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Scaling invariance of the diffusion coefficient in a family of two-dimensional Hamiltonian mappings
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We consider a family of two-dimensional nonlinear area-preserving mappings that generalize the Chirikov
standard map and model a variety of periodically forced systems. The action variable diffuses in increments
whose phase is controlled by a negative power of the action and hence effectively uncorrelated for small actions,
leading to a chaotic sea in phase space. For larger values of the action the phase space is mixed and contains a
family of elliptic islands centered on periodic orbits and invariant Kolmogorov-Arnold-Moser (KAM) curves.
The transport of particles along the phase space is considered by starting an ensemble of particles with a very
low action and letting them evolve in the phase until they reach a certain height h. For chaotic orbits below the
periodic islands, the survival probability for the particles to reach h is characterized by an exponential function,
well modeled by the solution of the diffusion equation. On the other hand, when h reaches the position of periodic
islands, the diffusion slows markedly. We show that the diffusion coefficient is scaling invariant with respect to
the control parameter of the mapping when h reaches the position of the lowest KAM island.
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I. INTRODUCTION

Characterizing mixed regular-chaotic phase space remains
one of the most challenging open problems in Hamiltonian
dynamics. When there is periodic forcing, the level of
chaoticity is typically controlled by the ratio of the intrinsic
and extrinsic time scales, a function of phase space variables.
For example, the family of maps

T :

{
Jn+1 = |Jn − ε sin(2πθn)|,
θn+1 = [

θn + J
−γ

n+1

]
(mod 1),

(1)

for action J and angle θ , describes a large class of systems,
including relevant applications for plasma physics for γ =
2 [1]. For γ = 3/2 it describes the diffusion of the orbital
parameters of comets due to the periodic motion of Jupiter
[2,3]. For this problem the action variable corresponds to the
energy of the comets and the second equation recovers Kepler’s
third law, and because of this it is called the Kepler map. This
value of γ recovers the dynamics of a wave packet [1] too. For
γ = 1 Eq. (1) describes a particle moving between a vibrating
and a fixed plate [4]. This case recovers the one-dimensional
Fermi-Ulam accelerator model where a particle is confined to
bounce between two rigid walls, suffering elastic collisions.
The action variable represents the velocity of the particle and
the angle variable denotes the phase of the moving wall.
γ = 1 recovers also the periodically corrugated waveguide
[5]. The model consists in considering a light ray which
is specularly reflected by two reflective surfaces. Here the
action variable corresponds to the trajectory of the light ray,
while the angle variable corresponds to the angle formed
between the trajectory of the light and the reflection from the
corrugated surface. For γ = 1/2, some dynamical properties
for a time-dependent potential well [6,7] are recovered. This
model consists of a classical particle confined inside a box
of an infinitely deep potential which contains an oscillating
square well in the middle. It assumes the bottom moves

periodically in time according to a cosine function. The action
variable represents the energy of the particle while the angle
corresponds to the phase of the oscillations. For γ = −1
a particle bouncing on a vibrating plate [8] is recovered.
The model describes the problem of a classical particle
bouncing elastically from a periodically time-varying wall in
the presence of a constant gravitational field. γ = −1 recovers
also the Chirikov standard map [9]. This model describes a
system perturbed by a sequence of pulses (kicks). For clarity
we will henceforth assume that γ > 0, although the case γ < 0
can be treated similarly. The time-scale separation is given by
J−γ so that when J ≈ 1 there is mixed phase space, while
for J � 1, θ is effectively random, leading to strongly chaotic
diffusion of J , which can be described analytically. Here we
develop an open systems approach as a sensitive probe of
both chaotic and mixed regions, and demonstrate scale invari-
ance of the diffusion coefficient with respect to the control
parameter ε.

A powerful technique for analyzing dynamical systems
[10,11] involves placing an absorbing “hole” when J > h for
some hole parameter h while specifying the distribution of
initial conditions, hence defining the (“survival”) probability
P (n) that the action will remain less than h until n collisions
have occurred. This provides a sensitive test of the diffusion
of the action variable. In the strongly chaotic regime, P (n) ∼
e−An with an escape rate A that can be predicted by solving
the diffusion equation with appropriate initial and boundary
conditions and without any free parameters. The relation of
transport (for example diffusion) coefficients to the escape
rate A in molecular systems was introduced as “the escape
rate formalism” [12,13]. Here the diffusion is in phase space,
and furthermore we predict the full time dependence P (n).

