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Epidemic threshold of the susceptible-infected-susceptible model on complex networks
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We demonstrate that the susceptible-infected-susceptible (SIS) model on complex networks can have an
inactive Griffiths phase characterized by a slow relaxation dynamics. It contrasts with the mean-field theoretical
prediction that the SIS model on complex networks is active at any nonzero infection rate. The dynamic fluctuation
of infected nodes, ignored in the mean field approach, is responsible for the inactive phase. It is proposed that the
question whether the epidemic threshold of the SIS model on complex networks is zero or not can be resolved
by the percolation threshold in a model where nodes are occupied in degree-descending order. Our arguments
are supported by the numerical studies on scale-free network models.
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Epidemic spreading is a common phenomenon in net-
worked systems. Diseases spread from individual to individual
through a contact network and computer viruses spread
through the Internet. Since it has a huge impact on stability,
epidemic spreading on complex networks has been attracting
a lot of interest during the last decade [1]. Those studies have
focused on both theoretical issues such as nonequilibrium
critical phenomena [2] and practical issues such as searching
for an efficient immunization strategy [3,4]. The SIS model is
a paradigmatic epidemic spreading model where an infected
individual becomes susceptible (or healthy) at a unit rate and
infects its susceptible neighbor at a rate A. We consider the SIS
model on complex networks whose degree distribution P (k)
denoting the fraction of nodes with degree k is broad [5].

Pastor-Satorras and Vespignani proposed a so-called het-
erogeneous mean-field (HMF) theory for complex networks
[6]. According to this theory, the epidemic threshold of the
SIS model, above which the system is in an active phase with
a finite density of infected nodes, is given by A. = (k)/(k?)
with (k") = [ dk k" P(k). Specifically, in scale-free networks
characterized by P (k) ~ k~7 with a degree distribution expo-
nent y [5], Ac = 0 for y < 3 while A, > 0 otherwise [7]. The
HMF theory, which becomes exact in the annealed network
limit [8—11], turns out to be useful in studying various physical
problems on complex networks [2].

Meanwhile, a mean-field theory on quenched networks has
been developed in Ref. [12], which suggests a conclusion that
the epidemic threshold of the SIS model vanishes (A, = 0) in
any network with diverging maximum degree [13]. It implies
that an epidemic spreading cannot be prevented on complex
networks with an unbounded degree distribution. This study
attracts much interest and is followed by a series of works
[14—17]. The mean-field theory on quenched networks will be
referred to as the quenched mean-field (QMF) theory. Due to
its strong implication, the predicted null epidemic threshold
by the QMF theory needs further investigation.

In this work, we complement the QMF theory by taking
into account the dynamic fluctuation of infected nodes. This
effect turns out to be crucial in determining whether the
epidemic threshold of the SIS model on complex networks
is zero or not. We find that the active phase predicted by the
QMF theory near A = 0 actually corresponds to the Griffiths
phase [18-20] where the density of the infected nodes decays
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to zero more slowly than an exponential decay, unless the
active nodes form a percolating cluster. It is proposed that
a zero (nonzero) epidemic threshold of the SIS model is
inherited from a zero (nonzero) percolation threshold in a
model where nodes are occupied in degree-descending order.
Such a specific percolation will be referred to as the degree-
ordered percolation (DOP). Our argument is confirmed in the
numerical studies on the (u,v)-flower model [21] for scale-free
networks. We finally apply the DOP to survey whether A, of
the SIS model should be zero or not on random scale-free
networks, which remains unsettled in model simulations due
to a strong finite-size effect [17].

We begin with a review on the QMF theory for the SIS
model. Let p;(¢) be the infection probability of node i at time
t. Then the rate equation reads

dp;
‘;_[(t) = —pi(t) +[1 — p:i(1)] Zdijk/)j(’)’ @)

J

where a;; is an element of the adjacency matrix assigned with
1 if there is an edge between nodes i and j or O otherwise.
The first term on the right-hand side of Eq. (1) is the recovery
rate reducing the infection probability and the second term
is the infection rate given by the product of the susceptible
probability and the infection trial rate by infected neighbors.

The QMF approach focuses on the linear stability analysis
of the zero fixed point [p;(0) = 0 for all ] of Eq. (1), which
corresponds to a configuration of the inactive phase. It is easy
to show that the fixed point becomes unstable as soon as
AN > 1 for the largest eigenvalue A; of {a;;}. This leads
to the conclusion AQMF = 1/A; for the epidemic threshold
of the QMF theory [12]. Although appealing, it has some
controversial points. Most of all, it predicts A, = 0 in any
network with a diverging maximum degree. In an arbitrary
graph with a maximum degree kp,,x, the largest eigengenvalue
satisfies an inequality +/kmax < A1 < kmax [22]. This gives
AME — () in the kpax — 00 limit. An alternative interpretation
of ASMF follows recently in Ref. [16], which claims that a
property of the eigenvector corresponding to A; plays an
important role in epidemic prevalence.

