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Statistical mechanics of multiplex networks: Entropy and overlap
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There is growing interest in multiplex networks where individual nodes take part in several layers of networks
simultaneously. This is the case, for example, in social networks where each individual node has different kinds
of social ties or transportation systems where each location is connected to another location by different types
of transport. Many of these multiplexes are characterized by a significant overlap of the links in different layers.
In this paper we introduce a statistical mechanics framework to describe multiplex ensembles. A multiplex is
a system formed by N nodes and M layers of interactions where each node belongs to the M layers at the
same time. Each layer α is formed by a network Gα . Here we introduce the concept of correlated multiplex
ensembles in which the existence of a link in one layer is correlated with the existence of a link in another layer.
This implies that a typical multiplex of the ensemble can have a significant overlap of the links in the different
layers. Moreover, we characterize microcanonical and canonical multiplex ensembles satisfying respectively
hard and soft constraints and we discuss how to construct multiplexes in these ensembles. Finally, we provide the
expression for the entropy of these ensembles that can be useful to address different inference problems involving
multiplexes.
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I. INTRODUCTION

Much attention has been paid to single networks [1–4] with
breakthroughs revealing the deep relation between topological
properties of the networks and their dynamics [5,6]. Never-
theless, many systems are not formed by isolated networks;
instead they are formed by a network of networks [7–9].
Examples include multimodal transportation networks [10,
11], climatic systems [12], economic markets [13], energy-
supply networks [14], and the human brain [15]. Moreover,
many networks are multiplex, indicating the fact that two nodes
can belong to different networks at the same time. For example,
this is the case of social networks in which agents can be
linked at the same time, by familiar relationships, friendship,
professional collaboration, colocation, email communication,
and so on. The offshoot of the network theory’s fundamental
insights is that for us working in statistical mechanics it
is now possible (in a sense it is mandatory) to move into
the field to shed light on the complexity on interdependent
networks and multiplexes. In this context, alternative measures
for multiplexes [8,16,17] and models of growing multiplexes
[18,19] have been proposed. Moreover, several works have
studied dynamical processes taking place on multiplexes
and interacting networks and different surprising phenomena
have been observed in this context involving percolation
[14,20–22], cascades [23], diffusion [24], epidemic spreading
[25] cooperation [26], opinion dynamics [27], and community
detection [7,28,29].

Yet we are only at the beginning of the research on
interacting networks and multiplexes and we need to develop
further theoretical frameworks to extract information from
multiplex data. For this purpose we need alternative statistical
mechanics methods to analyze data on multiplexes and
interacting networks.

An important tool to study real networks is to compare
them with null models represented by randomized network
ensembles. For single networks an equilibrium statistical
mechanics framework has been formulated [30–42] in order

to characterize network ensembles. A network ensemble is
defined as a set of networks that satisfy a given number
of structural constraints, i.e., degree sequence, community
structure, etc. Every set of constraints can give rise to a micro-
canonical network ensemble, satisfying the hard constraints,
or to a canonical network ensemble in which the constraints
are satisfied on average. This construction is symmetric to
the classical ensemble in statistical mechanics where one
considers system configurations compatible with either a
fixed value of the energy (microcanonical ensembles) or a
fixed average of the energy determined by the thermal bath
(canonical ensembles). For example, the G(N,L) random
graphs formed by networks of N nodes and L links are an
example of a microcanonical network ensemble, while the
G(N,p) ensembles, where each pair of links is connected
with probability p, are an example of a canonical network
ensemble since the number of links can fluctuate but has a
fixed average given by 〈L〉 = pN (N − 1)/2. A theoretical
question that arises in the study of network ensembles is
whether the microcanonical ensemble and the corresponding
canonical ensemble are equivalent in the thermodynamic limit.
It turns out [34,35] that when the number of constraints in two
conjugated network ensembles is extensive, the ensembles
are no longer equivalent in the thermodynamic limit and it
is important to characterize their differences. For example,
microcanonical and canonical network ensembles with a given
degree sequence are nonequivalent in the thermodynamic
limit.

The entropy of network ensembles is given by the logarithm
of the number of typical networks in the ensemble. The
entropy of a network ensemble quantifies the complexity of the
ensemble. In particular we have that the smaller the entropy of
the ensemble, the smaller the number of networks satisfying
the corresponding constraints and implying that these networks
are more optimized. Both the network ensembles and their
entropy can be used in several inference problems to extract
information from a given network [43,44]. Given the relevance
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of the statistical mechanics of randomized network ensembles
for describing real networks, it is important to extend this
successful approach to describe multiplex ensembles. In this
paper we have chosen to consider only simple multiplexes, but
the results can be easily extended to directed and weighted
networks.

In this paper we will show how to treat multiplex ensembles
as null models for multiplexes. We will introduce a distinction
between uncorrelated multiplex ensembles and correlated
multiplex ensembles in which the existence of a link in one
layer is correlated to the existence of a link in another layer.
We will characterize the overlap between links in two different
layers in the case of uncorrelated and correlated multiplex
ensembles. We will evaluate the entropy of microcanonical
and canonical multiplex ensembles for a large variety of
constraints. Finally, this work creates a scenario for building
null models of multiplex ensembles that has the promise to
be used in a large variety of inference problems. The paper
is organized as follows. In Sec. II we introduce multiplexes
and the global and local overlap of the links in the two layers.
In Sec. III we introduce multiplex ensembles, their entropy,
and correlations. In Sec. IV we describe canonical multiplex
ensembles and distinguish these ensembles as correlated or
uncorrelated. We give relevant examples of these ensembles,
calculate their entropy and their overlap, and give algorithms
to construct multiplexes in these ensembles. In Sec. V we de-
scribe microcanonical multiplex ensembles. We give relevant
examples of both correlated and uncorrelated microcanonical
multiplex ensembles and calculate their entropy. Finally, in
Sec. VI we present a summary.

II. MULTIPLEXES AND OVERLAP BETWEEN
TWO LAYERS

Consider a multiplex formed by N labeled nodes i =
1,2, . . . ,N and M layers. We can represent the multiplex as
described, for example, in [7]. To this end we indicate by
�G = (G1,G2, . . . ,GM ) the set of all the networks Gα at layer
α = 1,2, . . . ,M forming the multiplex. Each of these networks
has an adjacency matrix with matrix elements aα

ij = 1 if there
is a link between node i and node j in layer α = 1,2, . . . ,M

and zero otherwise. Moreover, for a multiplex we can define
multilinks and multidegrees in the following way. Let us
consider the vector �m = (m1,m2, . . . ,mα, . . . ,mM ) in which
every element mα can take only two values mα = 0,1. We
define a multilink �m, the set of links connecting a given pair of
nodes in the different layers of the multiplex and connecting
them in the generic layer α only if mα = 1. We can therefore
introduce a multiadjacency matrix A �m with elements A �m

ij equal
to 1 if there is a multilink �m between node i and node j and
zero otherwise, i.e., the multiadjacency matrices have elements
A �m

ij = 0,1 given by

A �m
ij =

M∏
α=1

[
aα

ijmα + (1 − aα
ij

)
(1 − mα)

]
. (1)

Therefore, we can define the total number of multilinks �m in
a network as the total number of pairs of nodes connected by
a multilink �m. Moreover, we can define the multidegree �m of
a node i, k �m

i , as the total number of multilinks �m incident to

node i, i.e.,

k �m
i =

N∑
j=1

A �m
ij . (2)

We note here that the multilink �m = �0 between two nodes
represents the situation in which in all the layers of the
multiplex the two nodes are not directly linked. To have a
uniform notation we refer also in this case to a multilink.
Moreover, we observe that the multiadjacency matrices are
not all independent. In fact, they satisfy the normalization
condition ∑

�m
A �m

ij = 1 (3)

for every fixed pair of nodes (i,j ).
For two layers α and α′ of the multiplex we can define

the global overlap Oα,α′
as the total number of pair of nodes

connected at the same time by a link in layer α and a link in
layer α′, i.e.,

Oα,α′ =
∑
i<j

aα
ij a

α′
ij . (4)

For a node i of the multiplex, we can define the local overlap
o

α,α′
i of the links in two layers α and α′ as the total number of

nodes j linked to the node i at the same time by a link in layer
α and a link in layer α′, i.e.,

o
α,α′
i =

N∑
j=1

aα
ij a

α′
ij . (5)

We expect the global or the local overlap between two layers
to characterize important correlations between the two layers
in real-world situations. For example, in a transportation
multiplex, where the different layers can represent different
kinds of transport such as bus and train connections or private
commuting, we expect that the links in the different layers of
this multiplex have an overlap that is statistically significant
with respect to a null hypothesis of uncorrelation between
the different layers. Also, if we consider in social sciences
the multiplex formed by different means of communication
between people (emails, mobile, sms, etc.), two people that
are linked in one layer are also likely to be linked in another
layer, forming a multiplex of correlated networks. We note
also that for a two-layer multiplex, i.e., M = 2, the multilink
k

1,1
i is equal to the local overlap oi . Reversibly, the multidegree

k �m
i of a node i in a multiplex with a generic number of layers

M can be seen as a higher-order local overlap.

