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Density-feedback control in traffic and transport far from equilibrium
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A bottleneck situation in one-lane traffic flow is typically modelled with a constant demand of entering cars.
However, in practice this demand may depend on the density of cars in the bottleneck. The present paper studies
a simple bimodal realization of this mechanism to which we refer to as density-feedback control (DFC): If the
actual density in the bottleneck is above a certain threshold, the reservoir density of possibly entering cars is
reduced to a different constant value. By numerical solution of the discretized viscid Burgers equation a rich
stationary phase diagram is found. In order to maximize the flow, which is the goal of typical traffic-management
strategies, we find the optimal choice of the threshold. Analytical results are verified by computer simulations of
the microscopic totally asymmetric exclusion process with DFC.
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I. INTRODUCTION

In the physical literature, traffic flow is modelled from
different viewpoints as hydrodynamic models (on a macro-
scopic scale) or microscopic stochastic models. Microscopic
approaches usually can be considered as a generalization of
the so-called totally asymmetric exclusion process (TASEP).
The model is defined on a discrete one-dimensional lattice
that represents the road. Each lattice site can either be empty
or occupied by exactly one particle (car). If the site in front
is empty, cars move to the next site at a certain rate or prob-
ability depending on the dynamics (either random-sequential
or parallel). This process is widely studied mathematically
and due to its exact solvability it is of great interest for
nonequilibrium statistical physics; see Ref. [1] for a recent
review. Of particular mathematical interest is the model with
open boundaries, where particles may enter the first site at
rate α and leave the last site at rate β that differs from the
bulk-hopping rate in general. Depending on the values of
those parameters one finds that the system can be in either
of three phases, a low-density phase, a high-density phase, or
a maximum-current phase. For traffic applications one often
uses a parallel update instead of the generic random-sequential
update studied here. Note that if cars are allowed to move
further than a single site under such a parallel update scheme
this leads to the so-called Nagel-Schreckenberg model [2].
On the other hand, the macroscopic approaches are typically
based on investigations of Lighthill and Witham [3], who
described the effect of moving traffic jams by traveling-wave
solutions of a simple partial differential equation. Since this
inital work, there have been a number of generalizations of the
hydrodynamic approach [4,5]. For example, the viscid Burgers
equation is a generalization of the Lighthill-Witham equation
with an additional diffusive term. This modification is enough
to describe qualitatively on a hydrodynamic Eulerian scale the
TASEP phase diagram; see Ref. [6] for further references.
By discretization of space, the Burgers equation recovers
the mean-field equations of the TASEP in which correlations
between neighboring sites of the lattice are neglected [7].
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The present paper models a road section to which cars
can enter at the left end and leave at the right end. Common
physical approaches of microscopic and macroscopic models
assume a constant demand for entering the lattice. In the
TASEP this is reflected by a constant rate α at which a particle
enters the first lattice site if it is empty. From the viewpoint
of the Burgers equation this corresponds to a constant left
reservoir density ρl = α of customers. This fact will be
changed in our investigations; see Refs. [8–11] for related
approaches. One way to think about it is to assume that those
customers have a route alternative [12–14] and that they can
anticipate the density of cars on the road section, and then
a fraction of those customers will take an alternative if the
density ρ exceeds a certain threshold ρ∗. Thus, the density
of potential customers is reduced from ρl = ρ− to ρl = ρ+
if ρ > ρ∗. In TASEP, this change of the reservoir density is
reflected by different insertion rates α− = ρ− and α+ = ρ+.
The same scenario can be transferred from the viewpoint of
individual drivers to the viewpoint of a traffic-management
center that tries to control the density in the system in order,
for example, to maximize the flow. At both ends of the road
section there might be sensors that count entering and leaving
cars and the controller is able to change the inflow if a
certain number of cars is exceeded. Obviously if one does
not control the outflow from the bottleneck as well, one will
not generally be able to keep a desired density in the system.
However, it is interesting to decide whether this incomplete
regulation can be appropriate for real traffic situations in
certain parameter regions. The scenario can be interpreted
as a sort of ramp metering and reflects a common way of
flow maximization in practice [15–17]. One way to reduce
the time-averaged inflow is by a traffic light that switches
the effective left-reservoir density to zero from time to time
[7,18,19]. Another possible application of this varying input
rate is the concept of dynamic toll: At the entrance (which
plays the roll of a toll booth) a prize for passing the road
section is computed in dependence of the current occupation
of vehicles [13,20,21]. While those problems are specially
dedicated to traffic, the considerations of the present paper are
quite general so results apply not only to traffic but also to other
transport scenarios far from equilibrium (see Ref. [6] for an
overview of applications in other research areas as intracellular
transport) with density-feedback control as well.

