
PHYSICAL REVIEW E 87, 062804 (2013)

Approach to design neural cryptography: A generalized architecture and a heuristic rule

Nankun Mu,1,* Xiaofeng Liao,1,† and Tingwen Huang2,‡
1College of Computer Science, Chongqing University, Chongqing, 400044, China

2Texas A&M University at Qatar, Doha, P.O. Box 23874, Qatar
(Received 27 February 2013; published 12 June 2013)

Neural cryptography, a type of public key exchange protocol, is widely considered as an effective method
for sharing a common secret key between two neural networks on public channels. How to design neural
cryptography remains a great challenge. In this paper, in order to provide an approach to solve this challenge, a
generalized network architecture and a significant heuristic rule are designed. The proposed generic framework
is named as tree state classification machine (TSCM), which extends and unifies the existing structures, i.e.,
tree parity machine (TPM) and tree committee machine (TCM). Furthermore, we carefully study and find that
the heuristic rule can improve the security of TSCM-based neural cryptography. Therefore, TSCM and the
heuristic rule can guide us to designing a great deal of effective neural cryptography candidates, in which it
is possible to achieve the more secure instances. Significantly, in the light of TSCM and the heuristic rule, we
further expound that our designed neural cryptography outperforms TPM (the most secure model at present) on
security. Finally, a series of numerical simulation experiments are provided to verify validity and applicability of
our results.
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I. INTRODUCTION

Public key exchange protocols (PKEPs) have played an im-
portant role in modern cryptography since initially introduced
by Diffie and Hellman [1]. Usually, PKEPs can enable two
parties, named A and B, to share a common secret key on
public channel, while an attacker E cannot retrieve the key,
even if equipped with the ability to invade the communication
channel. Then, the key can be utilized to deal with some
cryptographic problems, such as privacy, authentication, and
data integrity, to name a few. In particular, PKEPs based on
number theory have been extensively studied [1–4]. However,
more recently, with the broad application of neural networks
[5,6], it has been recognized that neural synchronization is
able to achieve the same objective, bringing about what is
known as neural cryptography [7]. The mechanism behind
neural cryptography is similar to that of “secret key agreement
through public discussion” [8]. In particular, benefited from
the absence of large-scale computation, which is highly
suitable for the small-scale embedded systems [9,10], neural
cryptography has gained considerable attention and has also
been an increasingly important application of neural networks.
However, by substituting for the neural networks, other
synchronization systems, such as chaotic maps and coupled
lasers [11–14], can also be exploited in constructing the similar
PKEPs.

Neural cryptography requires that both A and B hold
uniform structured networks to achieve synchronization by
means of online learning [15]. At the beginning of the
synchronization process, the two networks randomly initialize
their discrete weighted vector, denoted by wA and wB, which
are kept secret, respectively. In each learning step, A and B
calculate their outputs according to a common input vector
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and then exchange the outputs with each other. If they achieve
the same outputs, their weighted vectors will be updated by a
certain learning rule. After a finite iteration of such learning
steps, synchronization is achieved eventually, which means
wA = wB. And then the identical weighted vector wA/B can
represent secret key between A and B. Clearly, the update
behaviors of A and B are influenced by the outputs of each
other; therefore, such learning steps correspond to mutual
learning. On the other hand, an attacker E can train the third
network using the examples consisting of input vectors and the
outputs. Note that E cannot influence on the update behavior
of A or B, so the learning steps of E belong to unidirectional
learning. Because the synchronization speed of unidirectional
learning cannot keep pace with that of mutual learning, E
cannot achieve timely synchronization and, thus, the key
cannot be recovered.

