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Phase transitions in the quadratic contact process on complex networks
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The quadratic contact process (QCP) is a natural extension of the well-studied linear contact process where
infected (1) individuals infect susceptible (0) neighbors at rate λ and infected individuals recover (1 −→ 0) at
rate 1. In the QCP, a combination of two 1’s is required to effect a 0 −→ 1 change. We extend the study of the QCP,
which so far has been limited to lattices, to complex networks. We define two versions of the QCP: vertex-centered
(VQCP) and edge-centered (EQCP) with birth events 1 − 0 − 1 −→ 1 − 1 − 1 and 1 − 1 − 0 −→ 1 − 1 − 1,
respectively, where “−” represents an edge. We investigate the effects of network topology by considering the
QCP on random regular, Erdős-Rényi, and power-law random graphs. We perform mean-field calculations as
well as simulations to find the steady-state fraction of occupied vertices as a function of the birth rate. We find
that on the random regular and Erdős-Rényi graphs, there is a discontinuous phase transition with a region of
bistability, whereas on the heavy-tailed power-law graph, the transition is continuous. The critical birth rate is
found to be positive in the former but zero in the latter.
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I. INTRODUCTION

Inspired by technological and social networks, the study
of complex networks has seen a surge in the past 15 years
[1–5]. Research has traditionally progressed in two distinct
directions: dynamics of networks and dynamics on networks.
The former is concerned with the formation of a network or
change in its structure with time, whereas the latter deals with
processes (deterministic or stochastic) taking place on a fixed
network. Preferential attachment and its many generalizations
[6,7] are prototypical examples of the first type. Examples of
the second are epidemics [8–11], the voter model for the spread
of an opinion [12–14], cascades [15–17] that model spread of a
technology, and evolutionary games [18]. The phase transitions
[19,20] associated with these models have been of particular
interest.

In the mathematics community, spatial models are studied
under the heading of interacting particle systems [21]. One
of the simplest models of those models is the contact process
[22–24] (equivalent to the SIS model in epidemiology). In
the linear contact process, each site can be in one of two
states, which we will call 1 and 0. 0’s become 1 at a rate
proportionate to the number of 1 neighbors they have, and 1’s
become 0 at a constant rate (here and in all following models,
unless otherwise specified, the processes occur in continuous
time).

A natural extension of the linear process is the quadratic
contact process (QCP), where each 0 → 1 event will require
two other sites in state 1. We will occasionally refer to 1
as being the “occupied” state and 0 as being “vacant”, and
the events 0 → 1 and 1 → 0 to be birth and death events,
respectively. At this stage, the model is quite general in that
we do not specify where the two 1’s that cause the 0 → 1
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event must be located with respect to the 0. On the 2D lattice,
specifying these locations leads to different realizations of the
QCP. For example, Toom’s North-East-Center model (origi-
nally defined in discrete time) allows a 0 at site x to be filled if
its neighbors x + (0,1) and x + (1,0) are occupied [25]. Chen
[26,27] has studied versions of Toom’s model in which two
or three specified adjacent pairs or all four adjacent pairs
are allowed to reproduce. Evans, Guo, and Liu [28–32] have
studied the QCP as a model for adsorption-desorption on a
two-dimensional square lattice. In the version of the model
studied by Liu [32], 0 becomes 1 at a rate proportionate to
the number of adjacent pairs of 1 neighbors. He found a
discontinuous phase transition with a region of bistability,
where the 1’s die out starting from a small density. He also
found that by introducing spontaneous births at a sufficiently
high rate, the transition becomes continuous.

The QCP is similar to Schlögl’s second model [33] of au-
tocatalysis characterized by chemical reactions 2X −→ 3X,

X −→ ∅, where X represents the reactant. Grassberger [34]
studied a version of Schlögl’s second model in which each site
has a maximum occupancy of two and doubly occupied sites
give birth to a neighboring vacant site. He found that the model
shows a continuous phase transition in 2D.