As the action rises, periodic motion is observed, leading to
the existence of Kolmogorov-Arnold-Moser (KAM) islands.
For even higher action a set of invariant KAM curves (called
invariant spanning curves or rotationally invariant circles) is
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present in the phase space, limiting the unbounded growth
of the action. Due to the existence of periodic islands, the
orbits may spend some time trapped around the regular regions.
This temporary trapping, also known as stickiness, affects the
diffusion coefficient, which markedly changes at the position
of the periodic islands. The relevant scale for the onset of
stickiness is the location of the lowest stable island JLSI. In
this paper we show that the sticky diffusion process is scale
invariant and the scaled diffusion coefficient D/ε2 calculated
using the open systems approach is a universal function of the
scaled hole height h/JLSI.

This paper is organized as follows. In Sec. II we study an
analytical approach for the diffusion coefficients of physical
systems and study the transport properties. In Sec. III we
discuss transport properties and results. Finally, in Sec. IV
we present the final discussion.

II. DIFFUSION COEFFICIENT

We now consider the dynamics in the chaotic sea for small
values of J . Due to the lack of correlations of the angle
variable, the increments in J are well described using a Central
Limit Theorem (CLT) [14,15], so that over many time steps,
the distribution of displacements is Gaussian with a variance
proportional to the number of steps. Sufficient conditions for
a CLT to hold are that {Xn}∞n=1 is a sequence of independent
and identically distributed (IID) real-valued random variables
such that (i) the mean 〈Xn〉 = 0 and (ii) 〈X2

n〉 < ∞ [16–18]. In
Eq. (1) we see that the angles diverge in the limit of vanishing
action and are thus expected to be independent and uniformly
distributed on [0,1). The increment of J in Eq. (1) and also
in many physical problems in the literature [19] is given by
�n = Jn+1 − Jn = −ε sin(2πθn), and is also IID. Thus it is
possible to observe that 〈�2

n〉 = ∫ 1
0 ε2 sin2(2πθ )dθ = ε2/2.

Therefore the analytical diffusion coefficient is given by D =
〈�2〉/2 = ε2/4, and hence D/ε2 = 1/4. We have ignored the
absolute value signs here for J < ε; their effect is to ensure
that J remains positive, i.e., there is a rigid wall in the diffusion
process at J = 0.

Over many iterations, we may consider the continuum
process given by the diffusion equation

∂u

∂n
= D

∂2u

∂J 2
, (2)

where u is the probability density function. The boundary
conditions are given by du/dJ (0,n) = 0 (the rigid wall,
above) and u(h,n) = 0 (escape through the hole). This
problem may be solved by separation of variables, u(J,n) =
X(J )T (n), where the boundary conditions give X(J ) =
cos [Jπ (k + 1/2)/h], with k = 0,1,2,3, . . .. Substituting for
u(J ) in Eq. (2), we obtain the solution of the diffusion equation,

u(J,n) =
∞∑

k=0

ak cos

[
Jπ

(
k + 1

2

)
h

]
exp

[
−Dnπ2

(
k + 1

2

)2

h2

]
.

(3)

Finally, the unknown coefficients ak are determined
by the initial conditions. Here we start all the particles
near J = 0, so that u(J,0) = δ(J ). Equating this with
ak cos [Jπ (k + 1/2)/h] as required for Eq. (3), multiplying

FIG. 1. Plot of P ′ vs n considering h = 10 and D = 0.5.

both sides by cos [Jπ (m + 1/2)/h], and integrating as a
function of J over [0,h] yields

u(J,n) = 2

h

∞∑
k=0

cos

[
Jπ

(
k + 1

2

)
h

]
exp

[
−Dnπ2

(
k + 1

2

)2

h2

]
,

(4)

which obeys Eq. (2), in both boundary conditions and the
initial conditions. Integrating Eq. (4) as a function of J in the
range of [0,h], the survival probability is given by

P (n) = 2

π

∞∑
k=0

sin
[
π

(
k + 1

2

)]
k + 1

2

exp

[
−Dnπ2

(
k + 1

2

)2

h2

]
. (5)

The negative of the derivative of P (n) with respect to n, i.e.,
P ′(n) = dP (n)/dn, furnishes the histogram of frequency for
the number of particles that escaped at a time n. A plot of
P ′(n) vs n is shown in Fig. 1.

