Table I. The index
PDF or CDF means that the fitting was done by using P (S)
or W (S), respectively. The check marks indicate which fitting
is statistically better, based on the χ2 procedure. In order to
illustrate some more cases from the Table I, namely for other
values of β, we show the results in Appendix B. Even more
data are shown in Table II.

Finally, we do a similar analysis for large matrices N =
4000 and take M = 9 of them in an ensemble. The results in
Appendix B clearly show that Brody distribution is an excellent
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line) and βIZ (gray line) using 150 subintervals in S.
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TABLE III. Results of the best-fitting procedure. The same as in
Table I but for N = 4000 and other parameter values k.

K = 7 and M × N = 9 × 4000

k βPDF
BR βCDF

BR βPDF
IZ βCDF

IZ

10 0.058254 0.064513 0.053254� 0.055413�
15 0.123504 0.136268 0.113504� 0.116268�
20 0.223351� 0.228405� 0.208351 0.198405
25 0.303080� 0.304349� 0.293080 0.274349
30 0.424033� 0.410826� 0.419033 0.390826
35 0.497268� 0.485010� 0.502268 0.475010
40 0.569422� 0.553461� 0.586422 0.553461
45 0.614519� 0.596811� 0.639519 0.606811
50 0.668207� 0.651155� 0.708207 0.671155
55 0.694437� 0.679703� 0.739437 0.709703
60 0.761739� 0.740879� 0.821739 0.790879

fit to the level-spacing distribution in all three representations,
P (S), W (S), and U (S).

C. Residues and χ 2 test

In the best-fitting procedure we have calculated both the
residues and the χ2 as follows:

(1) PDFs residues:

RPDFs =
N∑

i=1

[PBR,IZ(i) − data(i)]2 (43)

(2) χ2:

χ2
PDFs =

N∑
i=1

[PBR,IZ(i) − data(i)]2

PBR,IZ(i)
. (44)

In Fig. 8 we show three examples for the χ2 as a function
of the fitted parameter βBR or βIZ for the data from the
Tables I–III. It is clearly demonstrated that the Brody fit is
significantly better than the Izrailev.

VII. THE SCALING BEHAVIOR OF βloc VERSUS �

It is well established that the degree of localization and the
value of the spectral level repulsion parameter β are related.
The parameter that determines the transition from weak to
strong quantum chaos is neither the strength parameter k nor
the localization length l∞ but the ratio of the localization
length l∞ to the size N of the system in momentum p and the
scaling parameter � [Eq. (31)]. Here we present the following
results:

(a) In plotting βBR versus βloc as shown in Fig. 9 for a great
number of matrices at various parameter values, we clearly see
the linear relationship very close to identity.

(b) In Fig. 10 we plot βloc versus � for the same ensemble of
matrices as in Fig. 9: clearly, there is a functional relationship
according to the scaling law

βloc = γ�

1 + γ�
, γ = 4.04, (45)

which is similar to the scaling law [Eq. (46)], but not the
same. Thus, we see that when � → ∞ both βloc and βBR
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FIG. 9. (Color online) The fit parameter βBR as a function of
βloc for 161 × 398 elements for various values of K and for a wide
range of k values. The best-fitting straight line is very close to
identity.

go to 1, and we have extended eigenstates and GOE/COE
spectral statistics, while in the limit � = 0 we have strong
localization, βBR and βloc are zero, and we have Poissonian
spectral statistics. Figure 9 shows what happens in between.
The value γ = 4.04 differs somewhat from γ ≈ 3.2 in Ref.
[59], where βloc is plotted versus x ≈ 4�.

(c) The quality of the fit of Fig. 9 is degraded a lot when the
size of the ensemble is decreased, as we have observed.

(d) The quality of the fit when using βIZ instead of βBR

is decreased, as we have checked carefully and as shown in
Tables I–III.