Studies to date on the QCP have been limited to regular
lattices in low dimensions. In this paper, we extend the study
to complex networks. There are two ways to view the QCP on
networks:

(i) as a model that replaces the linear birth rate of the
contact process that has been extensively studied on networks
[35,36], by a quadratic birth rate.

(ii) as an alternative model for the spread of rumors, fads,
and technologies such as smart phones in a social network.
In sociology, the requirement of more than a single 1 for the
“birth” event is called complex contagion [37]. Also related
are the threshold contact process [38] and models for the
study of “cascades” [16]. The key difference here is that the
QCP involves a death event that represents the loss of interest
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in the fad or technology and the rate for birth events is a
function of the actual number and not the fraction of occupied
neighbors.

The questions we are interested in are: How does network
topology affect these phase transitions? What model and
network features lead to discontinuous versus continuous
phase transitions?

The paper is organized as follows. We define the specific
QCP that we study in Sec. II and we do mean field calculations
in Sec. III. In Sec. IV we present a few rigorous results about
the QCP. Simulation results are presented in Sec. V, followed
by some concluding remarks in Sec. VI.

II. MODEL DEFINITION

The birth event in the linear contact process can be
formulated as each 1 − 0 edge converts to a 1 − 1 edge at
a constant rate λ. Such a definition can be easily extended
to the quadratic case by defining the birth event in terms of
connected vertex triples. Two such definitions are possible:
1 − 0 − 1 −→ 1 − 1 − 1 and 1 − 1 − 0 −→ 1 − 1 − 1. We
call the former version the vertex centered QCP (VQCP)
because the central 0 vertex is getting filled by its two
neighboring 1s, and the latter as the edge-centered QCP
(EQCP), as it can be viewed as a 1 − 1 edge giving birth
on to a neighboring vacant vertex. Note that the models
can also be defined in terms of how a vacant vertex gets
filled; i.e., suppose that a 0 vertex has k 1 neighbors and
j 1 − 1 neighbors, [39] then the 0 vertex will become 1
at rates

(
k

2

)
λ and jλ in the VQCP and EQCP, respectively.

Death events 1 −→ 0 occur at rate 1 as in the linear
process.

If the death rate is changed to zero, the VQCP reduces to
bootstrap percolation [40] where vertices that are occupied
remain occupied forever and vacant vertices that have at least
two occupied neighbors become occupied. While bootstrap
percolation is typically defined in discrete time, the final
configuration of the network is independent of whether the
dynamics happens in discrete or continuous (as in our model)
time.

We will use random graphs as models for complex networks
on which the QCP is taking place. We will denote by d the
degree of a randomly chosen vertex in the network and the
degree distribution by pk = P (d = k). We are interested in
networks with size n → ∞ and where the vertex degrees are
uncorrelated. The specific random graphs that we will consider
are

(i) Random regular graphs, RR(μ), in which each vertex
has degree μ. Since everyone has exactly μ friends, this
graph is not a good model of a social network. However,
the fact that it looks locally like a tree will facilitate proving
results.

(ii) Erdős-Rényi random graphs, ER(μ), where each pair
of vertices is connected with probability μ/n. In the n → ∞
limit, the degree distribution of the limiting graph is Poisson
with mean μ. This is a prototypical model for the situation
in which the degree distribution has a rapidly decaying
tail.

(iii) Power law random graphs, PL(α), with degree distribu-
tion pk = ck−α . We are particularly interested in graphs where
the exponent α lies between 2 and 3, which has been found to
be the case for many real-world networks [41]. We construct
our graphs using the configuration model, so the degrees are
uncorrelated.
We will occasionally refer to RR and ER as homogeneous
networks, as their degree distributions are peaked around the
mean, in contrast to PL, where the distribution has a heavy
tail.