III. MULTIPLEX ENSEMBLES, ENTROPY,
AND CORRELATIONS

A multiplex ensemble is specified when the probability
P ( �G) for each possible multiplex is given. In a multiplex
ensemble, if the probability of a multiplex is given by P ( �G),
the entropy of the multiplex S is defined as

S = −
∑

�G
P ( �G) ln P ( �G) (6)
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and measures the logarithm of the typical number of mul-
tiplexes in the ensemble. As it occurs for single networks,
we can construct microcanonical or canonical multiplex
ensembles according to the equilibrium statistical mechanics
approach applied to complex networks. Moreover, two layers
in a multiplex network ensemble might be either correlated
or uncorrelated. We will say that a multiplex ensemble is
uncorrelated if the probability P ( �G) of the multiplex is
factorizable into the probability of each single network Gα in
the layer α. Therefore, in an uncorrelated multiplex ensemble
we have

P ( �G) =
M∏

α=1

Pα(Gα), (7)

where Pα(Gα) is the probability of network Gα on layer α. If
Eq. (7) does not hold, i.e.,

P ( �G) �=
M∏

α=1

Pα(Gα), (8)

we will say that the multiplex ensemble is correlated.
Using Eq. (7) we can show that the entropy of any

uncorrelated multiplex ensemble is given by

S =
M∑

α=1

Sα = −
M∑

α=1

Pα(Gα) ln Pα(Gα), (9)

where Sα is the entropy of the network ensemble in layer α

with probability Pα(Gα). In an uncorrelated multiplex the links
in any two layers α and α′ are uncorrelated; therefore we have〈

aα
ij a

α′
ij

〉 = 〈aα
ij

〉〈
aα′

ij

〉
(10)

for every choice of pair of nodes i,j . On the contrary, if the
multiplex is correlated there will be at least two layers α and α′
in a multiplex ensemble and a pair of nodes i and j for which〈

aα
ij a

α′
ij

〉 �= 〈aα
ij

〉〈
aα′

ij

〉
. (11)

IV. CANONICAL MULTIPLEX ENSEMBLES OR
EXPONENTIAL RANDOM MULTIPLEXES

The canonical multiplex ensembles are the set of multi-
plexes that satisfy a series of constraints on average. The
construction of the canonical multiplex ensembles or expo-
nential random multiplex follows closely the derivation of the
exponential random graphs.

We can build a canonical multiplex ensemble by maxi-
mizing the entropy of the ensemble given by Eq. (6) under
the condition that the soft constraints we want to impose are
satisfied. We assume to have K of such constraints determined
by the conditions ∑

�G
P ( �G)Fμ( �G) = Cμ (12)

for μ = 1,2 . . . ,K , where Fμ( �G) determines one of the
structural constraints that we want to impose to the network.
For example, Fμ( �G) might characterize the total number of
links in a layer of the multiplex �G or the degree of a node in a
layer of the multiplex �G, etc. In the following we will specify

in detail different major examples for the constraints Fμ( �G). In
order the build the maximal entropy ensemble satisfying the
soft constraints defined Eq. (12), we maximize the entropy
S given by Eq. (6) under the condition that the ensemble
satisfies the K soft constraints given by Eq. (12). Introducing
the Lagrangian multipliers λμ enforcing the conditions given
by Eq. (12) and the Lagrangian multiplier � enforcing the
normalization of the probabilities

∑
�G P ( �G) = 1, we find the

expression for the probability P ( �G) of a multiplex by solving
the system of equations

∂

∂P ( �G)

⎡
⎣S −

K∑
μ=1

λμ

∑
�G

Fμ( �G)P ( �G) − �
∑

�G
P ( �G)

⎤
⎦ = 0.

(13)

Therefore, we get that the probability of a multiplex PC( �G) in
a canonical multiplex ensemble is given by

PC( �G) = 1

ZC

exp

[
−
∑

μ

λμFμ( �G)

]
, (14)

where the normalization constant ZC is called the partition
function of the canonical multiplex ensemble. The values of
the Lagrangian multipliers λμ are determined by imposing
the constraints given by Eq. (12) assuming for the probability
PC( �G) the structural form given by Eq. (14).

In this ensemble, we can the relate the entropy S [given by
Eq. (6)] to the canonical partition function ZC getting

S = −
∑

�G
PC( �G) ln PC( �G)

= −
∑

�G
PC( �G)

[
−
∑

μ

λμFμ( �G) − ln(ZC)

]

=
∑

μ

λμCμ + ln ZC. (15)

We call the entropy S of the canonical multiplex ensemble the
Shannon entropy of the ensemble.

A. Uncorrelated or correlated canonical multiplex ensembles

For a canonical uncorrelated multiplex ensemble in
which each multiplex �G has probability PC( �G), we have that
Eq. (7) is satisfied, i.e.,

PC( �G) =
M∏

α=1

P α
C (Gα), (16)

where P α
C (Gα) is the probability of network Gα on layer α.

Given the structure of the probability PC( �G) in the canonical
multiplex ensemble given by Eq. (14), in order to have an
uncorrelated multiplex the functions Fμ( �G) should be equal to
a linear combination of constraints fμ,α(Gα) on the networks
Gα on a single layer α, i.e.,

Fμ( �G) =
M∑

α=1

fμ,α(Gα). (17)
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A special case of this type of constraint is when each constraint
depends on a single network Gα in a layer α. In this case typical
sets of constraints can be the average total number of links
in each layer, the expected degree sequence in each layer,
the expected degree sequence and the expected community
structure in each layer, etc. Instead, in the case in which the
multiplex is correlated, also quantities such as the expected
overlap can be fixed. For a multiplex formed by two layers, we
can therefore construct multiplex ensembles with an expected
total number of links in each layer and expected global overlap
between the two layers or with an expected degree sequence
and expected local overlap between the two layers, etc.

We can therefore construct a large class of canonical
uncorrelated and correlated multiplex ensembles enforcing
a different number of constraints. Starting with a minimal
number of constraints, when we introduce further constraints
in our ensemble we expect that the typical number of
multiplexes that satisfy the constraints will decrease and
therefore we expect that the entropy of the multiplex ensemble
will decrease. Multiplexes in network ensembles with a typical
number of realizations are more complex and more optimized.
Therefore, the entropy of the multiplex can be used in solving
inference problems and is a first-principles measure to quantify
the complexity of the ensemble. In the following we give some
examples of uncorrelated and correlated canonical multiplex
ensembles.

B. Examples of uncorrelated canonical multiplex ensembles

1. Multiplex ensemble with given expected total number
of links in each layer

We can fix the average number of links in each layer α

to be equal to Lα . In this case we have K = M constraints
in the system indicated with a label α = 1,2, . . . ,M . These
constraints are given by∑

�G
Fα( �G)P ( �G) =

∑
�G

∑
i<j

aα
ijP ( �G) = Lα, (18)

with α = 1,2, . . . ,M . Therefore, the explicit expression for
Fα( �G) is given by

Fα( �G) =
∑
i<j

aα
ij . (19)

The probability of the multiplex is given by Eq. (14). Using
this expression, we observe that the probability PC( �G) can be
written as

PC( �G) = 1

ZC

exp

⎡
⎣−

M∑
α=1

λα

∑
i<j

aα
ij

⎤
⎦ , (20)

where ZC is the canonical partition function and λα is
the Lagrangian multiplier enforcing the constraint given by
Eq. (18). The probability of a link between node i and node j

in layer α is given by

pα
ij = pα = 〈aα

ij

〉 = e−λα

1 + e−λα
. (21)

The Lagrangian multipliers are fixed by the condition∑
i<j

pα
ij = N (N − 1)

2
pα = Lα, (22)

i.e., pα = 2Lα/[N (N − 1)] and e−λα = 2Lα

N(N−1)−2Lα . Using the
definition of the entropy of the multiplex and the expression
for PC( �G) given by Eq. (20) it is easy to show that the entropy
of the canonical multiplex ensemble S, which we call Shannon
entropy, is given by

S = −N (N − 1)

2

M∑
α=1

[pα ln pα + (1 − pα) ln(1 − pα)],

(23)

where pα = 2Lα/[N (N − 1)]. If the number of layers M is
finite, it can be shown that this expression in the large-N limit
is equal to

S =
M∑

α=1

ln

(
N(N−1)

2

Lα

)
.

