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Susceptible-infected-susceptible epidemics on networks with general infection and cure times
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The classical, continuous-time susceptible-infected-susceptible (SIS) Markov epidemic model on an arbitrary
network is extended to incorporate infection and curing or recovery times each characterized by a general
distribution (rather than an exponential distribution as in Markov processes). This extension, called the generalized
SIS (GSIS) model, is believed to have a much larger applicability to real-world epidemics (such as information
spread in online social networks, real diseases, malware spread in computer networks, etc.) that likely do not
feature exponential times. While the exact governing equations for the GSIS model are difficult to deduce
due to their non-Markovian nature, accurate mean-field equations are derived that resemble our previous N -
intertwined mean-field approximation (NIMFA) and so allow us to transfer the whole analytic machinery of
the NIMFA to the GSIS model. In particular, we establish the criterion to compute the epidemic threshold in
the GSIS model. Moreover, we show that the average number of infection attempts during a recovery time
is the more natural key parameter, instead of the effective infection rate in the classical, continuous-time SIS
Markov model. The relative simplicity of our mean-field results enables us to treat more general types of
SIS epidemics, while offering an easier key parameter to measure the average activity of those general viral
agents.
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I. INTRODUCTION

Since the first modeling of epidemics on general complex
networks by Pastor-Satorras and Vespignani [1], much effort
has been devoted to better understanding the interplay between
a simple dynamic process and the underlying network on
which the process operates. Although the susceptible-infected-
susceptible (SIS) model, which is one of the basis models in
epidemiology (see, e.g., [2–5]), is only a first-order description
of the spread of real epidemics, its simplicity and broad
applicability justify these thorough analyses. Indeed, the range
of applications is broad, ranging from biological virus spread
[6] and information spread in social networks [7] to malware
spread as an important threat for network security. While even
the simple SIS model on an arbitrary network leads to an
intractable analysis (due to state space explosion), mean-field
approximations have been reasonably valuable in some net-
works. Here, we further demonstrate the power of mean-field
theory in an important, practical generalization of the classical,
continuous-time (Markovian) SIS model on networks.

In previous papers [8,9], the SIS model is described using
exponential waiting times between infecting events and curing,
recovery, or healing events. This ensures that the state of the
process, describing for each node whether it is infected or not,
is a Markov chain. We know, however, that these exponential
distributions in general do not describe real-life epidemics well
[10–12]. Here, we extend our results to general waiting times.
Specifically, we generalize our previous N -intertwined mean-
field approximation (NIMFA) and focus on the metastable
state of the SIS epidemic process. The continuous-time SIS
model on any network, in which the infection time T and the
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curing or recovery time R have a general distribution, is called
the generalized SIS or GSIS model, of which the classical
continuous-time SIS Markov model is a special case.

II. THE GSIS MODEL WITH GENERAL WAITING TIMES

Consider a graph G with N nodes and adjacency matrix A.
Each node can be either infected or healthy; this is described
by the vector X, such that Xi = 1 if node i is infected,
and Xi = 0 if node i is healthy. If at time t node i gets
infected, we draw independently of everything else a recovery
time Ri(t) and given Ri(t), we independently draw, for each
neighboring edge j , a random number Mij (t) of infecting times

T
(1)
ij (t) � · · · � T

(Mij (t))
ij (t) � Ri(t) such that at times t + T

(k)
ij

node i tries to infect node j . If node j is already infected at
this time, nothing happens. Finally, at time t + Ri(t) node
i recovers and becomes healthy, but again susceptible to
infection. We will consider the random vector of node i,

Zi(t) = (
Ri(t),Yij1 (t), . . . ,Yijdi

(t)
)
,

where di denotes the degree of node i, and hence the number
of its neighbors, and where

Yij (t) = (
T

(1)
ij (t), . . . ,T

(Mij )
ij (t)

)
.

