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The problem of finding an optimal back-to-front airplane boarding policy is explored, using a mathematical
model that is related to the 1 + 1 polynuclear growth model with concave boundary conditions and to causal sets
in gravity. We study all airplane configurations and boarding group sizes. Optimal boarding policies for various
airplane configurations are presented. Detailed calculations are provided along with simulations that support
the main conclusions of the theory. We show that the effectiveness of back-to-front policies undergoes a phase
transition when passing from lightly congested airplanes to heavily congested airplanes. The phase transition
also affects the nature of the optimal or near-optimal policies. Under what we consider to be realistic conditions,
optimal back-to-front policies lead to a modest 8–12 % improvement in boarding time over random (no policy)
boarding, using two boarding groups. Having more than two groups is not effective.
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I. INTRODUCTION

Airlines and their passengers alike have a mutual interest in
minimizing the time spent at the gate while the passengers are
boarding the airplane. For the airlines, airport infrastructure,
and passengers, reducing the boarding time means decreased
operational costs, increased passenger throughput, and better
passenger experience [1–4].

A common airline strategy aimed at decreasing the boarding
time is to employ a back-to-front boarding policy. The
boarding is performed in stages, by means of announcements
such as, “passengers from row number 40 and above are now
welcome to board the airplane; all other passengers, please
remain seated.” Such policies try to board passengers from the
back of the airplane first, by announcing groups of rows whose
passengers are allowed to board at the same time.

Researchers have mostly been studying airline boarding
through discrete simulations [1,3,5–7]. The studies have
concluded that back-to-front boarding policies with multiple
groups are ineffective; however, these studies assumed that
the sizes of the group are equal. The case of general group
sizes has not been explored in these studies. More recently
[4], the boarding procedure at SWISS airlines, where the
back third of the airplane is boarded first, with the rest
of the passengers boarding after them, was examined. The
conclusion was that random boarding was slightly better
than this particular strategy as well. In another direction [8],
researchers also looked at the process of walking from the gate
to the airplane and within the airplane. While the study is of
interest, it is orthogonal to the study of back-to-front policies,
or more generally to the comparison between policies that are
seat-location based.

Airplane boarding was also recently considered [9] by
Frette and Hemmer in the context of a particle system with
distinguishable particles on a substrate. The model considered
an airplane with a single passenger (particle) per row. The
authors provided a detailed study of the random boarding
policy for a very small number (up to 16) of passengers
and via numerical extrapolation suggested a power law for
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average boarding time with more passengers. They argued that
their findings on the random policy suggest that back-to-front
boarding with two equal-size groups would not be beneficial,
in accordance with previous studies. The authors were not able
to extend their analysis to more than one passenger per row.

In a Comment by Bernstein on [9] (see [10]), a different
power law, for the average boarding time of the random
boarding policy, was found using simulations with more
passengers. The author also suggested a model for back-to-
front airplane boarding that differed from that of [9] and led
to the opposite conclusion that boarding with two groups of
equal size is beneficial. It is important to note that the study
was also restricted to a single passenger per row.

In this paper we analyze back-to-front boarding with any
number of groups, for all group sizes, whether equal or not,
and for any number of passengers per row. We provide near-
optimal back-to-front policies and in addition estimates on the
amount of boarding time improvement with respect to random
boarding. We verify our analysis via simulations. The analysis
is based on a mathematical model of the boarding process that
was developed in [11]. The model is strongly related to the
(1 + 1)-dimensional polynuclear growth model [12,13] with a
concave boundary. The concave boundary case differs from the
well studied convex boundary case even in terms of some basic
exponents (see the Appendix for more details). The model is
also strongly related to the causal set program for gravity as
outlined in [14].

The models that were used in [9,10] are very special cases
of our model. Our analysis resolves the apparent contradiction
between the results of the two papers while showing that there
are major differences between the realistic case of several
passengers per row and the case that was studied of a single
passenger per row.

Mathematically, back-to-front boarding policies are
parametrized by an infinite-dimensional simplex, although
for any finite number of passengers the parametrization is
finite. The analysis of the model proceeds by assigning to
each back-to-front policy a Lorentzian metric on the unit
square. After normalization, the boarding time is estimated
by the proper time of the maximal curve in the resulting
space-time domain. Consequently, our task can be viewed as
minimizing the diameter of a space-time domain within an
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infinite-dimensional family. While the problem does not have
an absolute minimum, we can find near-optimal solutions that,
coupled with practical considerations, essentially solve the
problem.

We show that having two passenger groups is sufficient
for a near-optimal back-to-front boarding policy. The optimal
policy provides mild boarding time improvement over random
boarding (having no policy), but is easier to implement than
other policies that can provide more benefit.

II. MODELING THE BOARDING PROCESS

A back-to-front boarding policy F with m groups will be
represented by a partition of the unit interval

1 = ρ0 > ρ1 > · · · > ρm = 0.

Let V be the number of rows in the airplane. We place h

passengers in each row. Thus, if the number of passengers is
n, the number of rows is V = n/h. To implement a policy,
an airline would first announce the boarding of the passengers
with row numbers Vρ1 and above, then rows Vρ2 to Vρ1, etc.

As a very special case of back-to-front boarding we have
the unique policy with m = 1, which corresponds to having
no policy, i.e., there is no airline control on the boarding queue
order. This (lack of) policy will be called random boarding.

The following model of the boarding process was intro-
duced in [11,15]. We assume that passengers queue to board
the airplane according to the above rules of a back-to-front
policy, but in random order within each boarding group. Once
the queueing order is fixed, each passenger proceeds to their
designated row, advancing as much as possible along the aisle.
When a passenger reaches his or her designated row, they
block the aisle for one time unit while getting organized before
sitting and clearing the aisle. While standing in the aisle, the
passenger blocks other passengers who queue behind, waiting
for the aisle to be cleared so they can advance further towards
their designated row. We assume that each passenger occupies
a portion l of the aisle between successive rows. For example,
suppose a passenger who is seated in row 20 has reached
his or her row and is getting organized in the aisle. Further
assume that there are 10 passengers queued behind him or
her, waiting to get to row numbers beyond 20 and that each
such passenger occupies as personal space half the distance
between rows (l = 1/2). Then these 10 passengers will occupy
the aisle space from rows 15 to 19 and thus a passenger behind
them who is trying to reach row 16 will have to wait for the
passenger in row 20 to clear the aisle. The process proceeds
in rounds, each taking a single time unit, in which passengers
who have reached their row are seated. The number of rounds
(time units) until all passengers have sat is the boarding time.
Note that a passenger who was seated in round i must have
been blocked from reaching their row by a passenger who was
seated in round i − 1; otherwise they could have sat earlier.
A chain is a sequence of passengers where each passenger is
blocked by its predecessor in the chain. The boarding time is
thus the longest chain of passengers blocking each other. We
refer to such a chain as a maximal chain. The above model,
with the special parameters l = h = 1, is also the model used
in [9] for random boarding and in [10] for both random and
back-to-front boarding.