The numerical factor αμ is determined by numerical
calculations, namely by seeking the best agreement in Fig. 10.
It is interesting to note that in the case K = 5, extensively
studied by Izrailev (Ref. [36], and references therein), we find
μ = 0.99, which is compatible with μ = 1, but αμ = 0.45,
which is only approximately his value, 0.5. Then D1 ≈ K2/2
and K2/τ 2 = k2 and we have l∞ ≈ k2/4. The data for all cases
that we treat in this paper are given in Table IV.
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FIG. 10. (Color online) The parameter βloc vs � for various K

and k (the same as in Fig. 9), where the scaling law [Eq. (45)] is
shown with the black line.

062905-12



DYNAMICAL LOCALIZATION IN CHAOTIC SYSTEMS: . . . PHYSICAL REVIEW E 87, 062905 (2013)

TABLE IV. We show the values of μ and Dμ for the classical
diffusion. The coefficients αμ are needed for the quantum kicked
rotator in estimating l∞, and they are also determined numerically by
seeking the best agreement in Fig. 10.

K μ αμ Dμ

5 ≈0.99 0.45 13.182
7 ≈0.90 0.20 169.82
10 ≈1.00 0.50 31.68
12 ≈1.00 0.50 87.09
14 ≈1.00 0.50 134.89
17 ≈1.01 0.50 97.05
20 ≈0.99 0.50 275.42
25 ≈0.98 0.50 405.50
30 ≈1.00 0.50 389.04
35 ≈1.00 0.50 467.73

In Ref. [59] the following scaling law was proposed:

βloc = γ x

1 + γ x
, where x ≡ k2

N
and γ ≈ 0.8. (46)

A banded random matrix model has been proposed [37,60–62]
to explain the above scaling relationship, based on the fact
that Eq. (8) is an infinite banded matrix of bandwidth ap-
proximately k, which can be reduced to the finite-dimensional
model with the same property. However, one should observe
the fact that k2/(4N ) is just an approximate value of � valid
for the special case when μ = 1 (normal diffusion), α1 = 1/2,
and K = 5, where D1 ≈ K2/(2τ 2) = k2/2. In fact, we find
numerically α1 = 0.45, not 0.5. Moreover, we must be aware
of the fact that at K = 5 we still have islands of stability in
the classical phase space, implying problems with the divided
phase space in the quantum picture. This is the reason why we
consider the cases K � 7, but nevertheless check Izrailev’s
results [36] limited to K = 5 (Table IV). As seen in Fig. 3, as
an example, in case K = 7 we have three different diffusion
regimes, and for our purposes the middle regime with μ ≈ 0.9
and Dμ ≈ 169.82 is relevant and important, because l∞ is in
the range of N . In the present work we thus generalize the
empirical scaling law [Eq. (45)] to all values of K � Kcrit ≈
0.97 and show that the scaling βloc versus � persists under the
proper generalizations, now including anomalous diffusion.

Thus, the knowledge of the theoretical scaling parameter �

from Eq. (31), in the semiclassical limit, enables us to calculate
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FIG. 11. (Color online) Intermediate statistics [panel (a)] for distribution P (S) (histogram, black solid line) of the model [Eqs. (20) and
(21)] fitted with distribution PBR(S) (blue solid line) (βBR = 0.28) and PIZ(S) (red dashed line) for M × N = 161 × 398, K = 7, and k = 8 (see
text for discussion). The two black-dotted lines indicate the two extreme distributions, i.e., Poisson and Wigner. In panels (b), (c), and (d) we
show the difference of the numerical data and the best-fitting Brody (blue thick solid line) and Izrailev (red thin dashed line) PDFs by using the
U function and W distribution (see text for discussion). Thus, in the case of the ideal fitting, the data would lie on the abscissa. See also Table I.
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FIG. 12. (Color online) Same as Fig. 11 for M × N = 161 × 398, K = 7, and k = 14 with βBR = 0.58. See also Table I and text for
discussion.

the spectral-level repulsion parameter βBR (or βIZ) according to
the scaling law [Eq. (45)]. This law clearly shows that at fixed
parameters K , τ , and k = K/τ in the limit N → ∞ we always
get βBR = 0, i.e., Poisson distribution. On the other hand, when
l∞ becomes greater than N , we see an approach to the random
matrix (GOE or COE) behavior. The scaling properties of this
section are one of the main conclusions of this paper. Recently,
strong evidence has been found that a similar relationship can
exist for the analogous quantities in dynamically localized
time-independent Hamiltonian systems [28,29].

