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Reaction-diffusion processes in two-dimensional percolating structures are investigated. Two different
problems are addressed: reaction spreading on a percolating cluster and front propagation through a percolating
channel. For reaction spreading, numerical data and analytical estimates show a power-law behavior of the
reaction product as M(t) ∼ tdl , where dl is the connectivity dimension. In a percolating channel, a statistically
stationary traveling wave develops. The speed and the width of the traveling wave are numerically computed.
While the front speed is a low-fluctuating quantity and its behavior can be understood using a simple theoretical
argument, the front width is a high-fluctuating quantity showing a power-law behavior as a function of the size
of the channel.
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I. INTRODUCTION

Reaction-diffusion processes have been extensively studied
in the past years as systems that are able to shed some light on
various problems in different disciplines [1,2]. Recently, the
importance of the nonhomogeneity of the medium over which
the reaction and diffusion take place has been highlighted
[3], since the qualitative and quantitative features of the
spreading of the reaction process can depend on the presence
of system irregularities. Many studies in recent years have
been concerned with the reaction-diffusion process in het-
erogeneous media accomplishing different problems, ranging
from epidemic evolution in heterogeneous networks [4] or
intracellular calcium dynamics [5] to combustion in porous
media [6]. In this context, studies of the reaction dynamics on
percolating clusters appear very interesting for their physical
relevance and their applications in many different scientific
and technological fields [7–10]. For recent experimental and
numerical results on reaction diffusion in heterogeneous
media, see [11–16].

The study of reaction and diffusion dynamics on homo-
geneous substrates dates back to the Fisher-Kolmogorov-
Petrovskii-Piskunov (FKPP) model [17],

∂tθ = D�θ + αg(θ ) , (1)

where the scalar field θ represents the fractional concentration
of the reaction products, D is the molecular diffusivity, g(θ )
describes the reaction process, and α is the reaction rate,
i.e., the inverse of the characteristic time, τ , of the reaction
process. In the original model [17], g(θ ) assumes a convex
shape g(θ ) = θ (1 − θ ). It is possible to show that under very
general conditions [17], i.e., if g(θ ) is a convex function and

g′(0) = 1, a traveling wave develops with asymptotic speed
and width given by

v0 = 2
√

αD, δ0 = c
√

D/α,

where the constant c depends on the definition adopted for the
computation of the front width.

Afterward, as previously mentioned, reaction-transport
dynamics attracted a considerable amount of interest due to
their relevance in an incredibly large number of chemical,
biological, and physical systems [1,2]. In general, when
dealing with a nontrivial environment for the reaction and
diffusion process, it is possible to extend Eq. (1) in order to
take into account the properties of the medium [18–20]:

∂tθ = L̂θ + f (θ ), (2)

where the linear operator L̂ rules the transport process. An
important class of processes of this type is the advection-
reaction-diffusion processes, where L̂ = −u · ∇ + D� (e.g.,
see [18]). On the other hand, it is possible to extend the L̂

operator in order to include cases of effective diffusion on
fractal objects, L̂ = 1

r
df−1

∂
∂r

[k(r)rdf−1 ∂
∂r

] [21], suitable to study
reaction dynamics on fractals [22]. Moreover, in a recent paper
[20], the reaction spreading on graphs has been considered; in
such a case, the operator L̂ is merely the Laplacian operator
for graphs [23,24]. In the present paper, in the spirit of the
cited works, we study the reaction and diffusion dynamics
on percolation clusters, considering the spreading properties
of such a process. In Sec. II, we present the model and
some numerical details. Section III is devoted to the study
of reaction spreading in a large percolating cluster, while front
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propagation in a percolating channel is discussed in Sec. IV.
In Sec. V, the reader can find some conclusions.

II. MODEL

A natural model to study reaction and diffusion on
a two-dimensional (2D) nonhomogeneous medium can be
constructed starting from a generalization of Eq. (1) in which
the transport operator, L̂ = D(x)�, depends on the spatial
variable:

∂tθ (x,t) = D(x)�θ (x,t) + f (θ (x,t)). (3)

The shape and the spatial distribution of D(x) enable us to
take into account the properties of the medium and therefore
to consider different physical and biological topics [25,26].
In this way, it is possible to study the reaction dynamics
at the “microscopic” level without assuming any effective
equation that can incorporate mainly qualitative features of
the heterogeneous medium [21,22,27].