We may also consider the more realistic model in which
the amount of time that a passenger blocks the aisle before
being seated is given by a random variable X rather than
just a single time unit. Variability in blocking time exists
since different passengers have different amounts of luggage,
different reaction times, and passengers already seated may
have to get up to let them pass to their seats.

III. ESTIMATING THE AVERAGE BOARDING TIME

A. Basic quantities

To get an estimate for the average boarding time of a back-
to-front policy in the airplane boarding model, we follow the
method that is outlined in [11,15]. The passengers will be
represented as points (q,r) in the unit square [0,1]2. The q

coordinate is given by the position of a given passenger in the
boarding queue divided by the number of passengers n, while
the r coordinate is given by the assigned row number divided
by the number of rows V .

The choice of a policy F leads to a joint probability
distribution density pF (q,r)dqdr on the row and queue
location coordinates of passengers. For a policy F given by
the partition 1 = ρ0 > ρ1 > · · · > ρm = 0 we define the
square Si , given by ρi−1 � r � ρi and 1 − ρi−1 � q � 1 − ρi .
The density function associated with F is given by pF (q,r) =

1
ρi−1−ρi

when (q,r) ∈ Si and zero otherwise.
When restricted to a given boarding group, the joint density

induces a uniform distribution since the ordering of passengers
within a group is uniformly random. While the boarding policy
is responsible for producing a joint density distribution in
the queue and row coordinates, the airplane configuration,
namely, the inter-row distance (leg room), the number of aisles
(single or double), which we denote by b, and the number
of passengers per row, affects the boarding time through the
congestion parameter

k = lh/b.

The congestion parameter measures the total aisle length (per
aisle), in units of distance between successive rows, occupied
by all the passengers in a single row. Intuitively, 1/k measures
the fraction of passengers that can stand along the aisles
simultaneously during the boarding process. An estimate for
k can be obtained when passengers are preparing to exit the
airplane. When passengers exit, they tend to crowd the aisle
so that they can take their luggage and prepare to leave the
airplane. These rather crowded aisle conditions that tend to
produce minimal personal space produce a lower bound for
k. From personal observations, we estimate that at most half
the passengers can stand in the aisles in these very crowded
conditions showing that k � 2 in realistic settings.

Let

α(q,r) = αF (q,r) =
∫ 1

r

pF (q,z)dz

and consider the Lorentzian metric

ds2 = pF (q,r)[dqdr + kα(q,r)dq2] (1)

on the unit square. We note that at some points we have
F (q,r) = 0 and the Lorentzian metric becomes degenerate. At
such points, the metric should be understood as determining the
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condition for causal curves, namely, dqdr + kα(q,r)dq2 � 0
has to hold, however, there is no contribution to the proper
time computation.

Let T (F,k) be the maximal proper time of a causal curve in
the space-time domain consisting of the unit square equipped
with the Lorentzian metric above and let R(F,k,n) denote the
average boarding time (measured in rounds) of n passengers,
with congestion parameter k and boarding policy F in our
model. It can be shown that as the number of passengers goes
to infinity we have

2T (F,k)
√

n/R(F,k,n) → 1.

Since the factor 2
√

n is policy independent, we will use T (F,k)
as a normalized estimate for the average boarding time, given
a boarding policy and a congestion parameter. More generally,
if instead of allowing passengers a single time unit to block
the aisle before being seated we assume that the blocking time
is given by a random variable X, then it can be shown (see
discussion in [15]) that as the number of passengers goes to
infinity we have

CXT (F,k)
√

n/B(F,k,n) → 1, (2)

where CX is a constant that depends on X but not on the
boarding policy. Consequently, we can also use T (F,k), as a
normalized estimate for comparing boarding policies, in the
presence of X. The idea behind these results is that when the
number of passengers is large, the blocking relation essentially
coincides with the past-future relation of the space-time
domain, the maximal chain of passengers blocking each other
will closely follow the maximal curve, and the number of
passengers in the maximal chain (the boarding time) will be
proportional to the proper time of the maximal curve (with a
proportionality factor of the order of

√
n).

B. Comparison with other models

The models of [9,10] for random boarding are special cases
of our model that are obtained by setting l = h = b = 1. This
leads to a congestion factor k = 1. The model of [10] for back-
to-front boarding with equal size groups is also a special case
of our model with l = h = b = 1. The back-to-front model
of [9] is somewhat inconsistent. It assumes that the boarding
times of the two groups are mutually exclusive, an assumption
that corresponds to the case of k → ∞, while within a given
boarding group k = 1 is assumed, as in the random boarding
case. While these assumptions are conflicting, the k → ∞
assumption on the interactions between different boarding
groups turns out to be dominant.

The description of the simulations in [1,3,5–7] is not
always sufficiently clear, however, it seems that they use
the parameters l = b = 1 and h = 6, which leads to k = 6.
They also include additional details that mostly affect the
aisle blocking distribution X, but as seen from Eq. (2), this
essentially scales the boarding time of any given policy rather
than affecting the comparison between different boarding
policies. Consequently, we will provide the analysis and
simulations for the fixed one-time-unit delay model.

C. Equal-size groups with low-k and high-k limits

As we change the value of k from k = 0 to k → ∞ the
behavior of back-to-front strategies changes dramatically. As
explained in [15], when k = 0, a situation that corresponds to
cardboard thin passengers with no carry-on luggage, the best
back-to-front boarding strategy with m groups is to divide into
groups of equal size. Moreover, the boarding time steadily
decreases with the number of groups and is proportional to
m−1/2. It is easy to show that these conclusions, essentially
extend to the range k � 1. These observations, which are based
on analytical results, were reproduced via simulations in [10].