062818-11539-3755/2013/87(6)/062818(7) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.87.062818


MARKO WOELKI PHYSICAL REVIEW E 87, 062818 (2013)

The remainder of the paper is as follows. In Sec. II,
we define the TASEP with density-feedback control (DFC)
that generalizes the particle-insertion procedure of the usual
TASEP. We continue by deriving its mean-field equations
from the Burgers equation with the modified boundary
condition. The following Sec. III presents analytical results
from numerical solutions of the mean-field equations. Special
interest is given to the phase diagram of the TASEP influenced
by DFC. Section IV shows how DFC can be used for flow
optimization in TASEP and highlights the benefit of DFC in
contrast to the generic TASEP. In Sec. V computer simulations
of TASEP with DFC are presented and compared to the
analytical predictions before we formulate our conclusions.

II. MODEL DEFINITIONS

First, the mechanism of density-feedback control is defined
from the microscopic and macroscopic viewpoints and how
they translate into each other is discussed.

A. Density-feedback control TASEP

The microscopic TASEP model is defined on a one-
dimensional lattice with L sites, labeled from left to right
as l = 1, 2, . . . ,L. Each site is either occupied by a single
particle or is empty; this defines its time-dependent states,
τl(t) = 1 (occupied) and τl(t) = 0 (empty). Particles whose
right neighboring site is vacant may move onto this site at rate
p. From the last site a particle leaves the system at constant
rate β, while particles enter the system on site 1 at rate α. The
process is considered in continuous time, where we can set the
time scale by taking p = 1. In the following we consider the
TASEP with DFC, which implies modified particle insertion
as follows:

α(N ) =
{
α−, for N < N∗
α+, for N � N∗ . (1)

Hence, the probability that a particle enters the lattice at site 1
takes a different value if the actual particle number N is above
or below a threshold N∗.

We note certain limits of this process: if ρ∗ = 0 (ρ∗ = 1)
one recovers the TASEP with α = α+ (α = α−). If we take
α+ = 0 the process is very related to the works of Refs. [9–11].
In those works, however, the TASEP is considered with a
constrain on the overall particle number, including the single
reservoir from which particles are injected and to which
particles leave the lattice.

B. Burgers equation approach

The starting point for the macroscopic description is the
viscous Burgers equation,

∂ρ

∂t
+ ∂[ρ(1 − ρ)]

∂x
= D

∂2ρ

∂x2
, (2)

for the density ρ = ρ(x,t) with the right boundary condition
x(L,t) = ρr . Instead of the generic left-hand boundary condi-
tion

ρ(0,t) = ρl, (3)

we use a dynamical density ρl(t) that depends on the (spatially)
averaged density ρ̄(t) at time t as

ρl(t) =
{
ρ−, for ρ̄(t) < ρ∗
ρ+, for ρ̄(t) � ρ∗ . (4)

Here ρ∗ is a limiting density beyond which ρl is reduced in
order to control the average density ρ̄. Note that all densities
are normalized to remain in the interval [0; 1]. For numerical
simulations we chose an initial linear profile ρ(x,0) = (ρr −
ρ−)x/L + ρ− and let the system evolve into the steady state.
We emphasize that the phase boundary between the HD+ and
HD− phases depends on the initial condition.

The numerical results for the Burgers equation are obtained
by spacial discretization. This leads to [7]

∂

∂t
ρi = −(1 − 2ρi)

ρi+1 − ρi−1

2
+ D(ρi+1 + ρi−1 − 2ρi).

(5)

In the remainder of the paper the diffusion constant is set to
D = 1/2. This equation then turns into

∂ρi

∂t
= ρi−1(1 − ρi) − ρi(1 − ρi+1), (6)

which is nothing but the mean-field equation for the micro-
scopic dynamics of the TASEP. The following section presents
the results from numerical solutions of those mean-field
equations.