In particular, we confine our attention to the case where the dis-
tribution of Zi(t) does not depend on t , and if t1, . . . ,tk are the
times of infection for node i, we will assume Zi(t1), . . . ,Zi(tk)
to be independent and identically distributed (i.i.d.). Further-
more, we will assume that Yij1 (t), . . . ,Yijdi

(t) are i.i.d.
An exact analysis of the GSIS model on any network is

very likely intractable, so that only an approximate treatment
seems possible.
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III. MEAN-FIELD APPROXIMATION

We will determine the conditions for the distribution of
Zi such that a metastable state exists. Assuming that the
metastable state exists, a kind of ergodicity of the process
is required, for which it is relevant that the average recovery
time of a node i is finite, E[Ri] < ∞. Furthermore, we need
to control the number of infection events of a node i as
well, so we assume that E[Mij ] < ∞. We denote by vi the
probability that node i is infected in the metastable state. The
mean-field approximation [13,14] in this setting entails that,
when we determine the effect of the neighbors on node i, we
assume that node i does not influence its neighboring nodes in
some relevant way. We will now explain what this assumption
implies.

Consider node j as a neighbor of node i. In a large time
interval [0,S], the number of times node j was infected is
asymptotically linear in S by the elementary renewal theorem
[[15], p. 145]. Since the length of an infected period equals
E[R] (we omit the subscript for the node j , since the
expectation is the same for each node), the number of infected
periods is equal to vjS/E[R]. During each infected period,
node j will try to infect node i an average number E[M] of
times. This means that the total number of infection attempts
from node j to node i asymptotically equals vjSE[M]/E[R].
Now we apply the mean-field approximation: the fraction of
infection events from j to i that is successful (i.e., node i was in
fact healthy at the time of infection) equals 1 − vi . Hence, the
total number of successful infections that node i will receive
in the time interval [0,S] will asymptotically be equal to

S
∑
j∈Ui

E[M]

E[R]
vj (1 − vi),

where Ui denotes the index set of neighbors of node i, so
Ui = {j | aij = 1}. In the metastable state (where equilibrium
holds), this number must equal the number of infected periods
of node i in [0,S], so that

S

N∑
j=1

aij

E[M]

E[R]
vj (1 − vi) = vi

S

E[R]
.

In other words, we arrive, for any node i ∈ G, at

E[M](1 − vi)
N∑

j=1

aij vj = vi, (1)

which is exactly the same equation as in the N -intertwined
mean-field approximation in the exponential case [16], if
we replace τ = β/δ by E[M]. The expected number of
infection events in a Poisson process with intensity β within an
exponential recovery time with expectation 1/δ indeed equals
the effective infection rate τ = β/δ.

The analogy with the NIMFA equations in [8,16] allows us
to transfer the NIMFA analytic framework to the generalized
SIS model. It follows from (1) and the epidemic threshold
theorem in [8] that a lower bound for the epidemic threshold
in GSIS epidemics satisfies

mc = E[Mc] = 1

λ1
, (2)

where λ1 is the largest eigenvalue of the adjacency matrix A of
the graph G. Thus, if E[Mc] > mc, then the epidemic process
is eventually endemic (in the mean-field approximation), in
which a nonzero fraction of the nodes remains infected,
or the epidemic process dies out, after which the network
is overall healthy. While E[Mc] describes the activity of
the viral agents in SIS epidemics, the right-hand side in
the (mean-field) epidemic threshold equation (2) reflects the
structural properties of the underlying network and emphasizes
the role of the spectral radius λ1 of the graph G.

In the remainder, we will assess the accuracy of the GSIS
mean-field equations (1) and express the average number
E[M] of infection events during a healthy period R in terms
of the probability distribution of the infection time T and the
recovery time R. The main result is the general integral (4) for
E[M]. When assuming a Weibullean infection time T and an
exponential recovery time R, we will show in Sec. IV B1 that
the analytic solution of the epidemic threshold equation (2)
leads to the epidemic threshold scaling law (11) for large N

that was earlier observed in [12] via extensive simulations.