III. MEAN-FIELD CALCULATIONS

We can attempt an analytical study of the dynamics by
writing the equations for the various moments of the network.
Let g be a small graph labeled with 1’s and 0’s. We define the
g-moment, written as 〈g〉, of a {0,1} valued process on
a graph G as the expected number of copies of g that
exist in the set of all subgraphs of G. For example, if
g = 1 − 0 − 1, we look at all the connected vertex triples
in the network and count the ones where the center vertex
is in state 0 and the other two vertices are in state 1. We
will write ρ(λ,ρ(0); t) as the density 〈1〉/n at time t with
a birth rate of λ and an initial configuration where each
vertex is independently occupied with a probability ρ(0). The
order parameter for our phase transitions is the steady-state
density

ρ∗(λ,ρ(0)) = lim
t→∞ ρ(λ,ρ(0); t) . (1)

We define the critical birthrate λc as the birthrate above which
there exists a stable steady-state density that is greater than
zero, i.e.,

λc = inf{λ : ρ∗(λ,1) > 0}. (2)

In the definition above, we chose ρ(0) = 1, since it has the
best chance of having a positive limit. We also define a critical
initial density ρc as the minimum initial density required to
reach a positive steady-state density when the birth rate is
infinite, i.e.,

ρc = inf{ρ(0) : lim
λ→∞

ρ∗(λ,ρ(0)) > 0} . (3)

From their definitions, it is straightforward to write the
dynamical equations of 〈1〉 for the VQCP and the EQCP:

d

dt
〈1〉 = −〈1〉 + λ

{〈1 − 0 − 1〉 for the VQCP

〈1 − 1 − 0〉 for the EQCP
. (4)

If we were to write the equations for the third order moments
that appear on the right-hand side of Eq. (4), those equations
would involve still higher order moments. Continuing this way,
we end up with an infinite series of equations that are not
closed. Therefore, we resort to a mean-field approximation by
assuming the states of neighbors of a vertex to be independent
at all times.

A. Homogeneous networks

In the following we do a naive calculation that ignores
the correlation between degree and occupancy, which should
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FIG. 1. (Color online) The solid red (top), dashed, and solid
blue (bottom) curves correspond to ρ∗ = ρ+, ρ− and 0, respectively,
obtained from the mean-field calculation for both QCP types on
homogeneous networks.

be reasonable for homogeneous networks. With these assump-
tions, 〈1 − 0 − 1〉 will be nρ2(1 − ρ)〈(d

2

)〉. Plugging this value
into Eq. (4), we get

ρ̇ = −ρ + λρ2(1 − ρ)

〈(
d

2

)〉
. (5)

Setting the right-hand side of Eq. (5) to zero gives a cubic
equation whose roots are the possible steady-state densities ρ∗.
Clearly, zero is a trivial root of Eq. (5). The other two roots are

ρ± = 1

2

[
1 ±

√
1 − λc

λ

]
. (6)

These solutions are real only when λ > λc = 4/〈(d

2

)〉. In the
language of nonlinear dynamics, Eq. (5) exhibits a saddle
node bifurcation at λc. It is easy to see that zero and ρ+
are stable fixed points, whereas ρ− is an unstable fixed
point. This can be seen in Fig. 1. The limiting critical initial
density is

ρc = lim
λ→∞

ρ− = 0. (7)

For ER(μ), we have 〈(d

2

)〉 = μ2/2, which gives λc =
8/μ2. For PL(α � 3), we have 〈(d

2

)〉 = ∞, so λc = 0, while
PL(α > 3) has finite 〈(d

2

)〉 leading to a nonzero value for λc.
The mean-field calculation for the EQCP is essentially the
same as done above and predicts the same qualitative features.
Thus, for networks with finite 〈(d

2

)〉, the simple mean-field
calculation predicts a discontinuous phase transition at λ = λc

and a region of bistability for λ > λc, for both QCP types.