III. ANALYTIC RESULTS

The mean-field theory assumes that correlations between
neighboring sites vanish, so the probability to find a certain
lattice configuration factorizes into simple on-site factors,
namely ρi if site i is occupied and 1 − ρi if site i is empty;
compare [6]. In the present realization the boundary conditions
are ρL+1 = ρr = const and

ρ0 = ρl =
{

ρ−, for ρ̄ < ρ∗,

ρ+, for ρ̄ � ρ∗,
with ρ̄ = 1

L

L∑
i=1

ρi.

(7)

Further,

ρ1(1 − ρ2) = ρl(1 − ρ1) and (1 − ρr )ρL = ρL−1(1 − ρL).

(8)

The general solution for 1 < i < L is [22]

ρi = −ρsρu

(
ρi−1

s − ρi−1
u

) + (
ρi

s − ρi
u

)
ρ1

−ρsρu

(
ρi−2

s − ρi−2
u

) + (
ρi−1

s − ρi−1
u

)
ρ1

. (9)

Here ρs and ρu are the solutions of J = ρ(1 − ρ). From
Fig. 1(a) we can identify the well-known phases: low-density
(LD) phase: ρ̄ = ρl for 1 − ρr > ρl and ρl < 1/2; high-
density (HD) phase: ρ̄ = ρr for 1 − ρr > ρl and 1 − ρr <

1/2; and maximum-current (MC) phase: ρ̄ = 1
2 for ρl,1 −

ρr > 1/2. Now we investigate the new boundary condition (4).
Table I shows the phases that can be identified.

Before we turn into details, we emphasize that the various
phases in Table I indicated by − and + are coupled effectively
by either of the left reservoirs at densities ρ− and ρ+,
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FIG. 1. (Color online) Phase diagrams. (a) Generic left boundary
condition (3) corresponding to ρ− = ρ+ = ρl and below (b)–(d) for
the dynamic boundary condition (4). The coloring encodes the value
of the average density ρ̄. (b) α− = 0.6 and α+ = 0.2 so ρ+ < 1/2 <

ρ−; (c) α− = 0.8 and α+ = 0.6 (1/2 < ρ+ < ρ−); (d) α− = 0.4 and
α+ = 0.2 (ρ+ < ρ− < 1/2).

respectively. Additionally, two phases are observed that are
completely new compared to the generic TASEP; see Table I.
Those are the controlled-density (CD) phase and the co-
existence (CE) phase. Figure 2 shows typical density profiles

TABLE I. Average left-hand and overall density in the various
phases.

Phase ρeff
l ρ̄

Low-density (LD+) ρ+ ρ+
Low-density (LD−) ρ− ρ−
High-density (HD+) ρ+ ρr

High-density (HD−) ρ− ρr

Maximum-current (MC−) ρ− 1/2
Maximum-current (MC+) ρ+ 1/2
Controlled-density (CD) ρ∗ ρ∗

Coexistence (CE) phase 1 − ρr ρ∗

of those phases. One sees that the CE phase exhibits a stable
upward shock that separates a high-density region and a
low-density region. In both phases the system is not dominated
by contact with either of the two left reservoirs but both
reservoirs are coupled in rapid alternation to the system.
Summarizing, the stationary system behaves as if it would be
coupled to an effective left boundary reservoir with constant
density ρeff

l that differs from phase to phase; see Table I. In each
phase, it is helpful to have in mind where on the horizontal axis
of the generic phase diagram from Fig. 1(a) the values of ρ−,
ρ+, and ρeff

l locate. One then can imagine in each case which
phases are reached by variation of ρr , i.e., by moving vertically
through the generic phase diagram. The reader shall imagine
those vertical lines for ρ− and ρ+ in order to understand
phenomenologically the value of ρeff

l in the different cases
shown in Figs. 1(b)–1(d) that are explained in the following.
We begin with Fig. 1(c): If both ρ+ and ρ− exceed 1/2, both
those lines cross the MC-HD transition line. In both cases, MC
and HD phases appear for 1 − ρr greater or smaller than 1/2,
respectively. In the MC phase, for ρ∗ < 1/2 (ρ∗ > 1/2), the
average density ρ̄ = 1/2 is smaller (greater) than ρ∗. Therefore
ρeff

l equals ρ+ (ρ−) for ρ∗ < 1/2 (ρ∗ > 1/2) and the MC
phase is distinguished in MC+ and MC−. Also the HD phase
is distinguished further: Both (sub-)phases are separated by

FIG. 2. Density profiles for typical values of ρl and ρr . Top
figures: CD phase; bottom figures: CE phase.
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the line ρr = ρ∗. Since ρr is the bulk density, in the region
ρr < ρ∗ one finds ρeff

l = ρ− with the help of (4). Therefore,
this is the HD− phase. Similar arguments hold for the HD+
phase.