VIII. DISCUSSION AND CONCLUSIONS

In this paper we study in detail the relationship between
the localization measure of the eigenstates and the spectral
level repulsion parameter in the quantum kicked rotator. First,
we confirm and improve the results of Refs. [35,36,39–41]
for K = 5, and then we go substantially beyond his work
by doing the analysis for many different values of K � 5
(dimensionless classical kick parameter), not only K = 5,
namely K ∈ [5,35], with various classical dynamical regimes,
and many different k ∈ [5,60] (dimensionless quantum kick
parameter). Namely we include also the cases with accelerator
modes and generalized (anomalous) diffusion (subdiffusion
and superdiffusion).

The classical kicked rotator [Eq. (1)] is one of the most
important model systems in classical and quantum chaos.
We have studied the semiclassical regime where k � K and
analyzed the eigenstates and eigenvalues (quasienergies or
eigenphases φn ∈ [0,2π )), in particular the aspects of the dy-
namical localization. The infinite-dimensional case has a finite
localization length l∞ (in the space of the angular-momentum
quantum numbers) and exhibits the Poissonian statistics of
the level spacings. We study a finite N -dimensional model
[Eqs. (20)–(22)] proposed by Izrailev [35,36,39–41] for the
case of odd-parity eigenstates. In this model the intermediate
spectral statistics is observed, ranging from Poissonian to the
RMT statistics (GOE/COE statistics), depending on the value
of the scaling parameter � = l∞/N . We have shown that �

can be calculated theoretically in terms of generalized classical
diffusion properties of the standard map expressed as l∞ =
[ αμDμ(K)

τ 2 ]
1

2−μ in Eq. (17), which is a major result of this paper as
the anomalous diffusion (μ �= 1) is now included. The degree
of localization is also estimated by means of information
entropy described by the parameter βloc, which goes from 0
(Poisson) to 1 (GOE) and is uniquely determined by �, as de-
scribed by the scaling law βloc = γ�

1+γ�
, γ = 4.04 in Eq. (45).

We find that in almost all cases the Brody distribution
correctly captures the level-spacing distribution at all values
of the corresponding level repulsion exponent βBR, and
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FIG. 13. (Color online) Same as in Fig. 11 for M × N = 161 × 398, K = 7, and k = 17 with βBR = 0.67. See also Table I and text for
discussion.

noticeably better than the distribution function proposed in
Refs. [35,41] and in Ref. [37], as demonstrated in Sec. VI. We
confirm and significantly refine the result that βBR is identical
to βloc within the statistical fluctuations.

These results have been obtained for the time-dependent
system, the quantum kicked rotator, but we have evidence
that similar conclusions can be reached in time-independent
chaotic Hamiltonian systems, either in the mixed-type regime
or fully chaotic regime, when studying (after separation
of regular and chaotic eigenstates) the localized chaotic
eigenstates and the statistics of the corresponding chaotic
(irregular) level sequences. This has been confirmed in the case
of the billiard with mixed-type dynamics [63,64], indirectly in
the recent paper by Batistić and Robnik [28], and directly very
recently [29,32]. Moreover, it has been shown that different
but equivalent localization measures can be introduced which
are simply related to the Brody parameter [29]. In the case of
billiards the quality of the spectral statistics is even better than
in the case of the quantum kicked rotator, due to the possibility
to calculate a much larger number of high-lying eigenstates.
Another important paradigmatic model is the hydrogen atom
in strong magnetic field [65–68], which, in addition to the
various billiards, is a good candidate for further theoretical
and experimental studies.