B. Heavy-tailed degree distributions

The mean-field calculation of Sec. III A is simplistic, since
it ignores the fact that the occupancy probability depends on
the degree. Pastor-Satorras and Vespignani [8] improved the
mean-field approach for the linear contact process by defining
ρk , the fraction of vertices of degree k that are occupied, and
θ , the probability that a given edge points to an occupied

vertex. These variables can be related through the size-biased
degree distribution qk = kpk/〈d〉, which is the distribution
of the degree of a vertex at the end of a randomly chosen
edge:

θ =
∑

k

qkρk. (8)

Note that for homogeneous networks we assumed θ = ρ. As
before, the state of the neighbors of a vacant vertex are assumed
to be independent. So the number of occupied neighbors of a
vertex of degree k follow a distribution Binomial(k,θ ). This
enables us to apply this approach to the VQCP. We write
equations for ρk ,

ρ̇k = −ρk + λ(1 − ρk)

(
k

2

)
θ2. (9)

So, in steady state,

ρk∗ = λ
(
k

2

)
θ2
∗

1 + λ
(
k

2

)
θ2∗

. (10)

Combining Eqs. (8) and (10) leads us to a self-consistent
equation for θ∗,

θ∗ = θ∗I (λ,θ∗), (11)
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FIG. 2. (Color online) Steady-state density reached, starting from
all vertices occupied, for QCP on homogeneous networks of various
sizes n.
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where

I (λ,θ ) =
∞∑
k

kpk

〈d〉

[
λ
(
k

2

)
θ

1 + λ
(
k

2

)
θ2

]
. (12)

Clearly, θ∗ = 0 is a solution of Eq. (11). Finding a nontrivial
solution involves solving

I (λ,θ∗) = 1, θ∗ ∈ (0,1). (13)

For power-law graphs PL(α), the mean-field calculation
predicts

(i) If α > 3, λc > 0 and the transition is discontinuous;
(ii) If α = 3, λc > 0 and the transition is continuous;

(iii) If 2 < α < 3, λc = 0, the transition is continuous, and
ρ∗(λ) ∼ Cλγ (α).
We put the details in the Appendix.

A second way to determine the nature of the phase transition
is to adapt the argument of Gleeson and Cahalane [16], which
can be applied if we use a discrete time version of the model
in which a vertex with k neighboring pairs will be occupied at
the next step with probability 1 − (1 − p)k . The computation
in their Eqs. (1)– (3) supposes that the vertices at a distance
n from x are independently occupied with probability ρ0. The
function G(ρ) defined in their Eq. (3) gives the occupancy
probabilities at distance k − 1, assuming that the probabilities
at distance k are ρ. Iterating G n times and letting n → ∞
gives a prediction about the limiting density in the cascade.
If one repeats the calculation for our system, then 0 is an

unstable fixed point when α < 3, while it is locally attracting
for α > 3. This agrees with the mean-field prediction of λc = 0
in the former case and a discontinuous transition with λc > 0
in the latter.

IV. SOME RIGOROUS RESULTS

We have not been able to extend the mean-field calculation
to the EQCP on power-law graphs, but by generalizing an
argument of Chatterjee and Durrett [35], we can prove that
λc = 0 for α ∈ (2,∞). The details are somewhat lengthy, so
we only explain the main idea. Consider a tree in which the
vertex 0 has k neighbors and each of its neighbors has l

neighbors, and l is chosen so that lλ � 10. One can show
that if k is large, then with high probability the infection will
persist on this graph for time � exp[c(λ)k]. In a power-law
graph, one can find such trees with k = n1/(α−1). Using the
prolonged persistence on these trees as a building block, one
can easily show that if we start with all vertices occupied, the
infection persists for time � exp(n1−ε) with a positive fraction
of the vertices occupied. With more work (see Refs. [42,43]),
on can prove persistence for time exp[c(λ)n].