IV. DETERMINATION OF E[M]

We wish to emphasize that we arrived at (1) without
any assumption on the random vector Z, except for the
existence of E[M] and E[R]. However, it might be natural
to consider a renewal process T1,T2, . . . starting at the time
of infection, independent of the recovery time R, and running
until Tn � R < Tn+1. In that case, we would have M = n. We
will apply renewal theory [15, Chap. 8] to compute the number
of infection events M in the random time R. The waiting time
Wn = ∑n

k=1 Tk for n � 1 is related to the counting process
{M(t),t � 0} by the renewal equivalence {M(t) � n} ⇐⇒
{Wn � t}. Indeed, the number M(t) of infection events up
to time t is at least n if and only if the nth renewal occurred at
or before time t . By the law of total probability, we condition
on the random recovery time R,

Pr[Wn � R] =
∫ ∞

0
Pr[Wn � u|R = u]

d Pr[R � u]

du
du.

Since the time Wn of the nth infection attempt from node j to
node i and the recovery time R of node i are independent, we
have

Pr[Wn � R] =
∫ ∞

0
Pr[Wn � u]fR(u)du,

where fR(u) denotes the probability density function of the
recovery time R. Using the renewal equivalence {M(t) �
n} ⇐⇒ {Wn � t} and the expression for the mean in terms
of the tail probabilities yields

E[M(R)] =
∞∑

k=1

Pr[M(R) � k] =
∞∑

k=1

Pr[Wk � R]

=
∫ ∞

0

∞∑
k=1

Pr[Wk � u]fR(u)du. (3)

If fT (u) is the probability density function of the infection
time T and ϕT (z) = E[e−zT ] the corresponding probability
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generating function (Laplace transform), then [15, p. 138]

Pr[Wk � u] = 1

2πi

∫ c+i∞

c−i∞

ϕk
T (z)

z
ezudz,

where c > 0 and
∞∑

k=1

Pr[Wk � u] = 1

2πi

∫ c+i∞

c−i∞

ϕT (z)

1 − ϕT (z)

ezu

z
dz.

Writing E[M] = E[M(R)] and substituting the above into (3)
yields

E[M] = 1

2πi

∫ c+i∞

c−i∞

ϕT (z)

1 − ϕT (z)

dz

z

∫ ∞

0
ezufR(u)du.

Finally, we arrive at the general expression of the average
number of infection attempts during a healthy, but susceptible
period,

E[M] = 1

2πi

∫ c+i∞

c−i∞

ϕT (z)ϕR(−z)

1 − ϕT (z)

dz

z
, (4)

where ϕR(z) = ∫ ∞
0 e−zufR(u)du is the probability generating

function (PGF) of the recovery time R.
Since any PGF obeys |ϕT (z)| < 1 for Re(z) > 0, the

integrand g(z) = ϕT (z)ϕR (−z)
z[1−ϕT (z)] is analytic in the positive Re(z)

plane, with the possible exception of the singularities of
ϕR(−z). Excluding the case of essential singularities or branch
cuts of ϕR(−z), we can deform the line of integration into a
contour over the positive Re(z) plane [because the integrand
g(z) = g(reiθ ) vanishes for r → ∞ at all angles −π

2 � θ �
π
2 ]. Thus, (4) equals

E[M] = 1

2πi

∫
C

ϕT (z)ϕR(−z)

1 − ϕT (z)

dz

z
(5)

where the contour C encloses the whole Re(z) > 0 plane.
We now concentrate on some special cases in which the

integral (4) or (5) for E[M] can be evaluated.