2. Multiplex ensemble with given expected degree sequence
in each layer

We can fix the expected degree kα
i of every node i in

each layer α. In this case we have K = M × N constraints
in the system indicated with the labels α = 1,2, . . . ,M and
i = 1,2, . . . ,N . These constraints are given by

∑
�G

Fi,α( �G)P ( �G) =
∑

�G

N∑
j=1,j �=i

aα
ijP ( �G) = kα

i . (24)

Therefore, the explicit expression for Fi,α( �G) is given by

Fi,α( �G) =
N∑

j=1,j �=i

aα
ij . (25)

The probability of the multiplex is given by Eq. (14). Using
this expression we observe that the probability PC( �G) can be
written as

PC( �G) = 1

ZC

exp

⎡
⎣−

M∑
α=1

N∑
i=1

λi,α

N∑
j=1,j �=i

aα
ij

⎤
⎦ , (26)

where ZC is the canonical partition function and λi,α is
the Lagrangian multiplier enforcing the constraint given by
Eq. (24). The probability of a link between node i and node j

in layer α is given by

pα
ij = 〈aα

ij

〉 = e−λi,α−λj,α

1 + e−λi,α−λj,α
, (27)

where the Lagrangian multipliers λi,α are fixed by the
conditions

N∑
j=1,j �=i

pα
ij = kα

i . (28)

Using the definition of the entropy of the multiplex (6) and
the expression for PC( �G) given by Eq. (26), it is easy to show
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that the entropy of the canonical multiplex ensemble S, which
we call Shannon entropy, is given by

S = −
M∑

α=1

∑
i<j

[
pα

ij ln pα
ij + (1 − pα

ij

)
ln
(
1 − pα

ij

)]
. (29)

If kα
i <

√〈kα〉N ∀i = 1,2, . . . ,N then each network Gα is

uncorrelated and therefore e−λi,α 	 kα
i√〈kα〉N and pα

ij 	 kα
i kα

j

〈kα〉N . In
this limit the Shannon entropy S is given by

S 	
P∑

α=1

[
−
∑

i

kα
i ln

(
kα
i

)+ 1

2
〈kα〉N ln(〈kα〉N )

+ 1

2
〈kα〉N − 1

4

( 〈(kα)2〉
〈kα〉

)2
]

. (30)

3. Multiplex ensemble with given expected number of links
present in each layer between nodes in different communities

We can fix the expected number of links present in each
layer between nodes belonging to different communities. We
assign to each node i a discrete variable qi = 1,2, . . . ,Q indi-
cating the community of the node. We can consider canonical
uncorrelated multiplex ensembles in which we fix the expected
number of links eα

q,q ′ between nodes in community q and
nodes in community q ′ in layer α. In this case we have
K = M × Q(Q + 1)/2 constraints in the system indicated
with the labels α = 1,2, . . . ,M and q,q ′ = 1,2, . . . ,Q. These
constraints are given by∑

�G
Fq,q ′α( �G)P ( �G) = eα

q,q ′ , (31)

where the explicit expression for Fq,q ′,α( �G) is given by

Fq,q ′,α(Gα) =
∑
i,j

aα
ij δq,qi

δq ′,qj
for q �= q ′,

(32)
Fq,q,α(Gα) =

∑
i<j

aα
ij δq,qi

δq,qj
.

The probability of the multiplex is given by Eq. (14). Using
this expression, we observe that the probability PC( �G) can be
written as

PC( �G) = 1

ZC

exp

⎡
⎣−

M∑
α=1

∑
q�q ′

λq,q ′,αFq,q ′,α( �G)

⎤
⎦ , (33)

where ZC is the canonical partition function and λq,q ′,α is
the Lagrangian multiplier enforcing the constraint given by
Eq. (31). The probability of a link between node i and node j

in layer α is given by

pα
ij = 〈aα

ij

〉 = e
−λqi ,qj ,α

1 + e
−λqi ,qj ,α

, (34)

where the Lagrangian multipliers are fixed by the conditions∑
i,j

pα
ij δq,qi

δq ′,qj
= eα

q,q ′ for q �= q ′,

(35)∑
i<j

pα
ij δq,qi

δq,qj
= eα

q,q .

As can be seen by Eq. (34), the probabilities pα
ij depend only

on qi , qj , and α; therefore, we have pα
ij = pα(qi,qj ) with

pα(q,q ′) = eα
q,q ′

nqnq ′
for q �= q ′,

(36)

pα(q,q) = eα
q,q

nq(nq − 1)/2
,

where nq indicates the total number of nodes in community
q. Using the definition of the entropy of the multiplex (6) and
the expression for PC( �G) given by Eq. (33), it is easy to show
again that the entropy of the canonical multiplex ensemble S,
which we call Shannon entropy is given by

S = −
M∑

α=1

∑
i<j

[
pα

ij ln pα
ij + (1 − pα

ij

)
ln
(
1 − pα

ij

)]
. (37)

If the number of constraints is nonextensive M × Q(Q +
1)/2 
 N , this expression in the large-N limit is given by

S = −
M∑

α=1

∑
q �=q ′

ln

(
nqnq ′

eα
q,q ′

)
−

M∑
α=1

∑
q

ln

(
nq (nq−1)

2

eα
q,q

)
.

4. Multiplex ensemble with given expected degree sequence
in each layer and given expected number of links present

in each layer between nodes in different communities

We assign to each node i the label qi = 1,2, . . . ,Q

indicating the community to which node i belongs. We can
consider canonical uncorrelated multiplex ensembles in which
we fix the expected degree kα

i of every node i in each layer
α together with the expected number of links eα

q,q ′ between
nodes in community q and nodes in community q ′ in layer α.
In this case we have M × N constraints in the system indicated
with the labels α = 1,2, . . . ,M and i = 1,2, . . . ,N and other
M Q(Q+1)

2 constraints indicated with the labels α = 1,2, . . . ,M

and q,q ′ = 1,2, . . . ,Q. These constraints are given by∑
�G

Fi,α( �G)P ( �G) = kα
i , (38)

∑
�G

Fq,q ′,α( �G)P ( �G) = eα
q,q ′ , (39)

where the explicit expressions for Fi,α( �G) and Fq,q ′,α( �G) are
given by

Fi,α( �G) =
N∑

j=1,j �=i

aα
ij ,

Fq,q ′,α(Gα) =
∑
i,j

aα
ij δq,qi

δq ′,qj
for q �= q ′, (40)

Fq,q,α( �G) =
∑
i<j

aα
ij δq,qi

δq,qj
.

The probability of the multiplex is given by Eq. (14). Using
this expression we observe that the probability PC( �G) can be
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written as

PC( �G) = 1

ZC

exp

[
−

M∑
α=1

N∑
i=1

λi,αFi,α( �G)

]

× exp

[
−

M∑
α=1

∑
q�q ′

λq,q ′,αFq,q ′,α( �G)

]
, (41)

where Zα
C is the normalization factor, λi,α is the Lagrangian

multiplier enforcing the constraint given by Eq. (38), and
λq,q ′,α is the Lagrangian multiplier enforcing the constraint
given by Eq. (39). The probability of a link between node i

and node j in layer α is given by

pα
ij = 〈aα

ij

〉 = e−λi,α−λj,α−λq,q′,α

1 + e−λi,α−λj,α−λq,q′ ,α
, (42)

where the Lagrangian multipliers are fixed by the conditions

N∑
j=1,j �=i

pα
ij = kα

i ,

∑
i,j

pα
ij δq,qi

δq ′,qj
= eα

q,q ′ for q �= q ′, (43)

∑
i<j

pα
ij δq,qi

δq,qj
= eα

q,q .

Using the definition of the entropy of the multiplex (6) and the
expression for PC( �G) given by Eq. (41), it is easy to show that
the Shannon entropy is given by

S = −
∑

α

∑
i<j

[
pα

ij ln pα
ij + (1 − pα

ij

)
ln
(
1 − pα

ij

)]
. (44)

C. Properties of the uncorrelated canonical multiplex
ensembles under consideration

In all the ensembles taken into consideration in the
preceding section the existence of any link is independent of
the presence of other links in the multiplex and the probability
of a given multiplex �G is given by

PC( �G) =
M∏

α=1

∏
i<j

[
pα

ij a
α
ij + (1 − pα

ij

)(
1 − aα

ij

)]
. (45)

Using the definition of the entropy of the multiplex (6) and the
expression for PC( �G) given by Eq. (45), we can show once
again that the Shannon entropy is given by for all the cases
under consideration in Sec. IV B.