For both types of QCP, it is easy to show that it is impossible
to have a discontinuous transition with λc = 0. The proof
for VQCP is as follows. Let 〈1k〉 be the expected number of
occupied sites of degree k and 〈10k1〉 be the expected number
of 1 − 0 − 1 triples when the 0 vertex has degree k. We can
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FIG. 3. (Color online) Steady-state density reached, starting from all vertices occupied, for QCP on power-law networks of various sizes
n. Note that the λ axis is in the log scale.
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write an equation similar to Eq. (4),

d

dt
〈1k〉 = −〈1k〉 + λ〈1 − 0k − 1〉, (14)

which means at steady state,

〈1k〉∗ = λ〈1 − 0k − 1〉∗ � λ〈0k〉∗
(

k

2

)

⇒ ρk∗ � λ(1 − ρk∗)

(
k

2

)
⇒ ρk∗ �

λ
(
k

2

)
1 + λ

(
k

2

) . (15)

So, as λ → 0, ρk∗ → 0 and ρ∗ = ∑
k ρk∗pk → 0. Thus, the

transition will be continuous. The proof for EQCP is similar.
In that case, the subscript k stands for the secondary degree d (2),
which is defined as the number of neighbors of neighbors of a
given vertex (not including itself), i.e., d (2)(x) = |{z : z ∼ y,

y ∼ x,z �= x}|:
d

dt
〈1k〉 = −〈1k〉 + λ〈1 − 1 − 0k〉. (16)

So, at steady state,

〈1k〉∗ = λ〈1 − 1 − 0k〉∗ � λ〈0k〉∗k ⇒ ρk∗ � λk

1 + λk
.

(17)

Thus, for both QCP types we find that if λc = 0, then the phase
transition is continuous.

For both QCP types on random r-regular graphs, we can
show that the critical birth rate is positive as follows. In
the EQCP let there be m occupied vertices. Each of these
m vertices can have at most r neighbors that are vacant and
can give birth on to them at a rate �(r − 1)λ or die at rate 1.
So, the total birth rate in the network is �(r − 1)λrm against a
death rate of m, and it follows that λc > 1/r(r − 1). Similarly,
for the VQCP, the total birth rate is �λ

(
r

2

)
rm, and it follows

that λc > 1/r
(
r

2

)
. These arguments depend on the degree being

bounded, so they do not work for Erdős-Rényi and power law
graphs.

V. SIMULATION RESULTS

We perform simulations of the QCP on RR(4), ER(4),
and PL(2.5). We generate the random regular and power law
random graphs using the recipe called configuration model
[44]. We draw samples dx from the degree distribution and
attach that many “half-edges” to vertex x. We pair all the half
edges in the network at random. We then delete all self loops
and multiple edges. When α > 2, this does not significantly
modify the degree distribution. If

∑
x dx turns out to be odd

(an event with probability ≈ 1
2 ), we ignore the last remaining

unpaired half-edge. Furthermore, for PL(2.5), we start the
degree distribution at 3 as, in the VQCP, the vertices of degree
1 and 2 are impossible or difficult to get occupied.

To deal with finite-size effects, we observe how the plot
of the steady-state density ρ∗(λ,1) versus λ starting with all
vertices occupied changes when size n of the network ranging
from 103 to 105. Figure 2 shows the results of both QCP
types on RR(4) and ER(4). Here the curves seem to converge
to a positive value implying a positive λc. The results for
PL(2.5) are shown in Fig. 3. We observe that the transition
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FIG. 4. (Color online) Steady-state density reached, starting from
two different initial densities ρ(0), for QCP on homogeneous networks
of size n = 105. Notice the similarity with the mean-field prediction
shown in Fig. 1.

happens close to zero and moves toward zero with increasing
n, indicating that the critical birth rate is zero. As explained
earlier, if λc = 0, then the transition is continuous. This is
consistent with the the mean-field predictions for the VQCP
and rigorous result for EQCP. In addition, in Fig. 3(a), the
critical exponent for the n = 105 curve can be measured to be
approximately 1.45, which is close to the mean-field value of
1.5 [obtained by setting α = 2.5 in Eq. (A4)].