A. The infection time T is exponential

If the infection time T is exponentially distributed with
mean 1

β
, then the PGF equals ϕT (z) = β

z+β
and (4) simplifies

to

E[M] = β

2πi

∫ c+i∞

c−i∞

ϕR(−z)

z2
dz (c > 0). (6)

When we close the contour over the negative Re(z) plane, in
which ϕR(−z) is analytic and bounded |ϕR(−z)| � 1, we find,
by Cauchy’s integral theorem [17], that

E[M] = β
dϕR(−z)

dz

∣∣∣∣
z=0

= βE[R] = τ

because ϕR(−z) = E[ezR] and E[R] = 1
δ
. The result E[M] =

τ is intuitively clear. Since the infection time T is exponentially
distributed, the infection process is a Poisson process and the
mean number of Poisson events in an interval equals its rate
β multiplied by the average length of that interval, which is
E[R]. Hence, if the infection time T is exponential or the
infection follows a Poisson process, then, for any distribution
of the recovery time R, we find that the NIMFA applies.

B. The recovery time R is exponential

If the recovery time R is exponentially distributed with
mean 1

δ
, then the PGF equals ϕR(z) = δ

z+δ
and (5) simplifies to

E[M] = δ

2πi

∫
C

ϕT (z)

z[1 − ϕT (z)]

dz

δ − z
.

By Cauchy’s residue theorem, we find that

E[M] = ϕT (δ)

1 − ϕT (δ)
, (7)

from which a lower bound for the epidemic threshold follows
from (2) by solving the equation

ϕT (δ) = 1

1 + λ1
. (8)

The relation (7) in the case of an exponential recovery
time R with rate δ can be derived probabilistically, without
resorting to contour integration. At the start of the infection,
two cases can happen: either T1 < R or T1 > R. In the latter
case, M = 0. In the first case, M � 1 and at time T1 everything
starts anew: the distribution of (R − T1) | R > T1 is again
exponential because of the memoryless property [15] of the
exponential distribution. This means that M has a geometric
distribution,

Pr[M = k] = pk(1 − p) with p = Pr[R > T1] and k � 0.

Since all infection times T1,T2, . . . are i.i.d. and have the same
distribution as T , we find the mean of a geometric random
variable as

E[M] = Pr[R > T ]

Pr[R � T ]
= Pr[R > T ]

1 − Pr[R > T ]
.

This immediately shows that if T has an exponential distribu-
tion with parameter β, we find

E[M] = β

δ
= τ.

Furthermore, for a general T , we have a nice connection
between these probabilities and the Laplace transform:

Pr[R > T ] =
∫ ∞

0
Pr[R > s]fT (s) ds

=
∫ ∞

0
e−δsfT (s) ds

= ϕT (δ),

from which (7) follows again.

1. The infection time T has a Weibull distribution

We will deduce an analytic law for the epidemic threshold,
which was proposed in [12] based on simulations. While the
curing process is still Poissonian with rate δ, the infection
process at each node infects direct neighbors in a time T that
is Weibullean [15, p. 56], with probability density function

fT (x) = α

b

(
x

b

)α−1

e−(x/b)α (9)

and mean E[T ] = b
(1 + 1
α

). For α = 1, the Weibull dis-
tribution reduces to the exponential distribution. In order to
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FIG. 1. (Color online) The PGF of the Weibull distribution as
a function of y for various values of α = {0.5,0.6,0.7,0.8,0.9,1,

1.5,2,3,4,5}.

compare the Weibull with the exponential distribution, we fix
the average infection time E[T ] to 1

β
, so that

b =
[



(
1 + 1

α

)
β

]−1

.

Thus, the parameter α in (9) tunes the power-law start and the
tail of the Weibull distributions that all have the same mean
infection time E[T ] = 1

β
. Clearly, small α correspond to heavy

tails (and large variance Var[T ]), while large α correspond to
almost deterministic infection times (with Var[T ] → 0).

The PGF of (9) is

ϕT (z) = α

b

∫ ∞

0
e−zu

(
u

b

)α−1

e−(u/b)α du

= α

∫ ∞

0
e−zbx−xα

xα−1dx

and

ϕT (δ) = α

∫ ∞

0
e−x/
(1+1/α)τ−xα

xα−1dx.