In the considered ensembles we can calculate the average
global overlap 〈Oα,α′ 〉 between two layers α and α′ and the
average local overlap 〈oα,α′

i 〉 between two layers α and α′

where the global overlap Oα,α′
is defined in Eq. (4) and the

local overlap o
α,α′
i is defined in Eq. (5). These quantities are

given by

〈Oα,α′ 〉 =
∑
i<j

pα
ijp

α′
ij ,

〈
o

α,α′
i

〉 = N∑
j=1,j �=i

pα
ijp

α′
ij . (46)

For a multiplex ensemble with fixed expected total number
of links Lα in each layer α we have pα

ij = pα = 2Lα/

[N (N − 1)] and therefore

〈Oα,α′ 〉 = 2LαLα′

N (N − 1)
,
〈
o

α,α′
i

〉 = 4LαLα′

N2(N − 1)
. (47)

Therefore, if Lα = O(N ) ∀α = 1,2, . . . ,M , then the average
global overlap is a finite number in the large network limit
and the local overlap is vanishing in the large network limit.
Therefore, in this case the overlap of links is a totally negligible
phenomenon in the multiplex. In fact, the average global
overlap 〈Oα,α′ 〉 is much smaller than the total number of links
in layer α, i.e., Lα , or the total number of links in layer α′,
i.e., Lα′

. Moreover, the average local overlap 〈oα,α′
i 〉 is much

smaller that the expected degree of node i in layer α or in layer
α′. For multiplex ensembles with a given expected degree
of the nodes in each layer and with kα

i <
√〈kα〉N we have

pα
ij = kα

i kα
j

〈kα〉N and therefore

〈Oα,α′ 〉 = 1

2

( 〈kαkα′ 〉2

〈kα〉〈kα′ 〉
)

,
〈
o

α,α′
i

〉 = kα
i kα′

i

〈kαkα′ 〉
〈kα〉〈kα′ 〉N ,

(48)

where 〈kαkα′ 〉 =∑N
i=1 kα

i kα′
i /N .

If the degrees in the different layers are uncorrelated (i.e.,
〈kαkα′ 〉 = 〈kα〉〈kα′ 〉) then the global and local overlaps are
given by

〈Oα,α′ 〉 = 1

2
(〈kα〉〈kα′ 〉) 
 N,

(49)〈
o

α,α′
i

〉 = kα
i kα′

i

N

 min

(
kα
i ,kα′

i

)
.

Therefore, also in this case the overlap is negligible. Degree
correlation in between different layers can enhance the overlap,
but as long as 〈kαkα′ 〉 
 N the average global 〈Oα,α′ 〉 and
the local 〈oα,α′

i 〉 overlaps continue to remain negligible with
respect to the total number of nodes in the two layers and the
degrees of node i in the two layers. Similarly using Eq. (46) it
is possible to calculate the expected global overlap and local
overlap also in the multiplex ensemble in which we fix the
number of links that in the layer connect nodes belonging to
different communities and in the multiplex ensemble in which
we fix at the same time the average degree of each node in each
layer and the average number of links in between nodes of
different communities at any given layer. In all the considered
multiplex ensembles, if we want to have a given significant
overlap we need to consider correlated multiplex ensembles.

D. Construction of a uncorrelated multiplex in an uncorrelated
canonical multiplex ensemble under consideration

In all the cases taken into consideration in the previous
sections, the probability of a network Gα on layer α is
uncorrelated with the other networks in the other layers. In
particular, the probability of a multiplex �G can be written as
in Eq. (45).

Therefore, in order to construct a multiplex in the canonical
network ensembles it is sufficient to follow the following
scheme.

(i) Calculate the probability pα
ij to have a link between

nodes i and j in layer α.
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(ii) For every pair of nodes i and j put a link in layer α

with probability pα
ij . Do this for every layer α = 1,2, . . . ,M

independently.

E. Examples of correlated canonical multiplex ensembles

If the probability of a multiplex PC( �G) does not factorize
into the probabilities P α

C (Gα) of the networks in the different
layers α of the multiplex, i.e., if

PC( �G) �=
M∏

α=1

P α
C (Gα), (50)

the multiplex is correlated. In these ensembles the existence
of a link in one layer can be correlated with the existence of
a link in another layer. For single networks, when we want to
treat ensembles in which the links are correlated we need to
make use of a parametrization that takes into account not only
single independent links but also a correlated set of links called
subgraphs, such as triangles and triples [37,38]. Similarly, if
we want to treat correlated multiplexes, it is convenient to
consider multilinks. In this way our multiplex is no longer
described by M adjacency matrices describing the networks at
each multiplex layer, but the network is described by a much
larger set of variables corresponding to correlated links, i.e.,
multilinks, and is fully characterized by 2M multiadjacency
matrices. The simplest case of a correlated multiplex ensemble
is an ensemble in which we fix the expected total number of
multilinks �m in the network defined in Sec. II. Starting from
this example of a correlated canonical multiplex ensemble,
we can generate more refined models in which we fix the
expected multidegree sequence k �m

i defined in Sec. II or the
expected number of multilink �m linking nodes of different
communities, etc. In the following we will describe in detail
some of the more relevant examples of correlated canonical
multiplex ensembles.

1. Multiplex ensemble with given expected total number
of multilinks �m

We can fix the average number L �m of multilinks �m with
the condition

∑
�m L �m = N (N − 1)/2. In this case we have

K = 2M constraints indicated by the label �m = (m1,m2, . . . ,

mα, . . . ,mM ) with mα = 0,1. These constraints are given by∑
�G

F �m( �G)PC( �G) =
∑

�G

∑
i<j

A �m
ijPC( �G) = L �m, (51)

where the multiadjacency matrices of elements A �m
ij are defined

in Eq. (1). In this case the functions F �m( �G) are given by

F �m( �G) =
∑
i<j

A �m
ij . (52)

The probability PC( �G) of a multiplex in the ensemble is given
by Eq. (14), which reads in this specific case

PC( �G) = 1

ZC

exp

⎡
⎣−

∑
�m

λ �m
∑
i<j

A �m
ij

⎤
⎦ , (53)

where ZC is the canonical partition function and λ �m is
the Lagrangian multiplier enforcing the constraint given by

Eq. (51). The probability p �m
ij of a multilink �m between node i

and node j is given by

p �m
ij = p �m = 〈A �m

ij

〉 = e−λ �m∑
�m e−λ �m

, (54)

with
∑

i<j p �m
ij = L �m and

∑
�m p �m

ij = 1, implying

p �m = L �m

N (N − 1)/2
. (55)

The entropy of the canonical multiplex ensemble S given by
Eq. (6) can be calculated using the expression for PC( �G)
[Eq. (53)], obtaining

S = −N (N − 1)

2

∑
�m

(p �m ln p �m), (56)

with p �m is given by Eq. (55). If the number of layers M is
finite this entropy S is given by

S = ln

[(
N(N−1)

2

)
!∏

�m(L �m!)

]
. (57)

2. Multiplex ensemble with given expected multidegree sequence

We can fix the average multidegree k �m
i of node i with the

condition
∑

�m k �m
i = N − 1. In this case we have K = 2M × N

constraints indicated by the label �m = (m1,m2, . . . ,mα, . . . ,

mM ) with mα = 0,1 and the label i = 1,2, . . . ,N . In particular
we have∑

�G
Fi, �m( �G)PC( �G) =

∑
�G

∑
j

A �m
ijPC( �G) = k �m

i (58)

for all �m with mα = 0,1 and all i = 1,2, . . . ,N , where the
multiadjacency matrices of elements A �m

ij = 0,1 are given by

Eq. (1). Therefore, the functions Fi, �m( �G) are given in this case
by

Fi, �m( �G) =
N∑

j=1,j �=i

A �m
ij . (59)

The probability of the multiplex is given by Eq. (14), which in
this case reads

P ( �G) = 1

ZC

exp

⎡
⎣−

∑
�m

N∑
i=1

λi, �m
N∑

j=1

A �m
ij

⎤
⎦ , (60)

where ZC is the canonical partition function and λi, �m is
the Lagrangian multiplier enforcing the constraint given by
Eq. (58). The probability of a multilink �m between node i and
node j is given by

p �m
ij = 〈A �m

ij

〉 = e−λi, �m−λj, �m∑
�m e−λi, �m−λj, �m

, (61)

with the Lagrangian multipliers λi, �m fixed by the constraints

∑
�m

p �m
ij = 1,

N∑
j=1

p �m
ij = k �m

i . (62)

The entropy of the canonical multiplex ensemble S, the
Shannon entropy, is given by Eq. (6) and can be calculated
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using the expression for PC( �G) [Eq. (60)], obtaining

S = −
∑

�m

∑
i<j

(
p �m

ij ln p �m
ij

)
. (63)

If the multiplex is sparse, i.e., k �m
i <

√
〈k �m〉N provided that in

the multilink �m there is at least a link, i.e.,
∑M

α=1 mα > 0, we
have

p �m
ij = k �m

i k �m
j

〈k �m〉N (64)

for all �m such that
∑M

α=1 mα > 0. In this limit the entropy S is
given by

S 	
∑

�m|∑M
α=1 mα〉0

[
−
∑

i

k �m
i ln

(
k �m
i

)+ 1

2
〈k �m〉N

+ 1

2
〈k �m〉N ln(〈k �m〉N ) − 1

4

( 〈(k �m)2〉
〈k �m〉

)2
]

. (65)

3. Multiplex ensemble with given expected number of multilinks
�m between nodes in different communities

We can fix the expected number of multilinks �m between
nodes in different communities of the multiplex. We assign to
each node i a discrete variable qi = 1,2, . . . ,Q indicating the
community of the node.