Since we are mainly interested in the scaling properties of
the asymptotic behavior of the system, without weakening the
results we consider the case in which the variable D(x) can
assume only two values, i.e., D(x) = 0 in forbidden spatial
regions and D(x) = D0 in permitted ones. The second step
is to consider a spatial discretization of Eq. (3). The spatial
region under examination has been discretized using a 2D
Euclidean lattice, L, where �x is the lattice constant. Points x
are replaced by sites of the lattice s = (i,j ).

The percolating clusters have been obtained as follows.
Each site may be permitted (with probability p) or prohibited
(with probability 1 − p). If p > pc, where pc � 0.592 746 is
the site percolation threshold for square lattices, there is a good
chance that the reaction, starting from any of the permitted
sites, can invade the system (percolation). We call P the set
of permitted sites. In each permitted site, we have a value of
the concentration field, θs(t) = θ(i,j )(t). Equation (3) can be
discretized as follows:

d

dt
θs =

∑
s ′

Cs,s ′θs ′ + f (θs), (4)

where
∑

s ′ Cs,s ′θs ′ is the discretization of the general transport
operator L̂ = D(x)�θ (x,t). Since we are working on a discrete
structure, the value of the lattice spacing �x is not particularly
important (it can be “absorbed” in D0 for D0 and δ0 large
enough), therefore we assume �x = 1.

To specify the quantity Cs,s ′ , we introduce the variable As

that characterizes the permitted region of the lattice:

As =
{

1 if s ∈ P,

0 if s �∈ P.
(5)

Given a site s, we can define ks = ∑
|s ′−s|=1 As ′ as the number

of permitted nearest neighbors of s. Using these quantities and
imposing the mass conservation of the diffusion operator, we
can express Cs,s ′ as

Cs,s ′ = D0

⎧⎨
⎩

0 if |s − s ′| > 1,

As ′ if |s − s ′| = 1,

ks if s = s ′.
(6)

FIG. 1. (Color online) Reaction spreading on a square lattice.
The red (dark grey) area contains reaction products, the yellow (light
grey) area is the one where the reaction takes place, and the white
area contains fresh material. The black dots indicate prohibited sites,
whereas the various gray areas indicate regions of permitted sites that
do not belong to the percolating cluster (we call them islands).

Therefore, the discretized transport term L̂θs = ∑
s ′ Cs,s ′θs ′

becomes the discrete Laplacian of the lattice [23]:

L̂θs(t) = D0

( ∑
|s ′−s|=1

[As ′θs ′ (t)] − ksθs(t)

)
. (7)

Finally, the complete model of reaction diffusion on
percolating clusters reads

d

dt
θs = D0

( ∑
|s ′−s|=1

[As ′θs ′ (t)] − ksθs(t)

)
+ αg(θs), (8)

where, following classical works [17], we choose f (θ ) =
αg(θ ), where g(θ ) = θs(1 − θs). From the numerical view-
point, given the spatial discretization, the temporal derivative
is computed via a fourth-order Runge-Kutta algorithm.

In the following, we study two different problems. The
first concerns reaction spreading on a large 2D percolating
cluster without a specific geometry (see Fig. 1), and starting
from an initial condition θs(0) = 0 except a single site, s̃,
in which θs̃(0) = 1. In the second problem, we study the
front propagation features (speed and width of the traveling
wave) in a 2D channel with dimensions Lx × Ly with
Lx � Ly (see Fig. 3). In the numerical computations, the
lattice is dynamically modified in order to follow the reacting
front, i.e., the domain considered in the computation moves
rigidly downstream when in the upstream part of the reaction
is extinguished. In all the simulations, without a lack of
generality, we set D0 = 1.