As a counterexample to the QMF conclusion, it is instruc-
tive to consider a star graph consisting of a hub at the center
and k.« linear chains of length L emanating from it. The total
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number of nodes is N = kpy L + 1. In use of the symmetry
of the star graph with respect to the hub node, we find
A1 = kmax/~kmax — 1 for large L [23] [this is also obtainable
by Eq. (10) of Ref [16]]. Hence, the QMF theory predicts
AME — 1/A; = 0 in the infinite ks limit. Interestingly, on
the other hand, the actual steady state solution of Eq. (1) gives
a different result, as follows.

Let ppand p, (r = 1,2, ..., L) be the steady state solution at
the hub and nodes at the distance r from the hub, respectively.
Due to symmetry, the solution depends only on the distance r.
Thus, Eq. (1) yields the recurrence relations

pr/(1 = py) = Apr—1 + pry1) for r2>1, @

,0()/(1 - :00) - )"kmaxpl-

Equation (2) gives a self-consistent equation pg/(1 — ps) =
2Mps for ps =1lim,_, p,. The nonzero pys = (21 — 1)/(2A)
appears when 21 > 1, while p; = 0, otherwise.

When A < 1/Ay, p, =0 for all r =0,1,2,...,L. In
1/A; < A < 1/2, the zero solution becomes unstable and
a nonzero solution appears. Linearizing Eq. (2) in p,, one
can find that p, o [21/(1 ++/1 —4A2)]" for 1 < r < L. The
solution decays exponentially with r. That is to say, the in-
fection is localized around the hub. When A > 1/2, the
infection is extended with p, & ps = 2A — 1)/(2A) for 1 K
r < L. So the epidemic order parameter of the star graph,
p=lmg g, ooy ; pi/N,is given by

0 for A< 1/2

= 3)
Qr—1)/2Qr) for A>1/2

0

in the infinite size limit. Namely, the epidemic threshold is
given by A, = 1/2. This example demonstrates that the linear
stability analysis against the zero-fixed-point inactive state
alone is not sufficient in determining the threshold of the SIS
model on complex networks.

In order to overcome the shortcomings of the previous QMF
approach, we also take into account the other eigenvalues
besides A ;. This approach was also taken in Ref. [16]. More
importantly, we next incorporate the effect of an irreversible
dynamic fluctuation due to stochasticity in dynamics, which
is ignored in most mean-field approaches. As will be shown
later, the fluctuation plays a crucial role.

For convenience, we label the nodes in degree-descending
order: k1 > ko, > --- > ky. Recent studies show that the
nth largest eigenvalue of the adjacent matrix of a random
network is A, ~ +/k, for large k,, [24] and the corresponding
eigenvector is localized around the node n [25]. These findings
imply that the steady state solution of Eq. (1) for small A
displays the local active domains around high-degree nodes:
Each high-degree node n behaves like an independent local
hub with its own activation threshold given by A, = 1/A, ~
1/+/k, and the size of a local active domain is given by
~ Lk,. Independence of the local active domains in the small A
limit is guaranteed only when higher degree nodes are distant
enough from each other. A network with such a property will
be referred to as an unclustered network. For 1/A, < A <
1/A,+1, local active domains of size ~ Lk; appear around all
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nodes i < n. Thus one may expect

p~ / ) @
1

/32

which yields p ~ A?*~3 for a random scale-free network with
a degree exponent y. Note that the refined QMF theory still
predicts that A, = 0 with order parameter exponent 8 = 2y —
3 [23].

Numerical evidence, however, shows Eq. (4) is not valid.
We have performed Monte Carlo simulations for the SIS model
[26] on scale-free networks generated by the (u,v)-flower
model [21]. This is a deterministic hierarchical model: One
starts from two nodes connected with an edge (zeroth genera-
tion). Then, every link in a Gth generation is replaced with the
two u- and v-link-long paths in the next (G + 1)-th generation.
The total number of nodes in a (u,v) flower of generation G is
given by N = [(u + )% +v —2) + (u + v)]/(u +v — 1).
It results in a scale-free network with y = 1 4+ In(u 4+ v)/In 2
in the G — oo limit [21]. The (u,v)-flower model is particu-
larly useful because one can generate an unclustered network
easily. If u > 1 and v > 1, the degree of all nodes is doubled
and the distance between them becomes farther after each
iteration. We used the (3,3)-flower model in simulations. The
numerical data shown in Fig. 1(a) strongly suggest a transition
at nonzero A.. The threshold can be estimated from the peak
positions of the susceptibility x = N({p?) — (p)?)/(p), where
N is the total number of nodes [17]. The inset in Fig. 1 shows
the peak position is extrapolated to A, =~ 0.65(5) in the infinite
system size limit.