A particular feature of the case k � 1 is that the improve-
ment in boarding time that can be attained via back-to-front
boarding is limited only by the number of passengers, which in
turn limits the number of groups. As the number of passengers
grows to infinity, so can the number of groups and we can get
unbounded improvements in boarding time over the random
policy.

At the value k = 1 a phase transition in the behavior of back-
to-front policies occurs. For k > 1, the amount of boarding
time improvement relative to random boarding is bounded
regardless of the number of groups and their sizes. Specifically,
let T (k) denote the normalized, estimated average boarding
time of the random policy. It is shown in [16] that for a given
value of k > 1 we have

T (F,k)

T (k)
�

√
k − 1√

k + 1−ln(2)√
k

(3)

for any back-to-front policy F , regardless of the number of
groups and their sizes. In Table I we plot the values of the
bound of Eq. (3) for k = 2, . . . ,6. Asymptotically, as k → ∞,
the bound is approximated by 1 − 3/2−ln(2)

k
∼ 1 − 0.8

k
, which

gives a reasonable approximation of the bound for k > 6.
In addition, for k > 1, equal-size groups are no longer

optimal among back-to-front boarding strategies. Let Fm

denote the back-to-front boarding policy with m equal size
groups. We note that F1 is random boarding. The values of
T (Fm,k) are computed in [15]. For random boarding we have

T (F1,k) =
√

ek − 1

k
(4)

for k � ln 2 and

T (F1,k) =
√

k + 1 − ln 2√
k

, k > ln 2. (5)

TABLE I. Lower bound on the relative reduction in boarding
time, according to Eq. (3), of a back-to-front policy in comparison
with random boarding for various congestion factors k.

k Bound

2 0.613
3 0.741
4 0.804
5 0.842
6 0.868
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For back-to-front boarding with two equal-size groups we have

T (F2,k) =
√

2k + 3/4 − 2 ln 2√
2k

(6)

when k � 2 ln 2 and for 1 � k � 2 ln 2 we have

T (F2,k) =
√

1

2k

(
k + ek − 1

4

)
. (7)

For the back-to-front policy with m > 2 equal-size groups we
have for k � 3/4 + ln(2)

T (Fm,k) =
√

mk − m − 2√
mk

(ln 2 + 1/4) − 2 ln 2 − 3/4√
mk

. (8)

As can be seen from the formulas above, random boarding
is better than back-to-front boarding with two (or more)

equal-size groups whenever k > ln(2) +
√

2−3/4
2−√

2
∼ 1.83. A

similar computation shows that random boarding is better than
back-to-front boarding with three equal-size groups whenever
k > 1.67.

Let Dm(k) = T (Fm,k)/T (F1,k) denote the ratio between
average boarding times of a back-to-front policy with m equal-
size groups and that of random boarding, as n → ∞. As noted
previously, when k � 1, Dm(k) ∼ m−1/2. In contrast, it was
proven in [15] that as k → ∞, we have Dm(k) ∼ m1/2 and in
fact equal-size groups become asymptotically the worst choice
for a back-to-front policy.

To see why there is such a vast difference between the cases
of small and large values of k and why k = 1 is the phase
transition point, we note that when k � 1, all passengers in
a given boarding group can stand in the airplane aisle next
to the seats that they are assigned to. This means that they
do not create significant backlogs that spill over to the seats
that are assigned to adjacent groups and interfere with their
boarding, or stated otherwise, passenger interactions are local.
When k = 0 no interference can occur and thus the different
groups may board in parallel (or, in practice, in relatively short
succession). Consequently, the boarding time is determined by
the boarding time of the largest group and choosing equal-size
groups minimizes the size of the largest group. Since boarding
time is proportional to

√
n, we obtain a savings ratio on the

order of
√

1
m

. In contrast, when k > 1, the passengers cannot
all stand next to the rows to which they were assigned and they
spill over to the aisle space next to other rows creating backlogs
that block passengers from other groups; stated otherwise,
they create long-range interactions. These backlogs create a
cascading effect and therefore the groups cannot all board in
parallel, but rather serially. Examining the explicit calculations
that are given in the Appendix, it can be observed that the effect
of groups interfering with each other is especially pronounced
when the groups are of roughly equal size, thus choosing all
the groups to be of equal size creates the worst cascading
effects. In good policies, the group sizes will roughly form
a geometric sequence, so that any two adjacent groups have
relatively different sizes. This means that the number of groups
of substantial size in such policies will tend to be very small and
thus few boarding groups are sufficient to obtain near-optimal
results.

The transition between the regimes of small values of k and
large values takes place mostly in the range k ∈ [1,6], which

matches the range that is most relevant to airplane boarding.
In this regime it is hard to predict what level of improvement
over random boarding back-to-front policies can offer. We are
thus forced to make detailed computations.

IV. BACK-TO-FRONT POLICIES AT
INTERMEDIATE-k VALUES

To compute T (F,k), for some policy F , we need to find the
curve with maximal proper time in the associated space-time
domain. Such curves are composed of geodesic segments and
boundary segments. We first consider the case m = 2 of two
boarding groups.

A. Calculations for two-group policies

We will use the notation of Sec. III. Let us set x = 1 − ρ1.
The two boarding groups consist of passengers whose row
numbers are [(1 − x)V ] + 1, . . . ,V followed by passengers
from rows 1, . . . ,[(1 − x)V ], where [a] denotes integer value.
For example, when x = 0.2, we first board the passengers from
the last 20% of the rows and then the remaining 80%. The (q,r)
coordinates of these passengers will belong to the squares S1

and S2, respectively. The maximal curve with respect to the
metric in (1) may be contained entirely within S1, entirely
within S2, or may span both squares. We let T1(x,k), T2(x,k),
and T1,2(x,k) denote the maximal proper times of causal curves
contained entirely in S1, in S2, and spanning both S1 and S2,
respectively. Obviously, the proper time of the maximal curve
will be given by

T (x,k) = max[T1(x,k),T2(x,k),T1,2(x,k)].

Since the metric (1), restricted to S1 or S2, is a scaled version
of the metric corresponding to the random policy on the unit
square, a simple calculation shows that

T1(x,k) = √
xT (0,k) (9)

and

T2(x,k) = √
1 − xT (0,k), (10)

so it remains to compute T1,2(x,k). The computation is given
in the Appendix. We state the end result. For given values of k

and x we let

δ∗ = δ∗(k) = (1 − 2e−k)2, (11)

δcrit = δcrit(x) = 4 − 3x − 4
√

x − x2

4(1 − x)
, (12)

and

δmin = δmin(x) = max

(
1 − (k + 1)x

1 − x
,0

)
. (13)

The value of T1,2(x,k) depends on the relation between these
three quantities.