It is worth saying that, for p < pc, the propagation is
practically forbidden if the system is very large. For finite
systems one has yet a possible propagation if p is not much
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FIG. 2. (Color online) Time evolution at p = 0.595 ≈ pc of
the percentage of the quantity of products rescaled by α, m(t)/α
vs t , together with the prediction m(t)/α � tdl with dl � 1.67
(dashed line). To get smooth quantities, m(t) is averaged over many
realizations (≈5000) of lattices of size Lx = 1000 and Ly = 1000
which are portions of larger lattices.

lower than pc, as can be seen in the following (in particular in
Fig. 4).

III. REACTION SPREADING

An important quantity that characterizes the spreading of
the reaction is the total mass of the reaction product, i.e.,
M(t) = ∑

s∈P θs(t).
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FIG. 3. (Color online) Snapshot of the reaction dynamics in a
percolating cluster on a channel (see the caption of Fig. 1). The graph
in the lower part of the figure shows the profile of the average of the
front [see Eq. (11)] related to the snapshot.
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FIG. 4. (Color online) Average front speed u(p) as a function of
p for various α together with asymptotic behavior (15) and (16) (with
γ � 0.16). The channel length is taken to be Lx = 100 and Ly = 100.
In the inset is shown in log-log scale the behavior of vf(p)/vf(1)
together with the theoretical prediction vf(p)/vf(1) ∼ Np/Ly for a
slow reaction rate and vf(p)/vf(1) ∼ [(p − pc)/(1 − pc)]γ for a fast
reaction rate.

Since this quantity depends on the number of permitted
sites, we introduce the percentage of m(t) over the lattice, i.e.,

m(t) = M(t)

N
=

∑
s∈P θs(t)∑
s∈L As

, (9)

where N = ∑
s∈L As = ∑

s∈P 1 is the number of permitted
sites.

Let us briefly recall some relevant quantities in the statistical
analysis of generic graphs: the fractal dimension, df, the
connectivity dimension, dl (also called chemical dimension),
and the spectral dimension, ds. The fractal dimension df

[28] describes the scaling of the number of permitted sites
in a sphere of radius r in the lattice, as N (r) ∼ rdf . The
connectivity dimension, instead, measures the average number
of sites connected to a given site in at most l steps, as
N (l) ∼ ldl . The spectral dimension is related to diffusion
processes on graphs and can be defined in terms of the return
probability Pii at site i for a random walker by Pii(t) ∼ t−ds/2,
or equivalently in terms of the density of eigenvalues of
the Laplacian operator [24]. The connectivity and fractal
dimension can be obviously different and they are related
via the mapping between the two distances r and l [29]. In
particular, for site percolation in square lattices, the case of
the present study, at percolation threshold p ∼ pc one has
df � 1.896 but dl � 1.67 (and, for completeness, ds � 1.36).

Which is the right quantity that characterizes the reaction
spreading? Numerical computations in agreement with analyt-
ical arguments [20] suggest that the chemical dimension is the
right quantity. Starting from a single site with θi(0) = 1, after t

steps the number of sites reached by the field isN (t) ∼ tdl [30].
Therefore, in the limit of very fast reaction, when each site
reached by the field is immediately burnt (i.e., θs � 1), we can
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expect

m(t) ∼ tdl . (10)

Figure 2 clearly shows the scaling of Eq. (10). Moreover, this
figure reveals that the scaling (10) is valid not only in the fast
reaction regime, and that the reaction rate is relevant only for
the prefactor: m(t) � αtdl .

IV. FRONT PROPAGATION

The problem of the front propagation in reactive systems
(classical reaction and diffusion processes, advection reaction
and diffusion processes, reaction and diffusion in the presence
of anomalous diffusion, etc.) has been extensively studied
[1,2,19]. In some cases, under certain conditions, it is possible
to show that the propagation is standard, i.e., there exists
an asymptotic value for the speed v and the width δ of the
propagating front. On the other hand, it is almost impossible
(except in very special cases) to determine analytically the
values of v and δ. Therefore, the numerical study of the speed
and the thickness of the moving front is mandatory to obtain
information about the spreading dynamics.