Deriving the fractional power-law level repulsion and
the emerging Brody distribution, as a consequence of the

dynamical localization in chaotic eigenstates, is an important
open theoretical question.
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APPENDIX A: THE U-FUNCTION REPRESENTATION
OF THE LEVEL-SPACING DISTRIBUTION

First, we estimate the expected fluctuation (error) of
the cumulative (integrated) level-spacing distribution W (S),
which contains Ns objects. At a certain S we have the
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FIG. 14. (Color online) Same as in Fig. 11 for M × N = 9 × 4000, K = 7, and k = 30 with βBR = 0.42. See also Table III and text for
discussion.

probability W that a level is in the interval [0,W ] and 1 − W

that it is in the interval [W,1]. Assuming binomial probability
distribution P (k) of having k levels in the first and Ns − k

levels in the second interval we have

P (k) = Ns!

k!(Ns − k)!
Wk(1 − W )Ns−k. (A1)

The average values then are equal to 〈k〉 = NsW , 〈k2〉 =
NsW + Ns(Ns − 1)W 2 and the variance V (k) = 〈k2〉 −
〈k〉2 = NsW (1 − W ). But the probability W is estimated in
the mean as k/Ns . Its variance is

V (W ) = V

(
k

Ns

)
= 1

N2
s

V (k) = W (1 − W )

Ns

(A2)

and, therefore, the estimated error of W (standard deviation,
the square root of the variance) is given by

δW =
√

V (W ) =
√

W (1 − W )

Ns

. (A3)

Transforming now from W (S) to

U (S) = 2

π
arccos

√
1 − W (S), (A4)

we show in a straightforward manner that δU = 1
π

√
Ns

and is
indeed independent of S. From the (choice of the constant
prefactor in the) definition Eq. (A4), one sees that both U (S)
and W (S) go from 0 to 1 as S goes from 0 to infinity.

APPENDIX B: MORE SPECTRAL STATISTICAL ANALYSIS

In continuation of the Sec. VI we show some more examples
of the statistical spectral analysis for various values of βBR in
Figs. 11–13. Finally, we do a similar analysis for large matrices
N = 4000 and take M = 9 of them in an ensemble. The results
are shown in Fig. 14 and more data are collected in Table III
which are partially presented in Ref. [69]. We clearly see that
the Brody distribution is an excellent fit to the level-spacing
distribution in all three representations, P (S), W (S), and U (S).
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[32] B. Batistić, T. Manos, and M. Robnik, arXiv:1302.6187
[Europhys. Lett. (to be published)].

[33] T. A. Brody, Lett. Nuovo Cimento 7, 482 (1973).
[34] T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pandey, and

S. S. M. Wong, Rev. Mod. Phys. 53, 385 (1981).
[35] F. M. Izrailev, Phys. Lett. A 134, 13 (1988).
[36] F. M. Izrailev, Phys. Rep. 196, 299 (1990).
[37] G. Casati, F. M. Izrailev, and L. Molinari, J. Phys. A: Math. Gen.

24, 4755 (1991).
[38] S. Sorathia, F. M. Izrailev, V. G. Zelevinsky, and G. L. Celardo,

Phys. Rev. E 86, 011142 (2012).

[39] F. M. Izrailev, Phys. Rev. Lett. 56, 541 (1986).
[40] F. M. Izrailev, Phys. Lett. A 125, 250 (1987).
[41] F. M. Izrailev, J. Phys. A: Math. Gen. 22, 865 (1989).
[42] G. Casati, B. Chirikov, J. Ford, and F. M. Izrailev, Lect. Notes

Phys. 93, 334 (1979).
[43] J. B. Taylor, Culham Laboratory Progress Report, CLM-PR-12

(1969).
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