After substituting u = xα , we find with y = 
[1 + 1
α

)τ ]α and
for all α that

ϕT (δ) =
∫ ∞

0
e−u1/α/
(1+1/α)τ−udu

= y

∫ ∞

0
e−yx−x1/α

dx
�= f (y; α), (10)

whose behavior is plotted in Fig. 1. The limiting case
limα→∞ f (y; α) = e−1, corresponding to a deterministic in-
fection time T = 1

β
, explains the apparent intersection “point”

in Fig. 1.
The epidemic threshold, expressed in units of τ = E[R]

E[T ] ,

follows from (8). We assume that 1
1+λ1

is small for sufficiently
large N (and λ1 � 1), which excludes lattices and any other
graph whose spectral radius λ1 does not increase with N . Since
f (y; α) is monotonically increasing1 in y from f (0; α) = 0

1Recall that

f (y; α) =
∫ ∞

0
e−(u/y)1/α−udu

and the integrand is monotonically increasing in y for all α.

towards f (y; α) = 1 for y → ∞, the assumption of small 1
1+λ1

requires the investigation of f (y; α) around y = 0. For small
y and all α, we have

f (y; α) = y

∫ ∞

0
e−x1/α

[1 − yx + O(y2)]dx

= y
(α + 1) − α
(2α)y2 + O(y3).

The inversion y = f −1( 1
1+λ1

; α) of (8) is to first order equal to

y ≈ 1


(α + 1)(1 + λ1)
≈ 1


(α + 1)λ1
.

Using the definition y = [
(1 + 1
α

)τ ]α , we arrive, for large N

and any graph, at the first-order mean-field epidemic threshold
(in units of τ = E[R]

E[T ] ) in a SIS process with Weibullean

infection times T with mean 1
β

and exponential recovery
times R,

τ (1)
c = 1



(
1 + 1

α

)
[
(α + 1)]1/α

1

λ
1/α

1

, (11)

where the superscript (1) refers to the first-order NIMFA mean-
field approximation τ (1)

c (see [14]). When α = 1, we find again
the classical mean-field epidemic threshold in a Markovian SIS
process, τ (1)

c = 1
λ1

� τc, where τc is the exact SIS epidemic
threshold. This analytic scaling law (11) supports our proposed
fit in [12],

τc ≈ q(α)

λ
1/α

1

where q(α) = O(1). We mention that the prefactor
1


(1+1/α)[
(α+1)]1/α is asymmetrically bell shaped in α with
maximum, equal to 1, at α = 1 and zero at α = 0 and α → ∞,
but slowly decaying as e

α
towards zero for large α. In particular,

the heavy-tailed regime (α < 1) is of practical interest [11].
If the spectral radius λ1 is not large (or the graph’s size N

is relatively small), then the inversion y = f −1( 1
1+λ1

; α) needs
to be computed numerically; most likely, in view of Fig. 1, the
scaling (11) will not be observed. For example, for a complete
graph K500 with λ1 = 499, the epidemic threshold in terms
of τ is shown in Fig. 2, where the line is computed as τ (1)

c =
[f −1(1/500;α)]1/α


(1+1/α) . The simulations of the epidemic threshold in
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FIG. 2. (Color online) The epidemic threshold τc versus α,
computed analytically as τ (1)

c = [f −1(1/500; α)]1/α/
(1 + 1/α) and
via simulations.
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Fig. 2, deduced from Fig. 4, seem to indicate that the NIMFA
lower-bounds the exact epidemic threshold for all values of
α > 0.

V. EVALUATION OF THE MEAN-FIELD
EQUATION (1) AND E[M]

The mean-field equation (1) was compared with data gen-
erated by an event-based simulator. Every time a susceptible
node becomes infected, an exponentially distributed curing
time R is drawn and a curing event for the newly infected node
is scheduled at that time. In addition to the curing time R, an
infection time T is drawn from a Weibull distribution (9) for
each neighbor. Only if the infection time T is smaller than
the curing time R is the infection event scheduled. When the
infection event is processed, a new infection time is drawn
and, if the infection time is smaller than the curing time of the
node that scheduled the infection event, a new infection event
is scheduled.