In the case of reaction processes on percolating clusters, if
one considers an arbitrarily large (in any direction) lattice, the
propagation generally is not standard since the total quantity
of reaction products grows as a power law with a noninteger
exponent, m(t) � αtdl . If the percolating cluster is embedded
in a channel with a propagation direction, Lx , and a transversal
direction, Ly , with Lx � Ly , a traveling wave takes place
with a constant (on average) speed after a transient needed for
the reaction product to invade the transversal direction of the
channel. Therefore, we consider the model (8) with an initially
empty 2D lattice, where Lx � Ly and θ(i,j )(0) = 0. To reduce
the transient, as boundary conditions we use θ(i=0,j )(t) = 1
and θ(i=Lx,j )(t) = 0 for the left and right edge, respectively.
In the transversal direction, we have zero-flux (Neumann)
boundary conditions, which are automatically guaranteed
by the diffusion operator (7). Using the above boundary
conditions, we expect the development of a front propagating
with a fixed (on average) speed from the left to the right side
of the lattice.

In Fig. 3, an example is shown of front propagation
in a percolating cluster. The dynamic evolves through the
horizontal direction with a fluctuating front depending on the
position of the permitted sites. Because of such fluctuations,
it is convenient to introduce the averaged field along the
horizontal direction as the mean of the field θs(t) along the
i direction,

θi(t) =
∑Ly

j=1 A(i,j )θ(i,j )(t)∑Ly

j=1 A(i,j )

. (11)

Strictly speaking, given a percolating cluster, the moving
front is not a traveling wave in the classical sense, since there
does not exist a function f (i) such as θi(t) = f (i − vt). This
is due both to the random nature of the permitted sites on the
lattice (i.e., the average stabilizes only at very large Ly) and
the discrete nature of the lattice. But it is still possible to define
averaged quantities such as the propagation speed or the front
width as follows.

A. Front speed

In the case of traveling waves, we expect that the total mass
of the reaction products increases, on average, linearly with
time,

M(t) � Npvt, (12)

where Np is the averaged number of sites accessible by the
reaction process in the vertical direction. The computation of
Np is a quite delicate point, thus the maximum amount of
accessible sites in a single column of the lattice is neither Ly

(since there are permitted and prohibited sites in the lattice)
nor pLy (since not the whole set of permitted sites belong to
the percolating cluster). Np can be estimated as follows. At
the percolating threshold, p ∼ pc, the total number of points
belonging to the percolating cluster in a square of size Ly is

proportional to L
df
y . Since there are Ly rows in the square, one

has Np ∼ L
df
y

Ly
= L

df−1
y . Instead, if p is large enough to have

one single big percolating cluster, without the presence of
closed islands of permitted sites not connected to the principal
percolating cluster, one has Np � pLy . In the intermediate
cases, it is possible to compute Np numerically. Therefore, we
can define the average front speed as

v1 = lim
t→∞

M(t)

Npt
. (13)

Another way to define v, which is much more sensitive to
statistical fluctuations of the cluster structure, can be obtained
starting from the dynamics of the model. Since the diffusion
operator (7) is a mass-preserving term, the derivative of the
total mass can be computed using Eq. (8),

v2(t) = 1

Np

d

dt
M(t) = α

Np

∑
s∈P

{θs(t)[1 − θs(t)]}. (14)

Of course, v2(t) is a function of time and its fluctuations reflect
the random nature of the percolating cluster. On the other
hand, we expect, as confirmed from numerical simulation (not
shown), that 〈v2(t)〉 = v1 = vf.

It is interesting to study the behavior of vf as a function
of p, the probability of having a permitted site. In fact, using
different values of p, it is possible to model different degrees
of nonhomogeneity, and we expect a different evolution of the
reaction process. For p = 1, since the lattice is homogeneous,
we expect to obtain the FKPP value v0 = 2

√
αD0. This result

is true for small α when δ0 ∼ √
D0/α is larger than the lattice

size (simulations not shown for the sake of brevity). On the
contrary, for large α, because of the discrete nature of the
lattice, the width of the FKPP front can be of the same order
as, or even smaller than, the lattice step. In this case, there is
a significant difference between the measured front speed and
the FKPP value also for p = 1. Although this discrepancy does
not invalidate our analysis, we choose to study only rescaled
velocity vf(p)/vf(1).