In order to further investigate the phase transitions in
random regular and Erdős-Rényi graphs, we look at the
steady-state density attained by starting from two different
initial densities for the same network size n = 105. Figure 4
again shows a similar pattern across both QCP and both
network types. In Fig. 4(b), we see that for birth rates between
0.9 and 2.3, the VQCP survives when the starting configuration
had all vertices occupied but dies out when starting with only
one-tenth of the vertices occupied. Thus, we see bistability in
the region λ ∈ (0.9,2.3), implying a discontinuous transition
and, consequently, that λc is positive and close to 0.9. This
is qualitatively in agreement with the mean-field prediction
seen in Fig. 1, although the critical birth rate of 0.9 shows a
deviation from the mean-field value of 8/42 = 0.5.
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FIG. 5. (Color online) Steady-state density when the birth rate is
infinite in the VQCP on various networks of size n = 105. Note that
the ρ(0) axis is in the log scale.

Fontes and Schonmann [45] have shown that for bootstrap
percolation on the tree there is a critical density pc so that if
the initial density is < pc then the final bootstrap percolation
configuration has no giant component of occupied sites. In this
situation, having deaths at a positive rate in the VQCP will lead
to an empty configuration. The last argument is for the tree, but
results of Balogh and Pittel [46] show that similar conclusions
hold on the random regular graph. While this argument is not
completely rigorous, the reader should note that since all of
the VQCP are dominated by bootstrap percolation, it follows
that the limiting critical initial density defined in Eq. (3) has
ρc > 0 in contrast to the mean-field prediction in Eq. (7).
Figure 5 shows the final density attained as a function of the
initial density when the birth rate is infinite (and death rate
is positive). We see that ρc in the VQCP is positive for the
random regular and Erdős-Rényi graphs, whereas it is zero for
the power-law graph. The corresponding results (not shown
here) in the case of the EQCP indicate that ρc = 0 for random
regular, Erdős-Rényi, and power-law random graphs.

VI. CONCLUSION

In this paper we have investigated the properties of two
versions of the quadratic contact process on three types of
random graphs. The mean-field calculations we performed
agree qualitatively with the simulation results. This may be
due to the fact that complex networks have exponential volume
growth and, therefore, are like infinite dimensional lattices
where mean field is exact.

Table I summarizes what is known about the phase
transitions of contact processes in one- and two-dimensional
lattices and on the random graphs RR, ER, and PL. The
positivity of the critical birth rate for 1D, 2D, and RR follows
trivially from the boundedness of their degrees. For VQCP on
a 1D lattice, two consecutive 0’s can never get filled and it
follows that λc = ∞. The results for the linear process on RR
are inferred from the rigorous results for trees and the fact that
RR is locally tree like.

TABLE I. Nature of phase transitions of contact processes on
various networks. Note that “0,” “+,” and “∞” stand for zero, positive,
and infinite values, respectively, of λc.

Linear CP Vertex QCP Edge QCP

1D Cont., +[47,48] NA, ∞ Cont., +[49]
2D Cont., +[48,50] Discont., +[32] Cont., +[34]
RR Cont. [51], +[52] Discont., + Discont., +
ER Cont., +[36] Discont., + Discont., +
PL[(2,3)] Cont., 0 [35] Cont., 0 Cont., 0
PL(3) Cont., 0 [35] Cont., + Cont., 0
PL[(3,∞)] Cont., 0 [35] Discont., + Cont., 0

The results indicate that the EQCP is qualitatively not very
different from the linear contact process on low-dimensional
lattices and power-law graphs, in contrast to the VQCP, which
differs from its low-dimensional analog. In view of the fact
that they are very different in how they fill vacant vertices on
a network, the similarity between VQCP and EQCP in their
phase transitions on complex networks is a little perplexing.