We can consider canonical uncorrelated multiplex ensem-
bles in which we fix the expected number of multilinks �m,
e �m
q,q ′ , between nodes in community q and nodes in community

q ′. Moreover, we choose e �m
q,q ′ such that they satisfy the

condition that the sum over the different multilinks �m of e �m
q,q ′

is equal to the total number of links in between nodes in
community q and nodes in community q ′. In this case we have
K = 2M × Q(Q + 1)/2 constraints in the system indicated
with the label �m = (m1,m2, . . . ,mM ) with mα = 0,1 and the
labels q,q ′ = 1,2, . . . ,Q. These constraints are given by∑

�G
Fq,q ′, �m( �G)PC( �G) = e �m

q,q ′ , (66)

where the explicit expression for Fq,q ′, �m( �G) is given by

Fq,q ′, �m( �G) =
∑
i,j

A �m
ij δq,qi

δq ′,qj
for q �= q ′,

(67)
Fq,q, �m( �G) =

∑
i<j

A �m
ij δq,qi

δq,qj
,

and the multiadjacency matrices of elements A �m
ij are defined in

Eq. (1). The probability of the multiplex is given by Eq. (14)
and in this specific case is given by

PC( �G) = 1

ZC

exp

⎡
⎣−

∑
�m

∑
q�q ′

λq,q ′, �mFq,q ′, �m( �G)

⎤
⎦ , (68)

where ZC is the canonical partition function and λq,q ′, �m is
the Lagrangian multiplier enforcing the constraint given by
Eq. (66). The probability of a multilink �m between node i and

node j is given by

p �m
ij = 〈A �m

ij

〉 = e
−λqi ,qj , �m∑
�m e

−λqi ,qj , �m
, (69)

where the Lagrangian multipliers are fixed by the conditions

∑
�m

p �m
ij = 1,

∑
i,j

p �m
ij δq,qi

δq ′,qj
= e �m

q,q ′ for q �= q ′, (70)

∑
i<j

p �m
ij δq,qi

δq,qj
= e �m

q,q .

As can be seen by Eq. (69), the probabilities p �m
ij depend only

on qi , qj , and �m; therefore we have p �m
ij = p �m(qi,qj ) with

p �m(q,q ′) = e �m
q,q ′

nqnq ′
for q �= q ′,

(71)

p �m(q,q) = e �m
q,q

nq(nq − 1)/2
,

where nq indicates the total number of nodes in community
q. The entropy of the canonical multiplex ensemble S is given
by Eq. (6). Evaluating this expression using the probability of
the multiplex PC( �G) given by (68) we obtain

S = −
∑

�m

∑
i<j

(
p �m

ij ln p �m
ij

)
. (72)

If the number of constraints is nonextensive 2MQ(Q +
1)/2 
 N , this expression in the large-N limit is given by

S =
∑
q �=q ′

ln

[
(nqnq ′ )!∏
�m
(
e �m
q,q ′ !

)
]

+
∑

q

ln

[ ( nq (nq−1)
2

)
!∏

�m
(
e �m
q,q!
)
]

. (73)

4. Multiplex ensemble with fixed expected multidegree sequence
and expected number of multilinks �m between nodes

in different communities

We assign to each node i the label qi = 1,2 . . . ,Q indicating
the community to which node i belongs. We can consider
canonical uncorrelated multiplex ensembles in which we
fix the expected multidegree k �m

i of every node i (with
the condition

∑
�m k �m

i = N − 1) together with the expected
number of multilinks e �m

q,q ′ between nodes in community q

and nodes in community q ′ (with the condition that the
sum over the different multilinks �m of e �m

q,q ′ is equal to the
total number of links in between nodes in community q

and nodes in community q ′). In this case we have 2M × N

constraints indicated with the labels �m = (m1,m2, . . . ,mM )
with mα = 0,1 and i = 1,2 . . . ,N and other 2M × Q(Q+1)

2
constraints indicated with labels �m and q,q ′ = 1,2 . . . ,Q.
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These constraints are given by∑
�G

Fi, �m( �G)P ( �G) = k �m
i , (74)

∑
�G

Fq,q ′, �mPC( �G) = e �m
q,q ′ for q �= q ′, (75)

∑
�G

Fq,q, �m( �G)PC( �G) = e �m
q,q ′ , (76)

where the explicit expressions for Fi, �m( �G) and Fq,q ′, �m( �G) are
given by

Fi, �m( �G) =
∑

j

A �m
ij ,

Fq,q ′, �m( �G) =
∑
i,j

A �m
ij δq,qi

δq ′,qj
for q �= q ′, (77)

Fq,q, �m( �G) =
∑
i<j

A �m
ij δq,qi

δq,qj
,

where the element A �m
ij of the multiadjacency matrices is

defined in Eq. (1). The probability of the multiplex is given by
Eq. (14), which reads in this case

PC( �G) = 1

ZC

exp

[
−
∑

�m

∑
i

λi, �mFi, �m( �G)

]

× exp

[
−
∑

�m

∑
q�q ′

λq,q ′ �mFq,q ′ �m( �G)

]
, (78)

where ZC is the canonical partition function, λi, �m is the
Lagrangian multiplier enforcing the constraint given by
Eq. (74), and λq,q ′, �m is the Lagrangian multiplier enforcing
the constraint given by Eq. (75) or (76). The probability of a
multilink �m between node i and node j is given by

p �m
ij = 〈A �m

ij

〉 = e−λi, �m−λj, �m−λq,q′, �m∑
�m e−λi, �m−λj, �m−λq,q′, �m

, (79)

where the Lagrangian multipliers are fixed by the conditions∑
�m

p �m
ij = 1,

∑
j

p �m
ij = k �m

i ,

(80)∑
i,j

p �m
ij δq,qi

δq ′,qj
= e �m

q,q ′ for q �= q ′,

∑
i<j

p �m
ij δq,qi

δq,qj
= e �m

q,q .

The entropy of the canonical multiplex ensemble that we call
Shannon entropy is given by

S = −
∑

�m

∑
i<j

(
p �m

ij ln p �m
ij

)
, (81)

where the probabilities p �m
ij are given by Eq. (79) and satisfy

Eqs. (80).

F. Overlap in correlated canonical ensembles
under consideration

In all the cases taken into consideration in the preceding
section, the probability of a network Gα on layer α is correlated
with the other networks in the other layers. Therefore, the
probability PC( �G) cannot be factorized in the probability for
single layers. Nevertheless, PC( �G) takes a simple form in the
cases that we have investigated so far, i.e.,

PC( �G) =
∏
i<j

[∏
�m

p �m
ijA

�m
ij

]
, (82)

where �m = (m1,m2, . . . ,mM ) is a vector of elements mα = 0,1
and A �m

ij are the multiadjacency matrices defined in Eq. (1). In
these ensembles the Shannon entropy S given by Eq. (6) takes
the simple form

S = −
∑
i<j

∑
�m

p �m
ij ln p �m

ij . (83)

In the considered ensembles we can calculate the average
total overlap 〈Oα,α′ 〉 between two layers α and α′ and the
average local overlap 〈oα,α′

i 〉 between two layers α and α′,
where the global overlap Oα,α′

is defined in Eq. (4) and the
local overlap o

α,α′
i is defined in Eq. (5). These quantities are

given by

〈Oα,α′ 〉 =
∑

�m|mα=1,mα′ =1

∑
i<j

p �m
ij ,

(84)〈
o

α,α′
i

〉 = ∑
�m|mα=1,mα′ =1

N∑
j=1

p �m
ij .

These quantities now can be significant also for sparse
networks, as we will see in the next section in the simple
case of a multiplex with just two layers, i.e., M = 2.