In the case of p < 1, especially for p ∼ pc, it is important to
introduce the probability of having a percolating lattice, P (p).
We write u(p) = P (p)vf(p)/vf(1) as the average velocity in a
percolating cluster when the site probability is p. For value of
p larger than pc it is possible to give simple but valid arguments
to explain the behavior of u. First of all, for small α values

062811-4



REACTION SPREADING ON PERCOLATING CLUSTERS PHYSICAL REVIEW E 87, 062811 (2013)

0.5 0.55 0.6 0.65 0.7
0

0.2

0.4

0.6

0.8

1

p

P
(p

)

 

 

L
y
=50

L
y
=100

L
y
=200

L
y
=400

FIG. 5. (Color online) The probability P (p) to percolate along a
channel of size Lx = Ly is shown for different Ly .

we expect a large front that regularizes the propagation. This
is a kind of homogenization regime [18]. Practically, we can
imagine the front proceeding almost as in a homogeneous
medium excluding the region in which the propagation is
prohibited. Therefore, we can write

u(p) = P (p)
vf(p)

vf(1)
∼ P (p)

Np

Ly

. (15)

Such a relation, when p is large, simplifies to vf(p) ∼ pvf(1).
In the other limit, for large α, we can use the following

argument [32]. We know [from Eq. (10)] that m(t) ∼ tdl . On
the other hand, m(t) ∼ r(t)df . Therefore, r(t) ∼ tdl/df and v =
dr
dt

∼ tdl/df−1 ∼ r1−dmin , where dmin = df
dl

. Furthermore, if the
linear size of the region is r < ξ , where ξ is the correlation
length [9], the cluster is self-similar and then v ∼ ξ 1−dmin .
Moreover, analysis of the percolation phase transition gives
ξ ∼ |p − pc|−ν , with ν = 4/3 for d = 2 [31], which gives the
final scaling v ∼ (p − pc)γ , where γ = −ν(1 − dmin). For the
average velocity, the scaling is

u(p) = P (p)
vf(p)

vf(1)
∼ P (p)

(
p − pc

1 − pc

)γ

. (16)

Alternatively, a similar scaling had been derived through large
deviation theory [22]. Both of the above behaviors are well
observed in the numerical simulations, as shown in Fig. 4.
It is worth noting that below the percolation threshold, the
probability to have a percolating cluster tends to zero for a
long enough channel; see Fig. 5. Nonetheless, in Fig. 4, it is
possible to observe a very small velocity u(p) for p � pc. This
result is basically due to the fact that, for finite size, P (p) is
not strictly zero for p � pc; see Fig. 5.

Concerning the probability P (p) of having a percolating
lattice as a function of p, in the numerical simulations it is
possible to compute P (p) only for finite values of Lx and Ly .
Moreover, in applications the cluster size is finite, and Ly can
be small. Figure 5 shows P (p) for different values of Ly in the
case of Lx = Ly . Naturally for Ly → ∞, P (p) approaches the
Heaviside step function �(p − pc). Simulations (not reported
here) show that for nonsquare lattices Lx = nLy with n > 1,
while the front speed vf does not change with n, the probability
P (p) is strongly influenced by n if n is large. Moreover, in the
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FIG. 6. (Color online) Averaged front width, 〈δf〉, as a function
of p at varying Ly , where the horizontal size of the lattice is Lx =
5000Ly . For all curves, α = 1. In the inset it is shown that for fixed
values of p, the scaling behavior of 〈δf〉 ∼ Lβ

y , where β = 0.94 for
p = 0.595, β = 0.54 for p = 0.6125, β = 0.37 for p = 0.65, and
β = 0.31 for p = 0.7.

case of large n, also pc changes, becoming dependent on both
n and Ly .