(i) If δmin � δ∗ then

T1,2(x,k) = δmin(1 − x) + (k + 1)x − 1√
kx

(14)

+
√

1 − x

k

√
(1 − δmin)(ek − 1). (15)
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The maximal curve spanning both S1 and S2 will not have a
boundary component in S2.

(ii) If δ∗ � δcrit � δmin then

T1,2 = δcrit(1 − x) + (k + 1)x − 1√
kx

(16)

+
√

1 − x

k
[
√

δcrit + ln (1 −
√

δcrit) + k + 1 − ln 2]. (17)

The maximal curve in this case will have a boundary
component in S2.

(iii) If δ∗ � δmin � δcrit then

T1,2 = δmin(1 − x) + (k + 1)x − 1√
kx

(18)

+
√

1 − x

k
[
√

δmin + ln (1 −
√

δmin) + k + 1 − ln 2]. (19)

In this case, the maximal curve has a boundary component δmin

representing the lowest point on the left edge of S2, where a
causal curve meeting S1 can enter S2.

(iv) If δcrit � δ∗ � δmin then

T1,2 = δ∗(1 − x) + (k + 1)x − 1√
kx

(20)

+
√

1 − x

k
[
√

δ
∗ + ln (1 −

√
δ

∗
) + k + 1 − ln 2].

(21)

In this case the maximal curve is tangent to the bottom edge
of S2.

As we explained before, the graph of T (x,k) for a fixed
value of k differs between the cases of k � 1 and k � 1.
The bottom curve in Fig. 1 is T (x,1). It has essentially a
single local minimum (also global) near x = 0.5. All the
other curves in Fig. 1 display T (x,k) for increasing values
of k > 1. In these graphs there are two local minima. The

0.7
1.2
1.7
2.2
2.7
3.2
3.7
4.2
4.7
5.2
5.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

k=15.0
k=10.0
k=7.0
k=5.0
k=3.6
k=2.8
k=2.3
k=1.8
k=1.4
k=1.2
k=1.0

FIG. 1. (Color online) Function T (x,k) for various values of the
congestion parameter k. As the congestion k increases, so does the
value of T (x,k), hence the curves are sorted from bottom to top
in increasing order of k. The estimated average boarding time with
n passengers is 2T (x,k)

√
n. As k increases, the minimal value of

T (x,k) is obtained at values of x that drift from x = 1/2 towards
x = 0. The maximal value is attained at values of x that drift from
x = 1 towards x = 1/2. The graphs also show that it is always better
to have a small first boarding group, i.e., T (x,k) < T (1 − x,k) for
x < 1/2.

first local minimum, which as k increases approaches x = 0,
is obtained where T1,2(x,k) = T2(x,k). At this meeting point
T1,2(x,k) is increasing while T2(x,k) is decreasing, hence
T (x,k), which is the maximum of the two near this value
of x, is not differentiable at the minimum but has directional
derivatives. The second local minimum is similarly obtained
near x = 1 when T1,2(x,k) = T1(k,x); the function T (x,k), is
again nondifferentiable at this point.

B. Results for two-group policies

Using the equations above, we can calculate the estimated
average boarding time for any values of k and x for a two-
group policy. As we explained in the previous section, the
most interesting and relevant range for the parameter k is
k = 1, . . . ,6. We simulated the boarding process with l = 1
(as in most simulation-based studies) and with h = 1, . . . ,6
passengers per row (per aisle). The simulations assumed 200
passengers (per aisle) and a single-time-unit delay, hence the
boarding time is given as the number of rounds. Note that with
200 passengers and k = 1, we have 200 rows in the airplane
and x can only take values that are multiples of 0.005. A similar
discretization occurs for the other values of k; for example,
for k = 4 we have 50 rows and x increases in multiples of
0.02. We simulated all such possible values of x. We also
computed T (x,k) for all values of x and k corresponding to
our simulations. The simulations were run on each fixed value
of k and x, 100 000 times.

The main results are presented in Table II. For each
value of k = 1, . . . ,6 we give the value of x that minimized
the boarding time in the simulations. This value is denote
by xo (x optimal) and is presented in the second column.
The average of the boarding time with the optimal policy,
measured in rounds R(xo) is presented in the third column.
The fourth column provides the value of x that should be

TABLE II. Boarding times in rounds for the optimal two-group
policy and the recommended two-group policy. The value of xo,
the optimal partitioning point according to the simulation, is given
by the fraction of rows whose passengers form the first boarding
group out of the total number of rows; R(xo) = R(xo,k,200) is the
average boarding time, measured in rounds, for the optimal policy;
xr is the recommended value of the partitioning point according
to the analytical calculations; and R(xr ) is the average boarding
time, measured in rounds, of the recommended policy according to
the simulations. The last column provides the analytically predicted
average boarding time (in rounds) for the recommended policy. As
can be seen, even though the analytical predictions for the average
number of rounds are not accurate, the conclusions of the analytical
model in terms of policy comparisons are highly accurate and lead to
near-optimal recommendations.

Simulation Simulation Analytical Simulation Analytical
k xo R(xo) xr R(xr ) Re(xr )

1 90/200 21.747 98/200 22.128 26.398
2 26/100 30.080 29/100 30.324 38.875
3 12/66 36.054 13/66 36.190 48.422
4 6/50 41.247 7/50 41.380 56.525
5 4/40 45.454 4/40 45.454 63.726
6 2/33 48.997 3/33 49.096 69.470
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FIG. 2. (Color online) Ratio B(x,k) between the average boarding time with two groups and the avrage boarding time without groups
(random boarding) for (a) k = 1, (b) k = 2, (c) k = 3, and (d) k = 5. The ratio is shown in the bottom curve (at x = 0.7) of each figure.
For k = 1 there is always a reduction in boarding time with groups, with the largest reduction around x = 0.5. For k > 1 low-x values (the
first group relatively small) give an improvement, while high-x values lead to boarding times that are higher than for random boarding. As k

increases, the interval in x that gives an improvement, the optimal x value, and the improvement both decrease. These facts are consistent with
Table II. The maximum value of the curves (corresponding to the worst choice of the x value) increases with k and is attained near x = 0.5
when k is large. Also shown are the analytically computed ratios B̃(x,k) (top curve at x = 0.7) that correspond to infinitely many passengers
and the results for 10 000 passengers (middle curve at x = 0.7), which are closer to the analytical predictions.

optimal according to our estimate T (x,k). We call it xr (x
recommended) since this is the value of x that is recommended
by our analytical calculations. The fifth column R(xr ) provides
the average boarding time, in rounds, with the recommended
policy. The last column (rounds expected for x recommended)
provides the theoretically expected average boarding time for
the recommended policy. This theoretically expected value is
based on the limit as the number of passengers tends to infinity.