If ρ+ < 1/2 and ρ− > 1/2, one arrives at the phase diagram
in Fig. 1(b). The location of the LD+ phase is explained as
follows: First, from the TASEP phase diagram Fig. 1(a) it
is known that a low-density state is reached for 1 − ρr > ρl ;
second, if ρ∗ < ρ+ then it is evident from (4) that the system
behaves as if there would be a left boundary reservoir with
density ρeff

l = ρ+. In case of Fig. 1(b) only ρ− is large enough
to lead to an MC phase. Hence, the occurring phase has ρeff

l =
ρ− and is referred to as the MC− phase. The imaginary vertical
line ρ+ in Fig. 1(a) crosses the coexistence line between the
high- and low-density phases where ρl = 1 − ρr in the generic
TASEP. This crossing leads to the CE phase, consequently,
with ρeff

l = 1 − ρr . The CD phase is in fact a low-density
phase with ρeff

l = ρ∗, appearing here for ρ+ < ρ∗ < 1/2.
What happens is quite intuitive: The system is equilibrated at
the left end due to permanent change of contact with reservoir
densities ρ+ and ρ− around the control value ρ∗. In the same
way one can explain the phase diagram Fig. 1(a). Regarding
the appearance of the LD− phase, if ρ∗ > ρ−, it is expected
with (4) that the average density becomes ρ− and the system
remains in contact with the ρ− reservoir. Finally, we stress that
the bulk density ρ̄, given in Table I, can be deduced from the
maximum-current principle [6,7] which takes here the form

J = ρ̄(1 − ρ̄) =
{

min[ρeff
l ,ρr ]ρ(1 − ρ), if ρeff

l < ρr

max[ρeff
l ρr ]ρ(1 − ρ), if ρeff

l > ρr
.

(10)

In the CE phase one finds coexistence of an HD phase at
density ρr and a CD phase at density 1 − ρr . Where both
regions merge a shock is formed; see Fig. 2. Since the average
density remains ρ̄ the position xs of the shock is given by
ρ∗ = (1 − ρr )xs + ρr (L − xs). The phase diagram as depicted
in Fig. 1(b) obviously holds only if we take ρ− > 1/2 and
ρ+ < 1/2. If both values exceed 1/2 the system is in HD
phases for ρr > 1/2 and MC phases otherwise [23]. If both
ρ+ and ρ− have values below 1/2, then obviously MC phases
are suppressed. The results are shown in Fig. 1(c) and 1(d).

IV. FLOW OPTIMIZATION BY DFC

A. Optimal choice of ρ∗

The phase diagram of the TASEP with DFC (see Fig. 1)
and the values of ρ̄ in the various phases (see Table I) give
an idea how to set the threshold ρ∗ in order to keep the flow
as large as possible. One can think of α− being given by the
(constant) demand of incoming drivers and β being given by
the characteristics of the outflow region of the bottleneck.
We consider the scenario of Fig. 1(b) and, thus, argue from
the viewpoint of the mean-field description. We move through
the phase diagram on a virtual horizontal line for constant
β. Here one can distinguish the following three cases: The
bulk density starts at α+ and then takes the value of ρ∗ and
increases until it reaches the value of 1/2 (case 1: for 1/2 <

β < 1) or 1 − β (case 2: for α+ < β < 1/2). In case 3 (for
0 < β < α+) the bulk density remains at 1 − β for all choices

of the threshold ρ∗. From a traffic viewpoint, the interest is in
maximizing the flow. The closer the density is to 1/2, the higher
the flow becomes, due to the relation J = ρ(1 − ρ). Thus, in
case 1 the flow is maximized for ρ∗ � 1/2 and in case 2 for
exactly 1/2 (in case 3, remember, it is independent of ρ∗). Now
consider Fig. 1(c). In case 1 the flow is maximized for ρ∗ �
ρr (= 1 − β) and in case 2 for ρ∗ = 1/2. Finally, consider
Fig. 1(d). For β > 1/2 (β < 1/2) the flow is independent of
ρ∗ equal to 1/2 [β(1 − β)]. Thus, concluding, one can say that
the choice ρ∗ = 1/2 theoretically is always the best in order
to maximize the flow. This result is expected since this is the
density at which the flow has its maximum. Therefore, in the
following we restrict ourselves to this case, noting that results
easily convert to the general case.