Based on the above mechanism, a number of neural
cryptographies have been proposed; for example, permutation
parity machine (PPM) [16,17], TPM [7], and TCM [18] (neural
cryptography is often represented by the name of the structure).
Meanwhile, a probabilistic attack algorithm targeted for PPM
with a high success rate has also been presented [19] and
the TCM is confirmed as an insecure case [18]. However,
only TPM containing three hidden units (K = 3) can resist
several kinds of attacks through increasing the synaptic depth
of its networks [20–22]. Then, applicability and security
of TPM (K = 3) have been carefully studied [23–30]. In
Ref. [23], three similar learning rules are analyzed in detail,
namely Hebbian learning rule, anti-Hebbian learning rule,
and random-walk learning rule. The dynamical process of
neural synchronization in TPM (K = 3) has been carefully
studied [24]. Moreover, the model of the classical ruin problem
is used to examine the average synchronization time of TPM
(K = 3) [25]. In Ref. [26], in order to guarantee relevant
input vectors partially unavailable to the attacker, a feedback
algorithm is designed. In Ref. [27], in order to speed up the
synchronization, the author introduced a queries algorithm,
which is based on generating input vectors by queries instead of
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randomizer. Recently, an error prediction algorithm called “Do
not trust my partner”(DTMP) was presented [28]. It largely
relies on one party sending some erroneous bits while the other
is capable of predicting and correcting some corresponding
errors. Meanwhile, Four kinds of attack algorithms were also
experimentally investigated in detail, i.e., simple attack [7],
geometric attack [29], majority attack [30], and genetic attack
[23].

However, how to design neural cryptography is not a solved
problem yet. Motivated by this situation, this paper establishes
a practical approach, in which we can formulate instances on a
large scale. In this way, the more secure neural cryptography,
hopefully, can be designed.

The main contributions of this paper are as follows:
(i) A generalized architecture of neural cryptography named

as TSCM is put forward. The proposed framework can be
utilized as a guide in designing neural cryptography.
(ii) A significant heuristic rule is further provided by

analyzing the conditions for the security of TSCM-based
neural cryptography. Taking advantage of the heuristic rule,
the security of such neural cryptography can be improved
effectively.
(iii) Several new instances are presented in the light of TSCM
and the Heuristic Rule. In addition, one of these cases is proven
to be better than TPM (K = 3) on security.

The remainder of this paper is organized as follows.
Section II shows the TSCM and the description of mutual
learning algorithm. In Sec. III, the heuristic rule is proposed
by investigating the security of neural cryptography. Then,
we formulate several instances and illustrate the security of
the proposed neural cryptography by simulation experiment in
Sec. IV. Conclusions are presented in Sec. V.

II. GENERALIZED ARCHITECTURE AND MUTUAL
LEARNING

Neural cryptography consists of network architecture and
mutual learning algorithm.

A. The description of TSCM

Figure 1 is the principle graph of TSCM. It can be regarded
as a tree-connected network consisting of three layers. More
precisely, a TSCM has K hidden units, K × N input neurons,
and a unique output neuron (we refer to the output neuron as
state classifier). Each hidden unit works like an independent

FIG. 1. (Color online) A TSCM network with K = 3, N = 4.

TABLE I. State classifier of TPM (K = 3).

Name τ d State vector σ

(+1,+1, +1),(+1, −1, −1)
τ1 +1

(−1,+1, −1),(−1, −1, +1)
TPM

(−1, −1, −1),(−1, +1, +1)
τ2 −1

(+1,−1, +1),(+1, +1, −1)

perceptron, and elements of the weighted vector are integral
numbers and take values as

wi,j ∈ {−L, . . . ,0, . . . , + L}. (1)

Here, L represents synaptic depth of the networks; the index
i = 1, . . . ,K denotes the ith hidden unit of the networks, and
j = 1, . . . ,N denotes the j th input neuron for each hidden
unit. Meanwhile, input vector is indicated by x and its elements
are binary; i.e.,

xi,j ∈ {−1,+1}. (2)

When TSCM receives an input vector, the value of the ith
hidden unit is defined by:

σi = sgn(hi), (3)

hi = 1√
N

wixi = 1√
N

N∑
j=1

wi,j xi,j .

In order to ensure σi binary, hi = 0 is mapped to σi = −1.
Then the state vector σ is classified by the state classification;
i.e.,

τ = StateClassifier(σ ). (4)

Finally, the state classifier generates an output, denoted by τ .
Generally, the τ is required to be marked by a directional flag d,
i.e., +1 or −1. For the reason, readers can refer to the learning
rules, which are described in detail in the next subsection.

In particular, TSCM generalizes and unifies the existing
structures, i.e., TPM and TCM. When the state classifier is
defined as Tables I and II, it is observed that TCM and TPM
are two special cases of TSCM. In Ref. [31], the authors present
several instances that combine TCM and TPM.

B. Mutual learning algorithm

The mutual learning algorithm of TSCM is illustrated as
follows:

(1) The two parties A and B start with a uniform TSCM-
based network and randomly choose weighted vectors wA and

TABLE II. State classifier of TCM (K = 3).