We see that the performance of the recommended policy is
very close to that of the optimal policy for all values of k. In
fact, for all values k � 2 the difference is less than 1% and
for k = 1 it is less than 1.5%. This may seem surprising since
the estimates on which the recommended policy are based are
clearly not accurate (compare columns 3 and 6).

Considering the issue of accuracy, we note that when
comparing different airplane boarding policies and finding the
optimal ones we are less interested in the absolute boarding
time of each policy than we are in the ratio of boarding times.
We chose to compare all the different back-to-front policies
to the random boarding policy. Consequently, we define the
boarding time ratio B = B(k,x,n) = R(x,k,n)/R(0,k,n) to be
the ratio of the average boarding time of the two-group policy
corresponding to x, i.e., R(x,k,n), and the average boarding

time with random boarding R(0,x,n) for n passengers. The
ratio β(x,k) = T (x,k)/T (0,k) is the analytical estimate for
the value of B. This estimate assumes an infinite number
of passengers, i.e., as n → ∞ we have B(x,k,n) → β(x,k).
One of the reasons for the accuracy of the results is that
the convergence of the ratio is much faster than the conver-
gence of either the numerator R(x,k,n)/(2

√
n) → T (x,k) or

the denominator R(0,k,n)/(2
√

n) → T (0,k) alone. Figure 2
displays the functions β(x,k), B(x,k,200), and B(x,k,10 000)
for k = 1,2,3,5. We see that these graphs are not so far from
each other already for 200 passengers. Unlike the absolute
errors, which can be very large, the ratio of errors between
any given policy and the random policy that serves as a
measure is substantially smaller. This partially explains why
the predictions regarding the optimal policy are rather accurate.
We have also included in the graphs of Fig. 2 the values of B for
simulations with 10 000 passengers and it can be seen that the
difference from β becomes even smaller and the predictions
even more accurate (not shown).

A second observation from Table II that also adds to
the accuracy of the predictions is that as a function of x,
R(x,k,200) behaves as if it has a vanishing derivative at xo, i.e.,
a small error in the recommended value of x has a negligible
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effect on the average boarding time. This should be contrasted
with the behavior of T (x,k) at its minimum xr , where there
are nonzero directional derivatives. We also notice that in all
cases xo � xr , that is, the first boarding group in the optimal
policy is somewhat smaller than in the recommended policy.

To gain a better understanding of these observed phenom-
ena, we consider the error term that measures the difference
between the analytical estimates and the observed results.
Comparing the estimates to the simulation results shows the
error due to a finite population size of 200 passengers. Let

�(x,k,n) = E(R(F,k,n)) − 2T (F,k)
√

n

denote the error, which is the difference between the actual
average boarding time of n passengers and the estimated
average boarding time, coming from the calculation of the
proper time of a maximal curve in the associated Lorentzian
domain.

The error for the random boarding policy was analyzed
in [11]. Following the analysis, for k > ln(2) ∼ 0.69, the error
�, which can be shown to be always negative, is expected to
asymptotically (n → ∞) obey a power law of the form

a(x,k)nb,

where 1/6 < b < 1/4 is independent of x and k and a(x,k) <

0. Thus the behavior of boarding time for random boarding is
given by a sum of two power laws, one providing the main
term estimate 2T (0,k)

√
n and a secondary law governing the

error. This explains the discrepancy between the power laws
of [9,10]. In [9], when estimating boarding time with a small
number of passengers, the error is very influential. Since the
authors considered only a single power law, they obtained
one that fits only very small values of n, but is asymptotically
incorrect. In [10], the main term was rediscovered numerically
by considering thousands of passengers, but the secondary
term was not considered.

When carried over to back-to-front boarding, the analysis
of [11] suggests that the absolute value of the relative error

E = |�(x,k,n)/R(x,k,n)| = −�(x,k,n)/R(x,k,n)

is in general an increasing function of k. For 200 passengers
the relative error is expected to be very large.

Table III presents the range of values of the relative error
as percentage points, i.e., 100E, for k = 1, . . . ,6 with 200
passengers. As can be seen, the relative error for different
values of x is large and grows with k as expected. The table also

TABLE III. Range of the relative error (in percentage points) of
the boarding time estimate and the value of x, denoted by xe, with
a minimal relative error for k = 1, . . . ,6 and 200 passengers. The
minimal relative error is obtained near one of the local minima of
T (x,k). The size of the relative error increases with k.

k E range xe

1 19–23 99/200
2 28–47 30/100
3 33–50 13/66
4 36–52 8/50
5 39–55 38/40
6 41–57 32/33

presents the value of x where the relative error is minimized
(see column 3). The relative error generally has two local
minima (except for k = 1, where they converge) and they
are near the two local minima of the expected normalized
boarding time T (x,k). They are also near the local minima
of the observed boarding time since these are near the local
minima of T (x,k), however, the correlation with the minima of
T (x,k) is stronger. As with T (x,k), for k = 2,3,4, the first local
minimum is also the global one. For k = 5,6, unlike T (x,k),
the second local minimum happens to be the global one.

When computing the estimates for the normalized average
boarding time T (x,k), we are considering the case of n → ∞.
In that regime there is no discretization and the recommended
value for xr is obtained when the values of T2(k,x) and
T1,2(k,x) coincide. This means that there are two distinct
maximal curves, one residing only in S2 and the other spanning
both S1 and S2, which partially coincide after meeting at a
boundary point in S2. When N → ∞, the maximal chain in the
blocking partial order will be contained in the neighborhood of
one of the two curves, depending on whether it consists entirely
of passengers in the second boarding group or not. Using the
notions of Sec. II, let L1(x) denote the longest chain consisting
of passengers in the first group, L2(x) the longest chain in
the second group, and L1,2(x) the longest chain spanning
both groups. Let L(x) = max[L2(x),L1(x),L1,2(x)] denote the
longest chain. Note that L(0) = L2(0). As explained above,
the arguments in [11] suggest that the expectation E(L2(xr ))
is approximated to second order by an expression of the form
2T2(k,xr )

√
n − b1[(1 − xr )n]c1 , with b1 > 0 and 1/6 � c1 �

1/4, and similarly, since T2(k,xr ) = T1,2(k,xr ), the quantity
E(L1,2(xr )) is approximated by 2T2(k,xr )

√
n − b1,2(xr )nc1,2 .