B. Benefit by DFC

Figure 3 illustrates the benefit of DFC. The dashed red
(continuous green) objects correspond to the case where ρ− >

1/2 (ρ− < 1/2). In Fig. 3(a) we draw an analogy to the generic
system in assuming that ρ− corresponds to the generic left
reservoir density. The figure then shows that the switching to
a lower density ρ+ leads to a conversion of a high density
to density 1/2. Figure 3(b) shows the benefit of DFC in the

FIG. 3. (Color online) (a) Optimization of density and flow by
conversion of high density into density 1/2 by DFC. (b) Phase
diagram showing the benefit of DFC. The dashed red (continuous
green) triangle is the region that is optimized to a maximum-current
region by density-feedback control for ρ− > 1/2 (ρ− < 1/2).
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(ρ+,β) plane. For simplicity we write β instead of 1 − ρr . One
sees the according additional triangular MC region belonging
to this benefit.

Above the dashed line (and ρ− > 1/2) the system is in
the MC phase. The outflow is high enough (β > 1/2) to
suppress HD phases and therefore no optimization is possible
there. Similarly, above the continuous line (and ρ− < 1/2) the
system is in the LD phase where the density is smaller than
1/2. Since DFC can only lower the density, the flow can never
be optimized. To the right of the triangles (ρ+ > β) and below
the line (β < 1/2 or β < ρ−, respectively) one finds the HD
phase. Since both ρ− and ρ+ are larger than β, the inflow
is always higher than the outflow and the high-density phase
cannot be left by variation of ρ+.

V. SIMULATION RESULTS

We repeat that the results of Sec. III are exact consequences
of the discretized Burgers equation (6); however, they will,
in general, not be exact for the corresponding TASEP with
DFC, since the latter is described by (6) on a mean-field level.
The weakness of the mean-field approach is that it ignores
correlations arising from spatial inhomogeneities, including
the existence of boundaries. However, for the quantity of
interest, namely the average density at threshold ρ∗ = 0.5,
results will turn out to be in good agreement.

A. Simulation of the TASEP with DFC

Figure 4 shows space-time plots with increasing space
coordinates in the right direction and time increasing in
the downwards direction. Standing particles that entered at
densities lower than ρ∗ are in red (gray) while standing
particles that entered at higher densities are in black. Plotted

FIG. 4. (Color online) Space-time plots for ρ∗ = 0.5 in a system
with 100 cells. In panels (a), (b), and (c): α− = 0.6, α+ = 0.2, and
β = 0.1. [(a) HD+ phase] β = 0.3, [(b) CE phase] β = 0.6, (c) MC−
phase (transition line to CD phase). α− = 0.4, α+ = 0.2, β = 0.6 in
[(d) LD− phase].

are only those time steps where a move occurs; for the moving
particle there is an additional color that is not important.

In order to average quantities in the steady state, it turns out
that the simulation of the TASEP with DFC converges very
slowly. Therefore, as in Refs. [9–11], it was chosen to feed
the simulation at the expected density. For our studies, thus,
the mean-field density serves as initial value. During 2 × 106

time steps the system is let alone and afterwards every 100 time
steps the density is measured over 5 × 106 steps. The average
over the steady states of 100 different initial configurations
was taken.

B. Comparison with the mean field

First, we will verify that the different phases resulting
from the mean-field theory indeed occur in the TASEP with
DFC and that the physics is correctly predicted. Figure 5(a)
shows the simulated density profiles that correspond to the
space-time plots of Fig. 4: The green circles saturating at
density 0.9 show the HD profile of Fig. 4(a) and reproduce the
mean-field density ρr of HD phases. The profile of red squares
corresponds to the CE phase of Fig. 4(b) and clearly shows the
coexistence of low and high densities so the existence of the
shock phase in the TASEP with DFC is verified. The profile
corresponding to Fig. 4(c) on the transition line between CD
and MC is given by the blue diamonds showing the flat profile
around density 1/2, which is the average density predicted by