Name τ d State vector σ

(+1,+1, +1),(+1, +1, −1)
τ1 +1

(+1,−1, +1),(−1, +1, +1)
TCM

(−1, −1, −1),(−1, −1, +1)
τ2 −1

(−1, +1, −1),(+1, −1, −1)
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wB, which are kept secret. This can certainly guarantee the
uncorrelation between wA and wB at the beginning.

(2) In each learning step, the two parties receive a common
input vector x at the same time. Upon receiving x, A and
B obtain σ A and σ B, respectively. And then τA and τB can
also be generated according to σ A and σ B, respectively. This
computation process is well defined in the above subsection.
Afterwards, τA and τB are exchanged with each other on the
public channel, while σ A and σ B are secretly kept.

(3) All weights are iteratively adjusted by one of the
following learning rules:

(a) Hebbian learning rule:

w
A/B
i,j = g

[
w

A/B
i,j + xi,j d

A/B�(σid
A/B)�(τAτB)

]
. (5)

(b) Anti-Hebbian learning rule:

w
A/B
i,j = g

[
w

A/B
i,j − xi,j d

A/B�(σid
A/B)�(τAτB)

]
. (6)

(c) Random-walk learning rule:

w
A/B
i,j = g

[
w

A/B
i,j + xi,j�(σid

A/B)�(τAτB)
]
. (7)

Here, function g(w) is introduced to ensure that each element
of the weighted vector wA/B remains in the range [−L, + L].
It is defined as

g(w) =
{

sgn(w)L, for |w| > L;

w, otherwise.
(8)

(4) Repeating procedure 2 and 3 until synchronization
(wA = wB) is achieved. The final identical weighted vector
wA/B can be used as the common secret key between A and B.

While in the whole synchronization process, the state
vector σ A/B is consistently inaccessible to any others. So, two
possible real update behaviors can be defined as follows:

(i) An attractive step (τA = τB = σ
A/B
i ): The weighted

vectors of the ith corresponding hidden units are updated
in the same direction. And a series of such steps leads to
synchronization eventually.
(ii) A repulsive step (τA = τB,σ A

i �= σ B
i ): Only one

weighted vector of the ith corresponding hidden units in A
or B is updated, while B or A remains unchanged. A sequence
of these repulsive steps may reduce synchronization speed.

III. STUDY ON SECURITY

Required by a computationally secure system [1], a secure
neural cryptography needs to hold [24]:

(i) Increasing the synaptic depth L of the networks, the
averaged synchronization time by mutual learning for A and
B grows at a polynomial rate.
(ii) Meanwhile, the averaged synchronization time by unidi-

rectional learning for E grows at an exponential rate.
Hence, L can represent the security parameter of neural
cryptography. And such neural cryptography can resist attacks
by increasing L.

In this section, a heuristic rule is proposed by theoretically
analyzing the different security between TPM (K = 3) and
TCM (K = 3). It is worth paying special attention to the fact
that TPM (K = 3) is a secure neural cryptography [29] and
TCM (K = 3) is insecure [18]. The heuristic rule can enable

this neural cryptography to meet the second point as much as
possible.

For presentation convenience, the following computations
are based on one fixed pair of corresponding hidden units.

The dynamics of synchronization process are of huge
impact on the security of neural cryptography. The level
of synchronization is indicated by the normalized overlap
between the two corresponding hidden units [32]:

ρ = wA
i wB

i√
wA

i wA
i

√
wB

i wB
i

, ρ ∈ [0,+1]. (9)

At the beginning of synchronization, ρ locates approximately
at ρ = 0 because of the random initial weighted vectors.
Through a series of learning steps, synchronization is achieved
and ρ is stable at ρ = +1. In these learning steps, it is possible
that the two corresponding hidden units have different σ . The
probability of this event is defined by ε, which is known as the
generation error [32]:

ε = 1

π
arccos(ρ), ε ∈ [0,0.5]. (10)

For studying the dynamics of ρ in the synchronization process,
it is very necessary to introduce the average change of the
overlap [24] in each learning step:

〈�ρ(ρ)〉 = Pa(ρ)〈�ρa(ρ)〉 + Pr (ρ)〈�ρr (ρ)〉. (11)

Here, 〈�ρa(ρ)〉 (〈�ρr (ρ)〉) denotes the average change size of
ρ in each attractive (repulsive) step; Pa(ρ) (Pr (ρ)) indicates
the probability of the event that an attractive (repulsive) step
occurs between one pair of corresponding hidden units.