The origin of the inconsistency is an irreversible fluctuation
of the local active domains, as follows. Consider a local active
domain consisting of V nodes. Then, no matter how rare, there
exists a moment when all nodes recover simultaneously by
chance. This takes place after a characteristic time 1, ~ eV
for a certain a > 0. Once being recovered, the domain will
remain inactive unless externally activated. Considering this
effect of the irreversible fluctuation, Eq. (4) should be replaced
by

p(t) ~ / b dk(Ak) P (k)e™"/ . 5)
1

/22
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FIG. 1. (Color online) Density of infected nodes in the (3,3)
flowers in (a). The largest cluster density in the DOP (see text) on the
same flowers as in (b).
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FIG. 2. (Color online) p(t) in the (3,3) flower of G = 8. The
data points are the SIS model simulation result. The solid curves
are obtained from the direct integration of Eq. (5) with two fitting
parameters a; = 0.8 and a, = 0.325 for 7,; = a,e®* and with the
truncated degree distribution function; from bottom to top, P(k)
is truncated by k > kpax /2" withn = 1,2, ...,7. The inset compares
the long-time behavior predicted in our theory (red solid curve) with
the currently available numerical data (blue dots).

Since it decays to zero eventually, the apparent active phase
implied in Eq. (4) is in fact an inactive one. We note that the
inactive phase is different from the usual one where the density
decays exponentially in time. The density in Eq. (5) does not
decay exponentially fast but extremely slow due to the broad
distribution of relaxation times. For example, in scale-free
networks with P (k) ~ k7, one finds

p(t) ~ [In ¢]77~2, (6)

Equation (5) is numerically tested in the (3,3) flowers at
A =0.56 < X, which is shown in Fig. 2. It does not decay
exponentially in time. Instead, the density is trapped in
a plateau for a while and then decays to another plateau
successively. Those plateaus are evidence for the existence of
metastable local active domains. In the (#,v) flower, degrees
of nodes are discretized as k = 2" withn = 1,2, ... . So the
size Vi ~ Ak of the local active domains and their lifetime
T, ~ e™* are also discrete. This discreteness results in the
plateaus. As shown, the data in Fig. 2 are fitted to Eq. (5) very
well for large ¢ > 10%. The dashed curve therein represents the
overall decay given by Eq. (6).

The slow dynamics given in Egs. (5) and (6) is reminiscent
of a relaxation dynamics in the Griffiths phase [18-20]. In a
disordered system, disorder fluctuations may generate local
domains which behave differently from the bulk. Denoting
the probability that such a domain of size £ is realized as
P(§) and the relaxation time therein as t(§), a physical
quantity f relaxes to its stationary value f; as §f(¢) = f(¢) —
fs ~ [d& P(&)e™"/"® . In the Griffiths phase, the relaxation
dynamics is dominated by rare events encoded in the tail of
P (&) with long characteristic time scales 7(§) [19]. In our case,
the slow dynamics originates from the irreversible fluctuation
near the hubs.

The previous argument shows that the SIS model on an
unclustered network can be in the inactive Griffiths phase for
AME < A < . with a certain nonzero A. It also provides a
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hint on the mechanism for the phase transition into an active
phase. Inside the Griffiths phase, local active domains of size
~ Lk are separated (unclustered network) and metastable. As A
increases, the size of the local domains grows and they begin
to overlap each other. The active domains become globally
stable when they form a percolating giant cluster above a
certain threshold value of A. That is to say, the epidemic
transition is triggered by a percolation transition of the local
active domains.

Note that the local active domains nucleate around high-
degree nodes in degree-descending order. So the uncovered
mechanism leads to the conjecture that the unclustered network
with A. # 0 should have a nonzero percolation threshold
in the DOP model. Recall that the DOP is suggested as
a percolation model where nodes are occupied in degree-
descending order [27]. A nonzero percolation threshold p.
(as the node-occupation ratio) implies that high-degree nodes
are well separated from each other. Hence, in the context of
the SIS model, one requires a nonzero value of A for the
local active domains (of size ~Ak) to form a percolating
cluster.