We see from this figure that for short n there is a regime
of growth of the histogram of frequency. It then reaches a
maximum at np and decreases later on for large n. Few particles
can travel to h and so escape at short times. The peak denotes
the typical n where the majority of the ensemble reaches h.
At late times there are few particles remaining, and so the
number that escape decreases. Considering Fig. 1 together
with the expression of P ′(n), we see for high values of h that
the single term k = 0 dominates and so exp[−Dnπ2/(4h2)] ∼=
exp[−An]. The diffusion coefficient is written as

D = 4h2A/π2. (6)

The coefficient A may be obtained by fitting an exponential to
the histogram of frequency P ′(n) vs n for the decaying curve
after the peak and before the final tail of the curve (which may
not be exponential due to the stickiness).

III. TRANSPORT PROPERTIES AND RESULTS

The above results are very general, applying to any system
modeled by the diffusion equation in this way. We now
consider more specifically the family of mappings given in
Eq. (1). The control parameters are ε and γ . For ε = 0
the system is integrable while it is mixed for any ε 	= 0.
The mapping is area preserving since the determinant of the
Jacobian matrix is equal to 1. The relevance of particular
values of γ is given in the Introduction. The phase space
generated from the mapping (1) is shown in Fig. 2 for the
control parameters (a) ε = 10−3 and γ = 1/2 and (b) ε = 10−2

and γ = 1. One sees that the phase space is mixed, with strong
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FIG. 2. (Color online) Phase space using (a) ε = 10−3 and γ =
1/2; (b) ε = 10−2 and γ = 1.

chaos at small J , a set of KAM islands that are surrounded by
a chaotic sea that is limited by a set of invariant KAM curves.

The size of the chaotic sea can be estimated using the
position of the lowest invariant KAM curve. As discussed
in [20], near such a curve, the action can be approximated
as Jn+1

∼= J ∗ + �Jn+1 where J ∗ is a typical value along the
curve and �Jn+1 is a small perturbation of J ∗. Using this
approximation and making a connection with the Chirikov
standard map [9], which has a transition from local to global
chaos at K = 0.9716 . . ., the first invariant KAM curve can
be described as J ∗ ∼= [ 2πγ ε

0.9716...
]1/(1+γ ). The diffusion equation

given by (2) and the diffusion coefficient obtained from Eq. (6)
can also be well applied for the chaotic region of the phase
space generated by the mapping (1) below the lowest action
KAM island. When the islands of stability are considered,
local trapping may be observed. This stickiness regime affects
directly the transport of particles in the phase space, leading to
a marked reduction of the diffusion coefficient D (as we shall
see in Fig. 4). The understanding of the effects of stickiness in
transport is still a major open problem.

The boundary conditions in the phase space are defined
by the lowest value of the action (for instance zero) and the
position h < J ∗ which defines the upper absorber. To average
the quantities, we start with an ensemble of several different
initial conditions, the very low initial action of 10−3ε, and
different angles θ0 uniformly distributed along θ0 ∈ [0,1]. If
during the dynamics the particle reaches h, the simulation is
stopped at that time, the number of iterations n needed for the
diffusion of the particle until it reaches h is collected from
the dynamics, and a simulation with a new initial condition is
started with a different angle. The process is repeated until the
entire ensemble has been considered. If the maximum length
of time of n = 105 allowed for the dynamics is reached, we
consider that the particle has not escaped (it may escape later
in a longer run) and a new initial condition is used.

It is known that when the escape is considered in a region
where only chaos is present, the survival probability of an
ensemble of particles moving in such a region is described by
an exponential decay (see, for instance, [21,22]). The existence
of periodic regions in the phase space, including islands of
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FIG. 3. (Color online) For γ = 3/4 we have (a) a plot of the
histogram as a function of np , where we highlight how to find np;
(b) A vs h, where the slope is equal to −1.97(1); (c) np vs h for
different values of ε: ε = 10−5, ε = 3 × 10−5, and ε = 10−4; and
(d) np vs h/ε.