G. Case of a two-layer multiplex, i.e., M = 2

Let us consider the simple case of a correlated multiplex
ensemble formed by M = 2 layers: network 1 and network 2.
The probability PC( �G) of a multiplex in all the cases taken into
consideration in Sec. IV E is given by Eq. (82), which reads in
this case

P ( �G) =
∏
i<j

[
p00

ij

(
1 − a1

ij

)(
1 − a2

ij

)+ p10
ij a1

ij

(
1 − a2

ij

)
+p01

ij

(
1 − a1

ij

)
a2

ij + p11
ij a1

ij a
2
ij

]
, (85)

where p
n1,n2
ij is the probability to have n1 = 0,1 links between

node i and node j in network 1 and n2 = 0,1 links between the
same nodes in network 2. The probabilities p

n1n2
ij satisfy the

constrain p00
ij + p01

ij + p10
ij + p11

ij = 1. The entropy of such a
multiplex is then given by Eq. (83), which reads in this case

S = −
∑
n1,n2

∑
i<j

p
n1n2
ij ln p

n1n2
ij . (86)

In the considered ensembles we can calculate the average
total overlap 〈O1,2〉 = 〈O〉 between two layers 1 and 2 and the
average local overlap 〈o1,2

i 〉 = 〈oi〉 defined in Eqs. (84). For
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the ensembles in which we fix the expected total number of
multilinks �m, L �m, considered in Sec. IV E1 we have

〈O〉 = L11, 〈oi〉 = 2L11

N − 1
. (87)

Assuming L11,L10,L01 ∝ N , Eq. (87) implies that the fraction
of links that overlap is not negligible (globally and locally)
also if both network 1 and network 2 are sparse. For the
ensemble in which we fix the expected multidegree (con-
sidered in Sec. IV E2), considering the additional condition
k �m
i <

√
〈k �m〉N for all multilinks �m formed at least by a link,

i.e.,
∑M

α=1 mα > 0, we have p �m
ij = k �m

i k �m
j

〈k �m〉N and therefore

〈O〉 = 1
2 〈k11〉N, 〈oi〉 = k11

i . (88)

Provided 〈k11〉 is finite, we find that also in this case the global
and local overlaps can be significant also if both network 1 and
network 2 are sparse. A similar conclusion can be drawn for
the other two cases of correlated multiplex ensembles taken
into consideration in the previous paragraphs.

H. Construction of correlated multiplex in the
canonical multiplex ensemble

Since in the considered cases of correlated multiplex
ensembles the probability of a multiplex can be expressed
as in Eq. (82), in order to construct a correlated multiplex in
the canonical network ensembles it is sufficient to follow the
following scheme.

(i) Calculate the probability p �m
ij to have a multilink �m

between node i and j .
(ii) For every pair of node i and j , draw a multilink �m with

probability p �m
ij and consequently put a link in every layer α

where mα = 1 and put no link in every layer α where mα = 0.

V. MICROCANONICAL MULTIPLEX ENSEMBLES

The microcanonical multiplex ensembles are formed by the
multiplexes that satisfy some hard constraints. Every multiplex
in a microcanonical multiplex ensemble has equal probability.
We note here that we consider only graphical constraints [45],
i.e., constraints that can be satisfied at least by one realization
of the multiplex. This is a condition that, for example, is
automatically satisfied if we consider network ensembles that
are a randomization of a real multiplex with some given
structural features. Therefore, the probability PM ( �G) of a
microcanonical multiplex ensemble is given by

PM ( �G) = 1

ZM

K∏
μ=1

δ(Fμ( �G),Cμ), (89)

where δ( ) is the Kronecker delta function and ZM is the
microcanonical partition function of the multiplex given
by

ZM =
∑

�G

K∏
μ=1

δ(Fμ( �G),Cμ). (90)

Therefore, the microcanonical partition function ZM of the
multiplex ensemble counts the number of multiplexes satisfy-
ing the hard constraints Fμ( �G) = Cμ for μ = 1,2, . . . ,K . We

call the entropy of these multiplex ensembles N� and using
the definition of the entropy of an ensemble given by Eq. (6)
together with the expression for the probability of a multiplex
in the microcanonical ensemble given by Eq. (89) we have

N� = −
∑

�G
PM ( �G) ln PM ( �G) = ln ZM, (91)

where we call � the Gibbs entropy of the multiplex ensemble.
The Gibbs entropy � of microcanonical multiplex ensembles
is related to the Shannon entropy S of the associated canonical
multiplex ensemble S, which enforces the same constraint
of the microcanonical network ensemble on average (the
conjugated canonical ensemble), by a simple relation. In fact,
we have

N� = S − N�, (92)

where N� is equal to the logarithm of the probability that in the
conjugated canonical multiplex ensemble the hard constraints
Fμ( �G) are satisfied, i.e.,

N� = − ln

⎧⎨
⎩
∑

�G
PC( �G)

K∏
μ=1

δ(Fμ( �G),Cμ)

⎫⎬
⎭ . (93)

In order to verify the relation (92) we observe that the canonical
multiplex probability PC( �G) is given by Eq. (14), which we
rewrite here for convenience as

PC( �G) = 1

ZC

exp

⎛
⎝−

K∑
μ=1

λμFμ( �G)

⎞
⎠ , (94)

and therefore, using Eq. (93), we get

exp(−N�)

=
∑

�G

1

ZC

exp

⎛
⎝−

K∑
μ=1

λμFμ( �G)

⎞
⎠ K∏

μ=1

δ(Fμ( �G),Cμ)

= 1

ZC

exp

⎛
⎝−

K∑
μ=1

λμCμ

⎞
⎠∑

�G

K∏
μ=1

δ(Fμ( �G),Cμ)

= ZM

eS
= exp(N� − S), (95)

where in the last relation we have used Eqs. (15), (90), and (91).
Given Eq. (92), if � is larger than zero in the limit N � 1,
the microcanonical and the conjugated canonical multiplex
ensembles are not equivalent.

A. Uncorrelated microcanonical multiplex ensembles

In an uncorrelated multiplex ensemble we have that the
probability of a multiplex �G is factorizable into the product of
probabilities Pα(Gα) of the networks Gα in layer α, i.e.,

PM ( �G) =
M∏

α=1

P α
M (Gα). (96)

Given the general expression for PM ( �G) provided by Eq. (89),
we can conclude that a microcanonical multiplex ensemble
is uncorrelated only if the hard constraints Fμ( �G) = Cμ

with μ = 1,2 . . . ,K involve for every constraint μ only one
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network Gα in one layer α of the multiplex. Therefore, we will
indicate the function Fμ( �G) with a label indicating the layer
α and one label ν counting the number of constraints in each
layer, i.e., Fν,α(Gα).

Given the condition Eq. (96), the Gibbs entropy � of the
multiplex can be expressed as

N� = −
∑

�G
PM ( �G) ln PM ( �G) =

∑
α

N�α, (97)

where �α is the Gibbs entropy of the network ensemble
induced in layer α,

N�α = −
∑
Gα

P α
M (Gα) ln P α

M (Gα) (98)

with P α
M (Gα) =∏ν δ(Fν,α(Gα),Cν,α)/Zα

M , and

Zα
M =

∑
Gα

∏
ν

δ(Fν,α(Gα),Cν,α). (99)

Using the same arguments used to derive Eq. (92), it is
straightforward to show that the Gibbs entropy �α of each
network ensemble at layer α is given by

N�α = Sα − N�α, (100)

where Sα is the Shannon entropy of the canonical network
ensemble, which enforces the same constraint of the micro-
canonical network ensemble on average, i.e.,

Sα = −
∑
Gα

P α
C (Gα) ln P α

C (Gα), (101)

where P α
C (Gα) is the probability for a network Gα in layer α.

Moreover, �α in Eq. (100) satisfies

N�α = − ln

{∑
Gα

P α
C (Gα)

∏
ν

δ(Fν,α(Gα),Cν,α)

}
. (102)

Examples of uncorrelated microcanonical multiplex ensem-
bles are given by ensembles in which we fix the total number
of links at each layer, the degree sequence at each layer, the
number of links between nodes in different communities in
each layer, etc. In the following section we present in detail
several examples of uncorrelated microcanonical multiplex
ensembles.