To find the metastable fraction of infected nodes in the
GSIS method, we log the exact percentage of the simulated
time ti that the network has spent in a state with i nodes
infected and compute the average ȳ(t) at time t as 1

N

∑N
j=0 j tj ,

the standard deviation of the fraction of infected nodes is
calculated as 1

N

√∑N
j=0 tj [j − ȳ(t)]2. We prevent the infection

process from dying out by reinfecting the last remaining
infected node immediately after it is cured; the elimination of
the absorbing state of the GSIS process is called the modified
GSIS process, as in [18]. To be certain that the process
is indeed in the steady state of the modified GSIS process
(corresponding to the metastable state of the GSIS process),
we run two simultaneous but independent simulations on the
same network and compare the time averages after an initial
phase of 100 000 state changes. One process starts with 10%
of the nodes infected, whereas the other process starts with all
nodes infected. We conclude that the steady state is reached
when the difference between the time averages of the two
simulations is small, i.e., |ȳ1(t)−ȳ2(t)|

ȳ1(t)+ȳ2(t) < 10−4. The steady-state

fraction of infected nodes is then given by ȳ1+ȳ2

2 . To avoid very
long simulation times for larger values of α we set a time limit
of 20 min simulation time per run.

Instead of evaluating the integral (4), the expected number
of spreading events during the infection time of a node
can be computed numerically as E[M] = ∑∞

k=0 k Pr[M = k].
As above, let M be the number of infection events over
a link during the infection time R of a node, the waiting
time until a curing event, and let T be the waiting time
until the next spreading event. The probability that exactly
k spreading events occur during an infected period follows
(see [15, p. 140]) from the renewal equivalence {M(t) �
n} ⇐⇒ {Wn � t} as Pr[M = k] = Pr[Wk � R] − Pr[Wk+1 �
R], where Wn = ∑n

k=1 Tk denotes the sum of n independent
realizations of T . Let fY (x) = d

dx
Pr[Y � x] denote the prob-

ability density function (PDF) of the random variable Y .
Since the PDF of the sum of two independent random
variables is given by the convolution of the two PDFs of
the random variables, we can express the PDF of Wk as a
series of convolutions, i.e., fW3 (x) = fT (x) ∗ fT (x) ∗ fT (x).
To specify Pr[Wk � R], we can use a similar approach. Let
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FIG. 3. (Color online) The average metastable state fraction of in-
fected nodes versus E[M] in the complete graph with N = 500 nodes.

Yk = Wk − R; then Pr[Wk � R] = Pr[Yk � 0]. Since the PDF
of −R is fR(−x) and fYk

(x) = fWk
(x) ∗ fR(−x), we find

that Pr[Wk � R] = ∫ 0
−∞ fYk

(x)dx. In general, the series of
convolutions can be efficiently determined numerically using
fast Fourier transforms. The number of terms in the sum
needed to closely approximate E[M] = ∑∞

k=0 k Pr[M = k] is
typically on the order of 10.

Just as in the NIMFA, which was shown (see, e.g., [12])
to be an upper bound of the probability of infection vi of
node i, the mean-field equations (1) of the GSIS method are
also upper-bounding the infection probability as illustrated in
Figs. 3 and 4, which both contain the same data. Figure 3
emphasizes that E[M] is the more natural parameter, instead
of the ratio τ = E[R]

E[T ] , because all curves tend to each other,
indicating that E[M] constitutes a proper scaling.