B. Front width

For a two-dimensional propagating wave in random media,
we can define various different measures of width. One
important measure concerns the averaged width of the front
along the propagation direction. It is analogous to the front
width in the 1D FKPP traveling wave and measures the region
along the x direction in which the reaction process is active
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δ f)
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FIG. 7. (Color online) Two different probability density functions
of δf for two values of p are shown: p = 0.595 ≈ pc and p = 0.75,
with Ly = 100, Lx = 5000Ly , and α = 1. It is well evident that for
p ≈ pc, fluctuations play a dominant role and large deviations are
present.
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FIG. 8. (Color online) Normalized averaged front width for
different values of the reaction rate with Ly = 100, Lx = 5000Ly .
For small values of α fluctuations are smoothed, whereas they are
maximal for large reaction rates.

(see Fig. 3). To define such a quantity, one can use θi(t), i.e.,
the average over the i direction of the field θs(t), defined in
Eq. (11). Yet the averaged quantity θi(t) still suffers from large
fluctuation, so we use a simplified observable that can give
a good measure of the front width. First, we introduce an
auxiliary quantity,

H(i,j )(t) =
{

1 if 0.01 � θ(i,j )(t) � 0.99,

0 elsewhere. (17)

Then we define δf(t), the front width, as the distance
between the maximum and the minimum value of i such
that H(i,j )(t) = 1. In this way, we define a rectangle of size
Ly × δf(t) inside which there is the whole active front. Also,
δf(t) is a strongly fluctuating quantity, therefore we study the
statistical feature of δf(t), e.g., 〈δf〉, as a function of p and Ly .

In principle, one can expect that given p and α, for Ly

large enough, the front width reaches a constant value, as with
the front speed. On the other hand, as shown in Fig. 6, the
convergence depends on p: while for large p (near p = 1)
there is an asymptotic value of 〈δf〉, for values of p going to
pc there is no convergence at all. Notably, in the limit of very
large clusters, the averaged front width diverges rapidly around
p ∼ pc. As the inset of Fig. 6 shows, the scaling structure of the
front width as a function of Ly at varying p is highly nontrivial
and cannot be associated with a single scaling exponent [33].

Rather interesting is the presence of very large fluctuations
of 〈δf〉. Figure 7 shows how, for p near pc, the typical value of
the front width, δf

T , given by the maximum of the probability
density function, is of the same order of the fluctuation of 〈δf〉
[measured as

√
〈δ2

f (t)〉 − 〈δf(t)〉2].
The above discussion is valid at fixed (and not too small) α.

When α is small, the bare FKPP front width, δ0, is large,
and a large front width regularizes the reaction dynamics.
If the bare front width is larger than the typical size of the
prohibited islands (for a given p), we can expect that the
random distribution of the islands does not affect too much
the front propagation, with a net effect of diminishing the
fluctuations and the dependence of the front on both p and
Ly . On the other hand, for large α the bare front width
is comparable with the lattice discretization. In this case,
fluctuations become very strong due to the dependency of
the front width both from p and Ly . Figure 8 explicates the
above discussion.

V. CONCLUSION

Reaction and diffusion processes in heterogeneous media,
because of their relevance in many real-world applications,
play a central role in several different fields. In the present
paper, starting from the basic equations, we have investigated
the behavior of a simple reaction and diffusion process taking
place in a heterogeneous medium, i.e., two-dimensional per-
colating structures. We show that for the reaction spreading on
percolating clusters, the dynamics is ruled by the connectivity
dimension, dl [see Eq. (10)], and the reaction rate affects
only the prefactor of the scaling. In the case of percolating
clusters through a channel, the reaction and diffusion process
develops a statistically stationary traveling wave. The speed
and the width of the traveling wave are deeply influenced
by the percolating transition together with finite-size effects
that generate peculiar behaviors of both front speed and front
width. Those effects are crucial since, in realistic problems, the
channel over which the reaction takes place has necessarily a
finite transversal length. Some recent numerical computations
and experiments show the key role played by the flow
heterogeneities on the chemical front dynamics [13–16].
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