Remarkably, 〈�ρ(ρ)〉 > 0 in (0,1) enables synchronization
time grows at a polynomial rate with increasing L [24];
otherwise, at a exponential rate. So, a conclusion can be draw
that a neural cryptography is secure, if and only if:

(a) Condition I. In synchronization process, for A and B,

〈�ρ(ρ)〉 > 0, ρ ∈ (0,1) (12)

is true;
(b) Condition II. For E, there exists a region G in (0,1),

such that

〈�ρ(ρ)〉 < 0, ρ ∈ G. (13)

In particular, Condition II will not be considered in the
present investigation, which is only focused on Condition I.
Substituting Eq. (11) into Eq. (12) yields the following:

Pa(ρ)〈�ρa(ρ)〉 + Pr (ρ)〈�ρr (ρ)〉 > 0, ρ ∈ (0,1). (14)

In Ref. [33], the authors have noted that 〈�ρa(ρ)〉 and
〈�ρr (ρ)〉 are only dependent on the equations of motion,
which are carefully introduced in Ref. [34]. According to the
equations of motion, we can obtain two constant curves to
represent 〈�ρa(ρ)〉 and 〈�ρr (ρ)〉 in Fig. 2.

Then, let us transform Eq. (14) to

− 〈�ρa(ρ)〉
〈�ρr (ρ)〉 >

Pr (ρ)

Pa(ρ)
, ρ ∈ (0,1). (15)
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FIG. 2. (Color online) The dynamics of 〈�ρa(ρ)〉 and 〈�ρr (ρ)〉,
while the lines have been calculated using equations of motion.

For the convenience of the following analysis, Eq. (15) can
be rewritten as

U (ρ) > R(ρ),

U (ρ) = −〈�ρa(ρ)〉
〈�ρr (ρ)〉 ,

(16)

R(ρ) = Pr (ρ)

Pa(ρ)
,

ρ ∈ (0,1).

Here, U (ρ) is constant unless changing the equations of
motion. So, it can be easily obtained that the security of neural
cryptography is all dependent on R(ρ). Taking Eq. (10) to
replace ρ in R(ρ), we have

R(ε) = Pr (ε)

Pa(ε)
, ε ∈ [0,0.5]. (17)

While Pa(ε) and Pr (ε) can be computed as

Pa(ε) = P (τA/B = σ A = σ A|τA = τB);
Pr (ε) = P (σ A �= σ A|τA = τB);
Pu(ε) = P (τA = τB).

(18)

Here, Pu(ε) denotes the probability of the occurrence of an
agreement on outputs between A and B. Then we describe
the computational procedure of Pu(ε) in TPM (K = 3). The
following always holds:

P TPM (K=3)
u (k,ε)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

P TPM (K=3)
u (0,ε) = (3

0

)
ε0(1 − ε)3;

P TPM (K=3)
u (1,ε) = 0

(3
1

)
ε1(1 − ε)2;

P TPM (K=3)
u (2,ε) = (3

2

)
ε2(1 − ε)1;

P TPM (K=3)
u (3,ε) = 0

(3
3

)
ε3(1 − ε)0.

(19)

Here, P TPM (K=3)
u (k,ε) denotes the probability of the occur-

rence of an agreement on outputs between two TPM when
k pairs of corresponding hidden units disagree. According to
Eqs. (18) and (19), we can get

P TPM (K=3)
a (k,ε)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

P TPM (K=3)
a (0,ε) = 1

2 (3
0)ε0(1−ε)3

P
TPM(K=3)
u (k,ε)

;

P TPM (K=3)
a (1,ε) = 0;

P TPM (K=3)
a (2,ε) = 1

6 (3
2)ε2(1−ε)1

P
TPM(K=3)
u (k,ε)

;

P TPM (K=3)
a (3,ε) = 0.

(20)

and

P TPM (K=3)
r (k,ε)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

P TPM (K=3)
r (0,ε) = 0(3

0)ε0(1−ε)3

P
TPM(K=3)
u (k,ε)

;

P TPM (K=3)
r (1,ε) = 0;

P TPM (K=3)
r (2,ε) = 2

3 (3
2)ε2(1−ε)1

P
TPM (K=3)
u (k,ε)

;

P TPM (K=3)
r (3,ε) = 0.