B. Examples of uncorrelated microcanonical
multiplex ensembles

1. Multiplex ensemble with given total number
of links in each layer

We can fix the total number of links Lα in each layer α

of the multiplex. In this case we have K = M constraints in
the system indicated with the label α = 1,2, . . . ,M . These
constraints are given by

Fα( �G) = Lα (103)

with α = 1,2, . . . ,M and Fα( �G) given by

Fα( �G) =
∑
i<j

aα
ij . (104)

The microcanonical partition function ZM is equal to the
number of multiplexes in these ensemble, which is given by

the product over the layers α = 1,2, . . . ,M of the number
of networks Gα satisfying the constraints Fα( �G) = Lα . The
number of networks Gα with Lα links is given by the number
of ways of choosing Lα links out of N (N − 1)/2 possible
links; we have therefore

ZM =
M∏

α=1

((
N

2

)
Lα

)
. (105)

Using Eq. (91) we find that the Gibbs entropy for this ensemble
is given by

N� = ln

((
N

2

)
Lα

)
. (106)

As long as the number of constraints M is sublinear with
respect to N we have that the microcanonical and canonical
ensembles studied in Sec. IV B1 are equivalent in the thermo-
dynamic limit and � 	 S/N .

2. Multiplex ensemble with given degree sequence in each layer

We can fix the degree kα
i of every node i in each layer α.

In this case we have K = M × N constraints in the system
indicated with the labels α = 1,2, . . . ,M and i = 1,2, . . . ,N .
These constraints are given by

Fi,α( �G) = kα
i , (107)

with Fi,α( �G) given by

Fi,α( �G) =
N∑

j=1,j �=i

aα
ij . (108)

For this ensemble we can use the results of [33,35], getting

N� = S − N�, (109)

with S given by Eq. (29) and N� for sparse networks given
by

N� = −
M∑

α=1

N∑
i=1

ln πkα
i

(
kα
i

)
, (110)

where πy(x) is the Poisson distribution with the average
y, πy(x) = 1/x!yx exp(−y). In this case, if the number of
layers M is finite, then in the large network limit N � 1,
� is finite and we have � = S/N − �. Therefore, the Gibbs
entropy � is lower than S/N and the microcanonical ensemble
is not equivalent in the thermodynamic limit N � 1 to the
conjugated canonical ensemble. In the case in which kα

i <√〈kα〉N we can use for S the expression in Eq. (30). Therefore,
the Gibbs entropy � can be approximated by

N� =
M∑

α=1

ln

{
(〈kα〉N )!!∏N

i=1 kα
i !

exp

[
−1

4

( 〈(kα)2〉
〈kα〉

)2
]}

. (111)

This last expression is a generalization of the Bender formula
[34,46] for the entropy of networks with a given degree
sequence.
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3. Multiplex ensemble with given number of links in each layer
between nodes of different communities

We can fix the total number of links between nodes
of different communities in each layer α. We assign to
each node i a discrete variable qi = 1,2, . . . ,Q indicating
the community of the node. We consider a microcanonical
uncorrelated multiplex ensemble in which we fix the total
number of links eα

q,q ′ between nodes in community q and
nodes in community q ′ in layer α. In this case we have
K = M × Q(Q + 1)/2 constraints in the system indicated
with the labels α = 1,2, . . . ,M and q,q ′ = 1,2, . . . ,Q. These
constraints are given by

Fq,q ′α( �G) = eα
q,q ′ , (112)

where the explicit expression for Fq,q ′,α( �G) is given by

Fq,q ′,α( �G) =
∑
i,j

aα
ij δq,qi

δq ′,qj
for q �= q ′,

(113)
Fq,q,α( �G) =

∑
i<j

aα
ij δq,qi

δq,qj
.

The microcanonical partition function ZM is equal to the
number of multiplexes in this ensemble, which is given by
the product over the layers α = 1,2, . . . ,M of the number of
networks Gα satisfying the constraints Fq,q ′,α( �G) = eα

q,q ′ . The
number of networks Gα with eα

q,q ′ links is given by the number
of ways of choosing eα

q,q ′ links out of the total number of
possible links between nodes in community q and community
q ′; we have therefore

ZM =
M∏

α=1

⎡
⎣∏

q<q ′

(
nqnq ′

eα
q,q ′

)∏
q

(
nq(nq − 1)/2

eα
q,q

)⎤⎦ , (114)

where nq indicates the number of nodes in community q.
Finally, the Gibbs entropy � for this ensemble is given by
Eq. (90) and therefore we obtain

N� =
M∑

α=1

ln

⎡
⎣∏

q<q ′

(
nqnq ′

eα
q,q ′

)∏
q

(
nq(nq − 1)/2

eα
q,q

)⎤⎦ . (115)

In this case the Gibbs entropy � = S/N in the limit N � 1
only if the number of constraints K is sublinear with respect
to N .

4. Multiplex ensemble with given degree sequence in each layer
and given number of links in between nodes in different

communities in each layer

We assign to each node i the label qi = 1,2, . . . ,Q

indicating the community to which node i belongs. We can
consider microcanonical uncorrelated multiplex ensembles in
which we fix the degree kα

i of every node i in every layer α

together with the total number of links eα
q,q ′ between nodes

in community q and nodes in community q ′ in layer α. In
this case we have M × N constraints in the system indicated
with the labels α = 1,2, . . . ,M and i = 1,2, . . . ,N and other
M Q(Q+1)

2 constraints indicated with the labels α = 1,2, . . . ,M

and q,q ′ = 1,2, . . . ,Q. These constraints are given by

Fi,α( �G) = kα
i , Fq,q ′,α( �G) = eα

q,q ′ , (116)

where the explicit expressions for Fi,α( �G) and Fq,q ′,α( �G) are
given by

Fi,α( �G) =
N∑

j=1,j �=i

aα
ij ,

Fq,q ′,α(Gα) =
∑
i,j

aα
ij δq,qi

δq ′,qj
for q �= q ′, (117)

Fq,q,α( �G) =
∑
i<j

aα
ij δq,qi

δq,qj
.

The Gibbs entropy for this ensemble satisfies

N� = S −
∑

α

N�α, (118)

where S is given by Eq. (44), and using the results of [35] the
entropy of large variations �α for sparse networks is given by

N�α = −
N∑

i=1

ln
[
πkα

i

(
kα
i

)]−
∑
q�q ′

ln
[
πeα

q,q′
(
eα
q,q ′
)]

, (119)

where πy(x) is the Poisson distribution with average y given
by πy(x) = 1

x!y
x exp(−y). In this case, if the number of layers

M is finite, then in the large network limit N � 1, � is finite
and we have � = S/N − �. Therefore, the Gibbs entropy
� is lower than S/N and the microcanonical ensemble is
not equivalent in the thermodynamic limit to the conjugated
canonical ensemble.

5. Multiplex with given degree-degree correlations in each layer α

We can construct a microcanonical uncorrelated multiplex
ensemble with given degree-degree correlations in each layer
α by fixing the degree kα

i of each node i in layer α and the
total number of links eα

k,k′ between nodes of degree k and
degree k′ in layer α. This case is a small modification of the
previous case in which for every different layer we identify a
community of nodes at a given layer α as the set of nodes with
given degree, i.e., qi = kα

i . The Gibbs entropy � satisfies

N� =
M∑

α=1

Sα −
M∑

α=1

N�α. (120)

Using the results of [35] the entropy of large variations �α for
sparse networks is given by

N�α = −
N∑

i=1

ln
[
πkα

i

(
kα
i

)]−
∑
k�k′

ln
[
πeα

k,k′
(
eα
q,q ′
)]

. (121)

Moreover, the Shannon entropy Sα for each layer α is given
by

Sα = −
∑
i<j

pα
ij ln pα

ij −
∑
i<j

(
1 − pα

ij

)
ln
(
1 − pα

ij

)
, (122)

with

pα
ij = e−λi,α−λj,α−λk,k′ ,α

1 + e−λi,α−λj,α−λk,k′ ,α
(123)
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and the Lagrangian multipliers λi,α and λk,k′,α fixed by the
conditions

N∑
j=1,j �=i

pα
ij = kα

i ,

∑
i,j

pα
ij δkα

i ,kδkα
j ,k′ = eα

k,k′ for k �= k′, (124)

∑
i<j

pα
ij δkα

i ,kδkα
j ,k = eα

k,k.

C. Correlated microcanonical multiplex ensembles

In a correlated multiplex ensemble we have that the pro-
bability of a multiplex �G is not factorizable into the product
of probabilities Pα(Gα) of the networks Gα in layer α, i.e.,

PM ( �G) �=
M∏

α=1

P α
M (Gα). (125)

The simplest example of a correlated multiplex ensemble is the
ensemble in which we fix the total number of multilinks �m in
the multiplex. Starting from this model, different more refined
multiplex ensemble can be determined, fixing, for example,
the multidegree sequence or the total number of multilinks �m
in between nodes of different communities, etc. In Sec. V D
we discuss in detail some relevant examples of correlated
multiplex ensembles.