We provide numerical evidence of our claim. Figure 1(b)
shows the percolation order parameter g, the density of nodes
in the largest cluster, for the DOP in the same (3,3) flowers used
in Fig. 1(a). The percolation threshold p. is clearly nonzero,
which is consistent with A, % 0 shown in Fig. 1(a). As another
example, one may revisit the aforementioned kp,x-star graph
case with diverging L. In this example, one can easily find
P # 0 that supports our claim.

We also consider the opposite case with p. = 0. It is
achieved only when any finite fraction of occupied nodes in the
DOP process are connected to form a percolation cluster. Those
networks with p. = 0 will be called the clustered network. In
the context of the SIS model, the local active domains in the
clustered network form a percolating cluster even in the limit
A — 0. Therefore, we expect that the epidemic threshold is
zero in the clustered network. The steady state density of the
infected nodes can be expected to scale as

o0
p~/ dk P(k). (7)
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FIG. 3. (Color online) Density of infected nodes in the (1,5)
flower in (a). The largest cluster density in the DOP on the same
flower in (b). The solid lines in (a) have a slope 2 In 6/1n 2 >~ 5.19,
while the dashed line in (b) has a slope 1.
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FIG. 4. (Color online) (a) The density of the largest DOP cluster
in random scale-free networks of the configuration model with
y = 5. The dashed line denotes the percolation transition point.
(b) Maximum cluster heterogeneity points and their extrapolated
values. The system sizes are N = 10%,...,107.

In comparison with Eq. (4), the factor (Ak) is missing because
high-degree nodes with k > 1/A? are neighboring each other
and compose the stable active domain. In scale-free networks
with P(k) ~ k=7, one obtains p ~ A%’ ~2. Note that the order
parameter exponent 8 = 2y — 2 is different from Bomr = 1
obtained from the simple QMF theory where only the largest
eigenmode was taken into account [14].

A trivial example of the clustered network is the kp,«-star
graph with L = 1. The density of the largest cluster is given
by g = p implying p. = 0. Independently, A, = 0 obviously,
as discussed in Ref. [13]. A nontrivial example is the (u,v)
flowers with u = 1 (or v = 1). Recall that if two nodes are
connected with an edge in a certain generation, then they
remain connected afterward whenu = 1 (orv = 1). So one can
expect that high-degree nodes are clustered. In Fig. 3(a), we
present the SIS model simulation results on the (1,5) flowers
at several generations G. As G increases, the data approach
the theoretical prediction p ~ (A — Ac)? with A, =0 and
B =2y —2=21In6/In 2. The DOP property is presented
in Fig. 3(b). The scaling of g ~ p therein indicates p. = 0.

What is the epidemic threshold in more interesting cases
such as generic random scale-free networks? Recently, ex-
tensive Monte Carlo simulations were performed in random
scale-free networks generated from the configuration model
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[17]. However, due to a strong finite-size effect, it still remains
inconclusive whether A, = 0 or not even with simulations of
system sizesupto N =3 x 107 at y = 3.5.

Alternatively we investigate the DOP property of the
configuration model networks. In Fig. 4(a), we present the
percolation order parameter for the network with y =S5.
As in the (3,3) flower, the system undergoes a percolation
transition at a finite threshold. In order to estimate the
percolation threshold precisely, we make use of a so-called
cluster heterogeneity which denotes the number of distinct
cluster sizes [29]. It was shown [30] that p.(N) at which the
cluster heterogeneity is maximum in networks of size N con-
verges to the percolation threshold p. in the infinite N limit. In
Fig. 4(b), we present the numerical data for p.(N) at several
values of y and their extrapolated values. The percolation
threshold is nonzero unless a small y is considered. Thus, the
random scale-free networks therein belong to the unclustered
network class. It provides indirect evidence that the epidemic
threshold could be nonzero on those scale-free networks.

In summary, we present a theoretical argument that the
epidemic threshold of the SIS model on complex networks
is nonzero in the unclustered network, while it is zero in
the clustered network. This conclusion is drawn by taking
into account the effect of the irreversible fluctuation which
was ignored in the QMF theory. The fluctuation makes a
local active domain unstable and leads to the Griffiths phase.
Numerical simulations performed in the (u,v)-flower model
support our argument. We suggest that the clustering property
of a network can be determined by the DOP. By studying the
DOP transition, the random scale-free networks are shown
to belong to an unclustered network unless a small degree
exponent is considered. It suggests the epidemic threshold in
such scale-free networks is nonzero as opposed to the QMF
prediction. Our work raises various interesting questions on the
critical phenomenon associated with the epidemic transition
and the DOP transition, which are left for future works.
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