When the infection time T tends to a deterministic time
(i.e., α → ∞), the variance in the simulations increases so
that more realizations need to be simulated for increasing α.
Still, the mean of the simulation seems nicely upper bounded
by the NIMFA result. While we have concentrated here on
a comparison based on the complete graph [for which the
NIMFA is exactly available [16] and the average metastable
state fraction of infected nodes is y∞(τ ) = 1

N

∑N
j=1 vj∞ =

1 − 1
(N−1)τ ], the same agreement is found on Erdős-Rényi

graphs and Barabasi-Albert graphs as illustrated in Fig. 5.
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FIG. 4. (Color online) The average metastable fraction of infected
nodes versus τ in the complete graph K500 for various α ranging from
0.5 (left) to 5 (right) with steps of 0.5.
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FIG. 5. (Color online) The average fraction of infected nodes
versus E[M] for three different graph types (with N = 500 and 484).

For lattices, on the other hand, Fig. 5 shows (as also found
previously; see, e.g., [12]) that mean-field approximations are
less accurate. Finally, GSIS epidemics on the complete graph
KN with two nonexponential distributions for T and R also
follow the same behavior as shown in Fig. 3.

VI. CONCLUSION

While the classical, continuous-time SIS Markov model
possesses both exponential infection and curing and recovery
times, we have extended this SIS model to a generalized
continuous-time SIS model in which the infection and curing
and recovery times each have a general distribution. Many
real-world epidemics (such as information spread on Twitter
[11], real diseases, malware spread in computer networks,
etc.) do not feature exponential times, which underlines the
usefulness of a generalized SIS model on networks.

We have derived mean-field equations (1) that resemble
our previous NIMFA equations, so that the whole analytic

machinery of the NIMFA, surveyed in [16], is applicable.
These mean-field equations are compared with precise simula-
tions and show a remarkable agreement, similar to the accuracy
of the NIMFA for exponential times. Although the analysis
here has concentrated on the simplest epidemics, namely, SIS
epidemics, the generalization of the NIMFA to multilayer and
multicompartment epidemics in [19] as well as to nonhomoge-
neous epidemics [20] suggests that the current non-Markovian
extensions will apply equally well to more general epidemics,
mainly by replacing τ by E[M] in the equations.

The average number E[M] of infection attempts during a
recovery time R is shown to be a key characterizing parameter
in the GSIS model, which replaces the Poisson rates in the
classical SIS model. In other words, for a general SIS epidemic
process, E[M] is the more natural parameter, instead of
the ratio τ = E[R]

E[T ] , called the effective infection rate in the
classical, continuous-time SIS Markov model. Only when the
infection process is Poissonian with infection rate β and curing
rate δ, as derived in Sec. IV A, does E[M] equal the ratio
τ = E[R]

E[T ] = β

δ
.

Another practical conclusion is that, irrespective of our
knowledge of the underlying distributions for the infection and
recovery times, we can determine the average metastable state
fraction of infected nodes, based only on an estimate of the
average number E[M] of infection attempts during a recovery
time R. In most practical cases, the quantity E[M] is easier
to measure than the ratio τ = E[R]

E[T ] . The generalized epidemic
threshold rule (2) provides a useful criterion to verify whether
a certain viral agent, whose precise properties are unknown
except for its average activity E[M], will cause a pandemic in
a network or not.

We believe that the generalization of the classical SIS
process towards the GSIS model is an important step for-
wards, while the main computational tools (in the mean-field
approximation) are almost the same (just a replacement of
τ = E[R]

E[T ] by E[M]). In other words, the shape of the curve
of the average metastable state fraction of infected nodes is
mainly determined by the underlying topology and can be
computed via the NIMFA, whereas the scaling via E[M]
reflects the epidemic details, which allow us to compare viral
agents with different epidemic properties (measured via T and
R) on the same contact network. Moreover, the exact governing
equations for the non-Markovian GSIS process are believed
to be intractable to solve. Consequently, the assessment of the
accuracy of the NIMFA is still an important open problem for
the simple SIS epidemic model on networks: on any topology
on which the NIMFA is accurate for the SIS process, it seems
accurate for the GSIS process as well. We would like to have
a general mean-field criterion that specifies for which types of
graphs the NIMFA is sufficiently accurate.
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