A similar occurrence happens at the second local minimum of
the expected boarding time where T1 = T1,2.

For values of x that are close to one of the two local
minima, the fact that L(x) is the maximum of two random
variables of roughly equal size [either L1(x) and L1,2(x) or
L2(x) and L1,2(x)] and the fact that the error in the estimate
for each one separately is negative [b1,b2,b1,2(x) < 0] suggest
that the error will be somewhat less negative than usual, i.e.,
locally maximized, and as a result the relative error E (which
has opposite sign) experiences a local (and sometimes global)
minimum near the local minima of the expected boarding time
function. Since the average boarding time B is the sum of the
estimate 2T (x,k)

√
n that is minimized at xr and the error �

that is locally maximized at xr , it tends to be flat around xr and
this provides further explanation to the unexpected accuracy
of the analytical predictions.

The competition between L2(x) and L1,2(x) for values of
x near xr also explains why the optimal value in simulations
xo is always somewhat smaller than xr . As an example, at
the granularity level of 200 passengers, four per row (k = 4),
the two values of x closest to the minimum of T (x,4), which
is roughly 0.1485, are x = 0.14 and 0.16. On a sample of
size 1000, with x = 0.14 (last seven rows board first), we had
L(x) = L2(x), 737 times, while for x = 0.16, it happened 379
times. Since at xr , L2(x) decreases (as a distribution) while
L1,2(x) is increasing, a small change in x to a value where one
of the two options is dominant yields a smaller maximum of
the two, hence a smaller expected boarding time. Considering
the derivatives of T2(k,x) and T1,2(k,x) at xr suggests that
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taking a somewhat smaller value of x is more efficient, in line
with the simulation results.

Considering the results, one can see that the optimal policy
achieves visible, but not dramatic, savings over the random
boarding policy with realistic congestion values. For k = 3 we
save approximately 10% in boarding time with the optimal
choice of x. In this case, the airline should board 1/5 of the
passengers and then all others. For k = 4 the optimal savings
is 7–8 %. Compared to other methods such as the reverse
pyramid method of [5], it saves less boarding time but requires
substantially fewer groups, hence it is somewhat easier to
manage. The most efficient method seems to be back-to-front
boarding by arithmetic sequences of rows [3,7]; however, this
method requires very strong control over the boarding process,
well beyond what is currently practiced.

C. More than two groups

Our methods allow us to iteratively compute T (F,k) for
any back-to-front boarding policy F . However, unlike the
case of m = 2, the computation is numerical and proceeds by
induction on m, via a dynamic programming procedure. More
details of the computation are presented in the Appendix. As
we noted in Sec. III, for values of k � 2 we do not expect
major gains in response time, by adding more groups, since
the groups will roughly form a geometric sequence and will
therefore be restricted to a few groups of non-negligible size.
Table IV summarizes the results of the computations that are
based on finding the length of the maximal proper time curve
in the appropriate Lorentzian domain. For k = 2, one still
gets some mild improvement by switching from two groups
to three. The smallest of the groups in the four-group optimal
solution has a single row of two passengers when there are 200
passengers and therefore the four-group solution is essentially
irrelevant for this finite population scenario. In the case of
k = 4, already the three-group case involves a group consisting
of a single row and the expected improvement is negligible.

TABLE IV. Boarding times under the optimal m-group policies,
and the inner partitioning points ρm−1, . . . ,ρ1 of the recommended
policy for m = 2,3,4 and congestion factors k = 2,4. The third
column shows the expected (analytically computed) ratio of average
boarding times between the recommended policy m-group policy and
random boarding. The recommended policy becomes optimal when
n → ∞. Starting with the fourth column, the optimal back-to-front
m-group policy, for k = 2,4 and m = 2,3,4, is given by the inner
points ρm−1, . . . ,ρ1 of the corresponding partition. The table shows
that for k = 2, a three-group policy may still offer a mild advantage
over a two-group policy. For k = 4 the expected improvement is
minimal and the optimal three-group policy is a perturbed version of
the optimal two-group policy, which is obtained by adding a small
first group.

k m Tm/T1 F ∗
m

2 2 0.840 0.29436
2 3 0.792 0.11030 0.37226
2 4 0.774 0.04477 0.15009 0.40041
4 2 0.923 0.14853
4 3 0.911 0.02526 0.17004
4 4 0.909 0.00439 0.02953 0.17368

TABLE V. Optimal and recommended three-group policies and
their boarding times for k = 2,4. The Fo row presents the optimal
policy and its observed boarding time and the Fr row displays the
recommended policy, after discretization of x for 200 passengers, and
its boarding time.

k Policy x1 x2 R

2 Fo 0.09 0.32 28.591
2 Fr 0.11 0.37 28.985
4 Fo 0.12 0.98 40.893
4 Fr 0.02 0.16 41.218

We checked the calculations against simulations of all
possible three-group policies for 200 passengers and k = 2,4.
We ran each policy 10 000 times. Table V shows the results.

In comparison to the optimal two-group policy, we see
for k = 2 a 5% improvement. For k = 4 the improvement
is negligible. Both results are in line with the analytical
predictions. In the case of k = 4 the optimal and recommended
three-group policies seem rather different, but in fact they
are closely related. The optimal three-group policy is a
perturbation of the optimal two-group policy, with the first row
of the airplane being split from the second group to form the
third boarding group. The recommended three-group policy is
a perturbation of the recommended two-group policy; in this
case, the recommended two-group policy has a first boarding
group consisting of the last seven rows. The recommended
three-group policy first boards the last row and then the next
seven rows from the back. The perturbations are different,
one involving the first row and one involving the last, but
in both cases they have a minor effect of a single row and
the average boarding time difference between the optimal and
recommended policy is negligible as in the two-group case.