stability and invariant tori, leads to local trapping due to stick-
iness [23–25] and consequently to anomalous diffusion [26],
transforming the decay of the survival probability into a slower
regime that may include either a power law [27,28] or even
a stretched exponential [29]. In our simulations, the position
h (the upper boundary for escape) was varied. For values of
h below the stability regions, an exponential decay describes
the survival probability well, while a slower decay is observed
when periodic islands are present. Figure 3(a) shows a plot
of the histogram of frequency considering the parameters
γ = 3/4 and ε = 10−4, although any other set of control
parameters generates a similar plot, so that the behavior seems
to be generic for any γ > 0 and ε 	= 0. The parameter A used
in Eq. (6) is obtained by a numerical fitting of the decay of
the curve after reaching the peak at np and before the final tail
(where fluctuations due to the size of the ensemble or the size
of the bins have influence). Figure 3(b) shows a plot of A vs h

and a power law fitting gives the slope as −1.97(1) ∼= −2, in
good agreement with Eq. (6). The peak of the histogram is also
sensitive to the position of h. It moves to the right in Fig. 3(a)
when the position of h is raised in the vertical direction and
moves to the left when h moves down in the phase space. This
behavior is indeed expected because the higher h becomes,
the larger the value of n to which the mapping (1) must be
iterated for the particle to reach h. A plot of np vs h is shown
in Fig. 3(c). If the position h is rescaled as h → h/ε, the
different curves of np obtained for different ε overlap onto a
single plot as shown in Fig. 3(d).

Let us now discuss our numerical results obtained for the
diffusion coefficient. From numerical simulations, we obtained
different values for the coefficient A and Eq. (6) was evaluated.
The diffusion coefficient is shown in Fig. 4(a) for different
control parameters ε and γ . Different values of the control
parameter ε generate different values for D in agreement with
D/ε2 = 1/4. We notice that D is almost constant for a large
range of h until it suddenly suffers a marked decrease. The
decrease happens because the position h reached the lowest
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FIG. 4. (Color online) (a) D vs h for different values of ε and γ .
(b) After a rescaling on the axis, the curves collapsed for small values
of h. (c) After a properly rescaling on the axis, all curves collapsed
for high values of h.

action KAM island. From fixed point stability analysis we
found that the last period-1 fixed point, generating the last
period-1 island, is located at

JLSI
∼=

[
γπε

2

][1/(1+γ )]

, (7)

where the index LSI stands for lowest stable KAM island. We
see that there are two different types of scaling for the behavior
of D. The first scaling is observed for very small values of h. In
this region, there is presumably a breakdown of the continuum
approximation used in the diffusion equation since h comes
close enough to the scale of the variation of ε. Figure 4(b)
shows the behavior of D for the rescaling D → D/ε2 and
h → h/ε. We see clearly that all curves of D obtained for

different control parameters as shown in Fig. 4(a) overlap
each other for low values of h/ε but differ for large h. A
striking result is obtained when the horizontal axis is rescaled
with respect to the position of the lowest stable KAM island
as given by Eq. (7), i.e., h → h/JLSI, as shown in Fig. 4(c).
In addition we see that despite the small difference of D/ε2

for different control parameters ε considering small h, the
diffusion coefficient suffers a sudden change when the position
h reaches periodic KAM islands. Because of the periodic
regions, the particles may suffer temporary trapping due to
stickiness and its influence on the transport along the phase
space. At that point normal diffusion is not observed anymore;
consequently the CLT is not applicable in this domain.

IV. FINAL DISCUSSION

We have obtained analytically the diffusion coefficients for
many physical systems and studied the transport properties
for a set of classical particles for a family of two-dimensional
Hamiltonian mappings. The curves of the histograms were
obtained numerically and an exponential fit was made. Our
results show that for low values of the hole presumably a
breakdown of the continuum approximation occurs as the
hole comes close to the scale of the variations ε. For high
values of the hole (near the KAM islands and spanning
KAM curve), we showed that the hole also comes close
to the scale of the variations ε. The present procedure can
be applied to many other different systems where transport
properties are observed. In future it would be interesting to
investigate whether a modified, perhaps fractional, diffusion
equation could apply to the variation of J in the sticky region,
and whether the same kind of stickiness is present for the
impenetrable lowest invariant spanning curve. Many of the
applications, including the Kepler (now Coulomb) problem
and motion in the presence of a vibrating wall, occur in the
microscopic domain, where quantum effects dominate.
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