The EQCP can easily propagate on a chain and “cross
bridges” connecting communities, compared to the VQCP,
which always requires two occupied neighbors. In the EQCP,
vertices with a large number of neighbors of large degree
are the key to its survival. However, in the VQCP it is
impossible for the central vertices to repopulate the leaves,
so these structures are not long lasting. In contrast, the
Gleeson-Cahalane calculation suggests that survival is due to
the fact that as waves of particles move through the system,
the densities increase.
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APPENDIX

Our task is to find the solutions of I (λ,θ ) = 1, with θ ∈
(0,1), where

I (λ,θ ) =
∞∑

k=1

kpk

〈d〉

[
λ
(
k

2

)
θ

1 + λ
(
k

2

)
θ2

]
.

To simplify the computation, C will denote a positive finite
constant whose value is not important and that may change
from line to line. In what follows a ∼ b means a/b → 1.

To begin, we note that if pk ∼ Ak−α , with α > 4, then using
the fact that the denominator 1 + λ

(
k

2

)
θ2 � 1,

I (λ,θ ) � θλ

2〈d〉
∑

k

Ck3−α → 0, (A1)

as θ → 0. When 3 < α � 4, we break the sum at k = 1/θ�,
where x� is the largest integer � x. Lower bounding the
denominator by 1 in the first sum and by λ

(
k

2

)
θ2 in the second,

I (λ,θ ) � θλ

2〈d〉
1/θ�∑
k=1

Ck3−α + 1

θ〈d〉
∞∑

k=1/θ�+1

Ck1−α → 0,

(A2)
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as θ → 0, since
∑

k k1−α < ∞ and
∑1/θ�

k=1 k3−α ∼ Ck4−α and
4 − α < 1. Since I (λ,1) < 1 for all λ, the curve will have
supθ∈[0,1] I (λc,θ ) = 1 at some λc. For λ > λc, there will be
two roots, the larger of which is the relevant solution, since we
must have θ (λ) > θ (λc).

When 2 < α � 3, changing variables k = x/θ and then
approximating the sum by an integral we have that
as θ → 0

I (λ,θ ) ∼ C
∑

x∈θZ+
(x/θ )1−α

λ
(
x/θ

2

)
θ

1 + λ
(
x/θ

2

)
θ2

∼ Cθα−3
∫ ∞

0
x1−α λx2

1 + λx2
dx. (A3)

From this we see that if 2 < α < 3, then as θ → 0, I (λ,θ ) →
∞, so there is a solution to I (λ,θλ) for any λ > 0, and θλ → 0
as λ → 0. To get an approximate formula for θλ, we change
variables x = y/

√
λ to get

I (λ,θ ) ∼ Cθα−3λ(α−2)/2
∫ ∞

0
y1−α y2

1 + y2
dy.

For small values of λ, solving I (λ,θλ) = 1 gives

θλ ≈ λ(α−2)/2(3−α). (A4)

The steady state density ρ∗ can be calculated from θ∗ using
Eq. (10).

ρ∗ =
∑

k

pkρk∗ = C
∑

k

k−α
λ
(
k

2

)
θ2
∗

1 + λ
(
k

2

)
θ2∗

.
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FIG. 6. (Color online) I (λ,θ ) versus θ near λ = λc for various
power-law graphs.

Approximating the sum by an integral as before, we get

ρ∗ ∼ Cθα−1
∗ λ(α−1)/2

∫ ∞

0
y−α y2

1 + y2
dy ∼ Cλγ (α), (A5)

where the critical exponent is

γ (α) = (α − 1)

[
α − 2

2(3 − α)

]
+ α − 1

2
= 1

3 − α
− 1

2
.

In the borderline case α = 3, the limit as θ → 0 is finite.
Since θ → I (λ,θ ) is decreasing, there is a critical value λc

so that I (λc,0) = 1 and for λ > λc we have one solution
I (λ,θλ) = 1, which has θλ → 0 as λ → λc. The behavior of
I (λ ≈ λc) for various values of α is shown in Fig. 6.
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