Given the good accuracy of the theoretical calculations,
we did not simulate four-group policies since no real improve-
ments are expected. We conclude that two groups are sufficient
for back-to-front boarding with realistic values of k.

ACKNOWLEDGMENTS

The work of V.K. was partially funded by the Richard A.
and Edythe Kane Scholarship Endowment Fund. E.B. was
partially funded by ISF Grant No. 580/11 and M. Yanai.

APPENDIX

1. Airplane boarding and (1 + 1)-dimensional
polynuclear growth

The connection between airplane boarding and the (1 + 1)-
dimensional polynuclear growth (PNG) process is provided
through the notion of an increasing subsequence. We recall
that a sequence of points in the plane (xi,yi) is said to be
increasing if for all i < j we have xi � xj and yi � yj .

We recall the PNG process. Consider a crystal in contact
with a supersaturated vapor. Occasionally, in a uniformly ran-
dom time and location (Poisson process) a nucleus is formed on
the existing surface and one assumes that the nucleus spreads
evenly in all directions at a constant speed, forming a round
new layer. When two such layers collide they coalesce. A PNG
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droplet is a PNG process that starts with a single nucleation
event A on a flat one-dimensional substrate. Consider the layer
(height) of a second (terminal) nucleation event B. This and
several other initial conditions were considered in [13]. It was
observed that by a clockwise rotation by π/4 (conversion to
lightlike coordinates) a sequence of nucleation events, each
one on a layer formed by the previous one, is converted to
an increasing sequence in the plane. Consequently, the height
of the nucleation event B is the maximal increasing sequence
among uniformly distributed points (rotated nucleation events)
in a square or rectangle.

As explained in [11], the boarding time for random boarding
(no policy) and k = 0 is also given by the maximal increasing
sequence among n uniformly distributed points in a square
or rectangle. It was also shown that when k > 0 the boarding
time is given by a maximal increasing subsequence among
uniformly distributed points in a nonrectangular domain. For
k > ln(2) ∼ 0.69, which is the case considered in the present
paper, the domain is nonconvex. After some normalization, the
domain consists of the points that satisfy 0 � x � b > 1 and
−1
x+1 + 1 � y � 1. All four boundary curves of the domain
are the orbits of points under a one-parameter subgroup
of generalized Lorentz transformations, i.e., symmetries in
Minkowski space that do not necessarily fix the origin. The
statistical behavior of the PNG droplet in a nonconvex domain
(b > 1) is rather different from that of the convex domain,
which has been thoroughly explored in [13] and many other
papers. In this sense, airplane boarding provides a natural
setting for a different type of PNG droplet. The statistical
behavior is different in terms of the exponents governing
height fluctuations (larger than the convex case), error term
(larger in absolute value than the convex case), and transversal
fluctuations (smaller than the convex case).

When we move to back-to-front boarding, the boarding
process restricted to each group is still modeled by a
PNG droplet model, however, the interaction between the
two groups is not modeled by the PNG process since the
corresponding space-time is not flat, the curvature of the model
being concentrated on the lower boundary of S1 and the left
boundary of S2, where the model is not continuous. For more
on the relations between airplane boarding and other physical
and mathematical systems see the surveys in [17–19].

2. Computations for two-group policies

For the random policy F1, the length (proper time) of a
causal curve r = r(q), given by (1), takes the form

L(r) =
∫ q1

q0

√
r ′ + k(1 − r)dq. (A1)

The general solution for the corresponding Euler-Lagrange
equation has the form

r(q) = c1e
2kq + c2e

kq + 1 (A2)

and its length is

L(r) = (ekq1 − ekq0 )

√
c1

k
. (A3)

To compute the normalized expected boarding time T (x,k),
we first consider the case when the maximal proper time curve
ϕ spans both square cells S1 and S2, i.e., T (x,k) = T1,2(x,k).

In this case, it was shown in [15] that the maximum length
curve must consist of a horizontal line segment in S1, between
(0,1 − x) and (q0,1 − x), for some 0 � q0 � x, then a straight-
line segment sloping down to (x,r1), where it enters S2 with
slope −k, and then the maximal curve in the lower-right square
S2, ending at (1,1 − x). By the description we have the relation

r1 = 1 − x − k(x − q0) = 1 − (k + 1)x + kq0. (A4)

Each segment of the maximal curve ϕ must either be of the
form in Eq. (A2) or lie on the bottom boundary of a square.
The following are the three cases that we need to consider.

(i) Restricted to S2, ϕ has no boundary component.
(ii) ϕ is tangent to the bottom of S2.
(iii) ϕ contains a boundary component in S2.
Let L be the length of the maximal curve and let L̃1 and

L̃2 denote the lengths of the portions of the maximal curve
in the corresponding squares S1 and S2. Since the density
distribution is uniform in each square we can apply Eqs. (A1)–
(A3) after scaling to a unit size square. Let us call L1 and L2 the
lengths of the resulting scaled curves. A simple computation
reveals that scaling the density distribution and coordinates
introduces a square root factor, so L̃1 = √

xL1 and similarly
L̃2 = √

1 − xL2, leading to

L = √
xL1 + √

1 − xL2. (A5)

Since the maximal curve in S1 is a horizontal line segment (not
a geodesic), we have by direct computation from (A1)

L1 =
√

k
q0

x
. (A6)

Consider the second square scaled to unit size. The maximal
curve enters the scaled square at

δ = r1

1 − x
. (A7)

By Eq. (A4), δ is constrained by the inequality δ ∈
( 1−x−xk

1−x
,1) ∩ (0,1), i.e.,

1 > δ >
1 − x − xk

1 − x
(A8)

whenever 0 < x < 1
k+1 . Using Eqs. (A4) and (A7) we can

express L1 via x and δ,

L1 = δ(1 − x) + (k + 1)x − 1

x
√

k
. (A9)

We turn to the computation of L2(δ), which is the contribution
of the maximal curve in S2, assuming that S2 was scaled to
unit size and that the starting point of the curve is (0,δ). The
ending point of the curve has to be (1,1). We first consider the
case where the maximal curve has no boundary component. In
this case, by Eqs. (A2) and (A3) we have

L2(δ) =
√

(1 − δ)(ek − 1)

k
. (A10)

This formula holds as long as δ � δ∗, where δ∗ is the value
that corresponds to case (ii) of tangency. We compute δ∗ by
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applying to the general solution (A2) the tangency condition
r = r ′ = 0.