(21)

Here, P TPM (K=3)
a (k,ε) [P TPM (K=3)

r (k,ε)] denotes the probabil-
ity of the occurrence of an attractive (repulsive) step in TPM
if k pairs of corresponding hidden units disagree. Sum them
up to derive the P TPM (K=3)

a (ε) and P TPM (K=3)
r (ε):

P TPM (K=3)
a (ε) =

1
2 (1 − ε)3 + 1

2ε2(1 − ε)2

P
TPM (K=3)
u (ε)

;

P TPM (K=3)
r (ε) = 2ε2(1 − ε)

P
TPM (K=3)
r (ε)

.

(22)

Then, it follows that

RTPM (K=3)(ε) = P TPM (K=3)
r (ε)

P
TPM (K=3)
a (ε)

= 4ε2

(1 − ε)2 + ε2
. (23)

Similarly, we can obtain:

RTCM (K=3)(ε) =
1
2ε(1 − ε) + ε2

3
4 (1 − ε)2 + ε(1 − ε) + 1

2ε2
. (24)

However, the equations of motion in TPM and TCM are
the same, and this means UTPM(ρ) = UTCM(ρ). Therefore,
the difference on security between TPM (K = 3) and TCM
(K = 3) is determined due to the different R(ε).

Remarkably, simulation experiment displayed in Fig. 3
indicates that 〈�ρ(ρ)〉 < 0(U (ρ) > R(ε)) is most likely to
occur as ρ → 1, ε → 0, i.e., nearly synchronization. Inspired
by Condition I, we can obtain:

Essential condition. Closing to synchronization, a secure
TSCM also needs to satisfy

U (ρ) > R(ε), ρ → 1, ε → 0. (25)

When ρ → 1, ε → 0, we can obtain the approximate values
of RTPM(ε) and RTCM(ε). By Eqs. (23) and (24), as ε → 0, it
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FIG. 3. (Color online) The dynamics of 〈�ρ(ρ)〉 of TPM and
TCM, while the lines have been calculated using Eq. (14).
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holds that

RTPM (K=3)(ε) = 4ε2

(1 − ε)2 + ε2

∼ 4ε2

1 + 0

∼ 4ε2, (26)

and

RTCM (K=3)(ε) =
1
2ε(1 − ε) + ε2

3
4 (1 − ε)2 + ε(1 − ε) + 1

2ε2

∼
1
2ε + 0

3
4 + 0 + 0

∼ 2

3
ε. (27)

From Fig. 3, we can derive the following:

RTPM (K=3)(ε) < UTPM(ρ), ρ → 1, ε → 0, (28)

and

UTCM(ρ) < RTCM (K=3)(ε), ρ → 1, ε → 0. (29)

Equations (28) and (29) indicate that TPM can meet the
essential condition; however, TCM cannot meet it. The R(ε)
is closely affected by the state classifier, and we make an
assumption that the factors of state classifier can impact on
the security of TSCM. The definition used in the following is
previewed here.

Definition 1. (i) For two different state vectors in one class,
i.e., σ and σ ′ in c1, the Hamming distance (HD) between them
is defined by:

HDc1 = HD(σ,σ ′) =
K∑

i=1

(σi ⊕ σ ′
i ). (30)

(ii) The smallest Hamming distance (SHD) in class c1:

SHDc1 = min
{
HDc1

1 ,HDc1
2 , . . .

}
. (31)

(iii) The minimum Hamming distance (h) in the classifier:

h = min{SHDc1 ,SHDc2 , . . .}. (32)

By Definition 1 and the state classifier of TPM, the
computation process of hTPM (K=3) for TPM is described as
follows:

HDc1
1 = HD((+1, + 1, + 1),(+1, − 1, − 1)) = 2,

HDc1
2 = HD((+1, + 1, + 1),(−1, + 1, − 1)) = 2,

. . . ,

SHDc1 = min
{
HDc1

1 , . . . ,HDc1
6

} = 2,

SHDc2 = min
{
HDc2

1 , . . . ,SHDc2
6

} = 2,

hTPM (K=3) = min{SHDc1 ,SHDc2 , . . .} = 2.

In the same manner as above, we have hTCM (K=3) = 1 for
TCM.