D. Examples of correlated microcanonical ensembles

1. Multiplex ensemble with given total number of multilinks �m
In a correlated multiplex ensemble we can fix the total

number L �m of multilinks �m in the multiplex, i.e.,

F �m( �G) = L �m (126)

for all �m = (m1,m2, . . . ,mα, . . . ,mM ) with mα = 0,1 as long
as
∑

�m L �m = N (N − 1)/2. In this case the functions F �m( �G)
are given by

F �m( �G) =
∑
i<j

A �m
ij , (127)

where the multiadjacency matrices of elements A �m
ij are defined

as in Eq. (1). Since any pair of nodes is linked by one multilink
�m, we have that the total number of multiplexes ZM in this
ensemble is given by the multinomial

ZM =
(

N

2

)
!∏

�m L �m!
. (128)

Using this result, we can easily derive the Gibbs entropy N� =
ln(ZM ), i.e.,

N� = ln

⎡
⎣
(

N

2

)
!∏

�m L �m!

⎤
⎦ . (129)

As long as the number of constraints K = 2M is sublinear
with respect to N we have that the microcanonical and
the conjugated canonical ensemble are equivalent in the
thermodynamic limit N � 1 and � 	 S/N .

2. Multiplex ensemble with given multidegree sequence

In a correlated multiplex ensemble we can fix the multide-
gree k �m

i of node i,

Fi, �m( �G) = k �m
i (130)

for all �m with mα = 0,1 and all i = 1,2, . . . N as long as∑
�mk �m

i
= N − 1 and the constraints are graphical. In this case

we have that Fi, �m( �G) is given by

Fi, �m( �G) =
N∑

j=1,j �=i

A �m
ij , (131)

where the multiadjacency matrices of elements A �m
ij = 0,1 are

given by Eq. (1). The Gibbs entropy � of this ensemble
satisfies Eq. (100), which we rewrite here for convenience
as

N� = S − N�, (132)

with S given by Eq. (63). Using a similar derivation as the
one reported in [33,35], it is possible to prove that for sparse
networks � is given by

N� = −
∑

�m|∑M
α=1 mα〉0

N∑
i=1

ln πk �m
i

(
k �m
i

)
, (133)

where πy(x) is the Poisson distribution with average y,
πy(x) = 1

x!y
x exp(−y), calculated at x. In this case, if the

number of layers M is finite, then in the large network limit
N � 1, � is finite and we have � = S/N − �. Therefore, the
Gibbs entropy � is lower than S/N and the microcanonical
ensemble is not equivalent in the thermodynamic limit to
the conjugated canonical ensemble. For networks with k �m

i <√
〈k �m〉N where �m satisfies the inequality

∑M
α=1 mα > 0, using

Eq. (65) we can find a simple expression for the Gibbs entropy
extending Bender result [34,46] to a correlated multiplex, i.e.,

N� = ln

{∏
�m

(2L �m)!!∏N
i=1 k �m

i !
exp

[
−1

4

( 〈(k �m)2〉
〈k �m〉

)2
]}

. (134)

3. Multiplex ensemble with given number of multilinks �m
in between nodes of different communities

We assign to each node i the label qi = 1,2, . . . ,Q

indicating the community to which node i belongs. We
consider a microcanonical correlated multiplex ensemble
in which we fix the total number of multilinks �m, e �m

q,q ′ ,
between nodes in community q and nodes in community q ′
with the condition that the constraint is graphical. In this
case we have 2M × Q(Q+1)

2 constraints indicated with labels
�m = (m1,m2, . . . ,mα, . . . ,mM ) with mα = 0,1 and q,q ′ =
1,2, . . . ,Q. The constraints are given by

Fq,q ′, �m( �G) =
∑
i,j

A �m
ij δq,qi

δq ′,qj
= e �m

q,q ′ for q �= q ′,

(135)
Fq,q, �m( �G) =

∑
i<j

A �m
ij δq,qi

δq,qj
= e �m

q,q .

For every pair of nodes, one in community q and one in
community q ′, we will have one multilink �m; therefore, the
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total number of multiplexes in this ensemble is given by ZM ,
which has the explicit expression

ZM =
⎡
⎣∏

q<q ′

(nqnq ′ )!∏
�m e �m

q,q ′ !

∏
q

[nq(nq − 1)/2]!∏
�m e �m

q,q !

⎤
⎦ , (136)

where nq is the number of nodes in community q. Finally, the
Gibbs entropy � of this ensemble, with N� = ln ZM , satisfies

N� = ln

⎡
⎣∏

q<q ′

(nqnq ′ )!∏
�m e �m

q,q ′ !

∏
q

[nq(nq − 1)/2]!∏
�m e �m

q,q !

⎤
⎦ . (137)

As long as the number of constraints P is sublinear with respect
to N we have that the microcanonical and canonical ensembles
are equivalent in the thermodynamic limit and � 	 S/N .

4. Multiplex ensemble with given multidegree sequence
and given number of multilinks in between nodes

of different communities

We assign to each node i the label qi = 1,2, . . . ,Q

indicating the community to which node i belongs. We can
consider a microcanonical correlated multiplex ensemble in
which we fix the multidegree k �m

i of every node i together
with the total number of multilinks e �m

q,q ′ between nodes in
community q and nodes in community q ′ with the condition
that the constraints are graphical. In this case we have 2M × N

constraints indicated with the labels �m = (m1,m2, . . . ,mM )
with mα = 0,1 and i = 1,2, . . . ,N and other 2M × Q(Q+1)

2
constraints indicated with labels �m and q,q ′ = 1,2, . . . ,Q.
The constraints are given by

Fi, �m( �G) =
N∑

j=1,j �=i

A �m
ij = k �m

i ,

Fq,q ′, �m( �G) =
∑
i,j

A �m
ij δq,qi

δq ′,qj
= e �m

q,q ′ for q �= q ′, (138)

Fq,q, �m( �G) =
∑
i<j

A �m
ij δq,qi

δq,qj
= e �m

q,q .

The Gibbs entropy � of this ensemble satisfies

N� = S − N�, (139)

where S is given by Eq. (81) and by following arguments
similar to the ones in [35] it can be proved that for sparse
networks � satisfies the relation

N� = −
M∑
i=1

∑
�m|∑M

α=1 mα〉0
ln
[
πk �m

i

(
k �m
i

)]

−
∑
q�q ′

∑
�m|∑M

α=1 mα〉0
ln
[
πe �m

q,q′

(
e �m
q,q ′
)]

, (140)

where πy(x) is the Poisson distribution with average y πy(x) =
1
x!y

x exp(−y) calculated at x. In this case, if the number of
constraints P ∝ N , then in the large network limit N � 1,
� is finite and we have � = S/N − �. Therefore, the Gibbs
entropy � is lower than S/N and the microcanonical ensemble
is not equivalent in the thermodynamic limit to the conjugated
canonical ensemble.

VI. CONCLUSION

We have presented a statistical mechanics approach for
microcanonical and canonical multiplex ensembles. We have
defined both uncorrelated and correlated multiplex ensem-
bles. Uncorrelated multiplex ensembles are characterized
by a probability of the multiplex that factorizes into the
probability of the networks Gα for every layer α of the
multiplex. Therefore, for uncorrelated multiplex ensembles
the probability of a link in one network is independent of
the presence of other links in the other layers. We have
considered uncorrelated networks in which we fix the expected
number of links in each layer, the expected degree sequence in
each layer, the expected number of links in between different
communities in each layer, or the expected degree sequence
and the expected total number of links between communities
in each layer. These ensembles, when describing multiplexes
formed by sparse networks, have negligible global and local
overlap; therefore, they cannot model situations in which the
overlap of links in different layers is significant. In order to
describe the situation in which the overlap is significant we
introduced canonical correlated multiplex ensembles in which
we fix the expected number of multilinks �m given by L �m,
the expected multidegree k �m

i sequence, the expected number
of multilinks �m between nodes in different communities,
or even the expected multidegree sequence and expected
number of multilinks between nodes of different communities.
Finally, we characterize both microcanonical uncorrelated
and correlated networks showing that the microcanonical
ensembles and canonical ensembles are not equivalent as long
as the number of constraints is extensive. This paper presents
a scenario for studying multiplex ensembles and characterizes
null models of multiplexes including a significant global or
local overlap of the links in the different layers. The extension
of this statistical mechanics of multiplex ensembles to more
complex situations, such as to directed and weighted networks,
and the application of the entropy of multiplexes for extracting
information from multiplex data sets are beyond the scope of
the present paper. Moreover, different entropy measures for
quantifying the complexity of complex networks have been
proposed using tools of quantum information theory [47,48].
The generalization of also these measures to multiplexes and
the use of these measures to uncover hidden statistical features
of multiplex data sets are left for future work.
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D. Papo, F. del Pozo, and S. Boccaletti, Sci. Rep. 3, 1344 (2013).
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