The condition is satisfied at q̃1, which satisfies

q̃1 = 1 − ln 2

k
. (A11)

Plugging c1, c2, and q̃1 into r(0) = δ and r(q̃1) = 0, we obtain

δ∗ = (1 − 2e−k)2. (A12)

In the remaining case δ < δ∗, we have by [15]

L2(δ) =
√

1

k
[
√

δ + ln (1 −
√

δ) + k + 1 − ln 2]. (A13)

Combining (A5) and (A9) and rescaling, we get a formula for
the length of the maximal curve ϕ conditioned to pass through
the point [x,δ(1 − x)],

L(δ) = √
x

δ(1 − x) + (k + 1)x − 1

x
√

k
+ √

1 − xL2(δ).

(A14)

Given x ∈ (0,1), we seek to maximize L as a function of δ.
For this, we need to explore the derivative. After some
computations we obtain

dL

dδ
= 1 − x√

kx
− 1

2

√
1 − x

k

√
ek − 1√
1 − δ

(A15)

when δ � δ∗ and

dL

dδ
= 1 − x√

kx
− 1

2

√
1 − x

k

1

1 − √
δ

(A16)

otherwise. Calculating with (A15) one can show that the
derivative does not vanish in the range δ � δ∗ and that the
maximal value in that range is at δ∗.

When δ < δ∗, let δcrit denote the value for which dL
dδ

= 0.
Calculating with (A16) we see that

δcrit = 4 − 3x − 4
√

x − x2

4(1 − x)
(A17)

and that it represents a local maximum. Note, however, that
this calculation holds only if the admissibility conditions for
the critical point, namely, δcrit < δ∗ and δcrit > max{0, 1−x−xk

1−x
},

hold. After some calculations, the first constraint holds when
x satisfies

1 − 1

5 − 8
√

δ
∗ + 4δ∗ < x < 1 − 1

5 + 8
√

δ
∗ + 4δ∗ . (A18)

Regarding the other constraint δcrit > max{0, 1−x−xk
1−x

}, it fur-
ther remains to check (A8). For x � 1

k+1 it reduces to the trivial
δcrit > 0.

Now assume x < 1
k+1 . One needs to check that

δcrit >
1 − x − xk

1 − x
(A19)

and in case it holds, δcrit is admissible; otherwise, the boundary
value at L( 1−x−xk

1−x
) should be considered instead of L(δcrit). The

above inequality holds if (and only if)

16

17 + 8k + 16k2
< x. (A20)

Using all the formulas and constraints above yields the
resulting computation of T (x,k) as appears in the text.

3. Optimal m-group policy

We would like to compute the optimal m-group policy
and to measure its efficiency relative to random boarding. To
keep track of all possible policies we will first discretize the
values of ρi . The problem is that the number of possible group
sizes grows exponentially in m. We therefore add an auxiliary
variable and employ a dynamic programming procedure that
computes the optimal score inductively and whose complexity
grows linearly with m.

We will need an auxiliary quantity, which we denote by
L

(m)
1 (z), the length of the maximal curve in an m-group

partition of the unit square constrained to end at the point
(z,0). We compute L

(m)
1 (z) inductively. To begin the induction,

we know from (A6) that

L
(1)
1 (z) =

√
kz. (A21)

In order to proceed with the induction we need to compute
the maximal proper time (length) of a curve in the unit square
that begins at the point (0,r) and ends at (q,0). The length
is computed with respect to the Lorentzian metric given in
(A1), which corresponds to the random boarding policy. We
call this the corner length and denote it by LC (r,q). The length
can be computed using (A3). Let q∗(r) = 1

k
ln( 1

1−√
r
) and q∗ =

q∗(r) = 1
k

ln( 1
1−r

). We note that q∗(r) is the minimal value of
q for which there is a causal curve from (0,r) to (q,0). Let
Q = Q(q) = ekq . We have

LC (r,q) =
√

(Q − 1)[(1 − r)Q − 1]

kQ
(A22)

when q∗ � q < q∗ and

kq + √
r + ln

(
1 − √

r
)

√
k

(A23)

when q > q∗.
We can now use the corner length to compute inductively

L
(m)
1 (z). We shall mostly reuse the arguments for the two-group

case, however, instead of L1 we use a scaled version of
L

(m−1)
1 (z) to account for the contribution of the first m − 1

squares, conditioned on the end point of the maximal curve.
We then maximize over the possible choices of z. For
z � 1

k+1 , we are led to the following inductive computation.
Let

M(δ,m,x,z) = √
xL

(m−1)
1

(
δ(1 − x) + (k + 1)x − 1

kx

)
+ √

1 − xLC

(
δ,

z − x

1 − x

)
(A24)

and let

M̃(m,x,z) = max
δ

M(δ,m,x,z),
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where maxδ is taken over δmin < δ < 1 − exp(−k z−x
1−x

). For
z � 1

k+1 we have

L
(m)
1 (z) = min

0<x<z
max

{√
1 − xL

(1)
1

(
z − x

1 − x

)
,M̃(m,x,z)

}
.

(A25)

For z < 1
k+1 we also need to consider the possibility that x > z

and that only the first m − 1 squares will contribute; thus, if
z < 1

k+1 , then L
(m)
1 (z) is defined as the minimum of (A25) and

min
z<x<1−kz

{√
xL

(m−1)
1

[(
z − 1 − x

k

)/
x

]}
. (A26)

Having computed L
(m)
1 (z) recursively, we can compute Tm,

the optimal boarding time for an m group back-to-front policy,
recursively using L

(m−1)
1 and L2(δ). This is done using the

procedure for two-group policies and taking the appropriate
value of the variable z that matches δ and x. Let

z(δ,x) = δ(1 − x) + (k + 1)x − 1

kx
.

We obtain the recursive formula

L(m)(δ,x) = √
xL

(m−1)
1 [z(δ,x)] + √

1 − xL2(δ). (A27)

Optimizing over all possible values of δ we set

L̃(m)(x) = max
δ

L(m)(δ,x),

where the maxδ is, by (A8), taken over the interval δmin <

δ < 1 Combining with the cases where not all cells are used,
we see that the optimal time is given by

Tm = min
0<x<1

max{√xTm−1,
√

1 − xT1,L̃
(m)(x)}.

This is the value of the boarding time that appears in Table IV.
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