FIG. 5. (Color online) The figures show simulation results in case
of ρ∗ = 0.5 for a system of length . (a) Density profiles corresponding
to Fig. 4. (b) Average density versus β. Red squares belong to
ρ+ = 0.2 and ρ− = 0.6 [parameter case as in Fig. 1(b)], green circles
correspond to ρ+ = 0.6 and ρ− = 0.8 [parameter case as Fig. 1(c)],
and blue diamonds correspond to ρ+ = 0.2 and ρ− = 0.4 [parameter
case as Fig. 1(d)].
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the mean field. Finally, the situation shown in Fig. 4(d) has a
flat profile with a constant density of 0.4. Note that in this case
(ρeff

l = 1 − ρr ) the mean-field becomes exact.
Now we turn to the simulation of the average density in the

system against β in order to verify that densities and phase
boundaries are correctly predicted. The results are shown in
Fig. 5(b). See the figure caption for more details. One sees
that the green circles are on the line ρ = ρr for β < 0.5 and
that ρ = 0.5 for β � 0.5 (which corresponds to the transition
from HD to MC) as predicted by the mean field. The red
squares start in HD and clearly jump at ρ+ = 0.2 to density
1/2 (corresponding to CE and MC). The blue diamonds clearly
show three phases [as can be seen from Fig. 1(d)]. Starting at
HD one sees the kink at β = ρ+ to the CE phase and another
transition at β = ρ− to MC and ρ = 1/2, which is also in
agreement with our mean-field predictions. Of course, the
sharpness of the transitions could be ameliorated by taking
larger system sizes.

VI. CONCLUSION

This paper studied a bottleneck situation of traffic with
inflow at the left and outflow at the right end which was
modeled by TASEP and the Burgers equation. For this
situation, a concept to control the overall density has been
analyzed. The left reservoir density takes the form ρl(ρ̄(t)) and,
thus, depends on the density at time t , generalizing the generic
constant left reservoir density. It is reduced from ρ− to ρ+ if
the spatially averaged density ρ̄(t) at time t lies above a certain
threshold ρ∗. In contrast, the right end is kept in contact to a
reservoir at fixed density ρr . The mechanism is referred to as
DFC. The same mechanism is provided in everyday life, where
cars enter a dense road section at a smaller rate when there
are possible alternatives. The paper showed that DFC can be
efficiently used to maximize the flow by converting a fraction
of the high-density phase to a maximum-current phase.

From numerical solution of the discretized Burgers equa-
tion the phase diagram in the plane spanned by ρ∗ and 1 − ρr

was derived that showed a rich phase behavior. The process
exhibits two low-density, high-density, and maximum-current

phases that correspond to the two left boundary reservoirs.
In addition, there is a phase in which high and low density
coexist so a macroscopic shock profile can be observed. This
phase corresponds to the coexistence line in the generic model
between the low- and high-density phases. There also is a
phase that is completely new compared to the generic model
but can be anticipated intuitively; in this phase, the repeated
change of the left-hand reservoir density around the threshold
ρ∗ leads to an effective density ρ∗. It was further investigated
for which choice of ρ∗ the flow is maximized. It could be shown
that, although in the generic TASEP the flow is monotonically
increasing with the left reservoir density, DFC optimizes the
flow if the threshold density is chosen appropriately.

For the optimal choice of the threshold (ρ∗ = 1/2), we
verified, with the help of Monte Carlo simulations, that the
mean field correctly predicts the average density (and therewith
the flow) in the system as well as the physics of the various
phases, including the coexistence phase. Note that simulations
in which the Heaviside dependence of the density was replaced
by a hyperbolic tangent with appropriate sharpness, inspired
by Ref. [9], have also been performed. This takes into account
a (realistic) delay of the adjustment of the left density through
feedback control. Further, the model with parallel dynamics
has been considered [24]. It turned out that results agree very
much with the continuous-time case studied here. Further
investigations could focus on the Nagel-Schreckenberg model
of traffic flow. It is known that the phase diagram of the
Nagel-Schreckenberg model remains even for larger maximum
velocity [18] (where cars can move more than a single site per
time step). While in the present model flow optimization is
achieved at a threshold density 1/2 one should decide whether
this generalizes to the density at which the flow becomes
maximal (as one would expect [17]). The next step is a
generalization to more realistic microscopic traffic models, as,
for example, the Krauß model [25], in order to study effective
traffic-management strategies based on DFC.
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