Note that Eqs. (26) and (27) can be represented by a uniform
formula:

R(ε) ∼ λεh, ε → 0, λ ∈ R+. (33)

Here, h is mentioned by Definition 1 and λ is a real number
related to the state classifier.

The following illustrates the reason for Eq. (33):
(1) In the synchronization process, the probability of the

occurrence of an attractive step between one pair of corre-
sponding hidden units is calculated by

Pa(ε) =
∑n

i=0 ai

(
n

i

)
εi(1 − ε)n−i

Pu(ε)
. (34)

In fact, attractive step can surely happen when all pairs of
corresponding hidden units agree. So, a0 �= 0 and the item

a0
(
n

0

)
ε0(1 − ε)n

Pu(ε)
(35)

must exist.
(2) Similarly, we can obtain

Pr (ε) =
∑n

i=0 ri

(
n

i

)
εi(1 − ε)n−i

Pu(ε)
. (36)

However, repulsive step cannot exist in σ A = σ B. According to
Definition 1, if σ A �= σ B, it is impossible that τA = τB occurs
as i < h. This also means the repulsive step can not occur as
i < h. Therefore, in Eq. (36), ri = 0,i < h. Meanwhile, the
item

rh

(
n

h

)
εh(1 − ε)n−h

Pu(ε)
(37)

exists.
(3) Combining Eqs. (34) and (36), it can be easily obtained

R(ε) = Pr (ε)

Pa(ε)
=

∑n
i=h ri

(
n

i

)
εi(1 − ε)n−i∑n

i=0 ai

(
n

i

)
εi(1 − ε)n−i

. (38)

As ε → 0, taking the approximate value of the numerator and
the denominator in Eq. (38), it can be derived

R(ε) ∼ rh

(
n

h

)
εh(1 − ε)n−h

a0
(
n

0

)
ε0(1 − ε)n

= rh

(
n

d

)
εh

a0
(
n

0

) . (39)

Simplifying Eq. (39), we can obtain Eq. (35).
According to Eqs. (12), (29), (33) and Definition 1, a

heuristic rule impacting on the security of TSCM can be found.
Heuristic rule. Keeping the equations of motion constant, a

state classifier with a larger h predicts a higher probability that
the TSCM-based neural cryptography can meet Condition I.

IV. NOVEL NEURAL CRYPTOGRAPHY

A generic framework is established to design neural
cryptography in Sec. II. Moreover, Sec. III puts forward a
significant heuristic rule for improving the security of the
TSCM. Here, we show how to design neural cryptography
by applying these results. Meanwhile, the comparisons with
TPM (K = 3) on security are carefully illustrated.

A. Applications

Remarkably, considering the heuristic rule for Condition II,
excessively large h is probably prejudicial to the security
of neural cryptography. Consequently, we need the state
classifications with h = 2. In order to guarantee this, some
state vectors are removed, which is indicated by d = 0. And
the state classifications are formulated in Tables III and IV.
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TABLE III. The state classification of CASE A (K = 3).

Name τ d State vector σ

(+1, +1, −1),(+1,−1, +1)
τ1 +1

(−1, +1, +1)

CA (−1, −1, +1),(−1,+1, −1)
τ2 −1

(+1, −1, −1)

τ3 0 (+1, +1, +1)(−1,−1, −1)

Notice that U (ρ) is constant as long as the learning rule
stays the same, so we have

UTPM(ρ) = UCA(ρ) = UCB(ρ). (40)

While RCA and RCB are calculated as

P CA
a (ε) =

1
2ε0(1 − ε)3 + 1

2ε2(1 − ε)

P CA
u

;

P CA
r (ε) = ε2(1 − ε)

P CA
u

;

P CA
u (ε) = 3

4
ε0(1 − ε)3 + 3

2
ε2(1 − ε);

RCA(ε) = 2ε2

(1 − ε)2 + ε2
;

(41)

and

P CB
a (ε) =

3
8 (1 − ε)5 + 3

2ε2(1 − ε)3 + 3
8ε4(1 − ε)

P CB
u

;

P CB
r (ε) =

3
2ε2(1 − ε)3 + 3

2ε4(1 − ε)

P CB
u

;

P CB
u (ε) = 5

8
(1 − ε)5 + 15

4
ε2(1 − ε)3 + 15

8
ε4(1 − ε);

RCB(ε) = 4ε2(1 − ε)2 + 4ε4

(1 − ε)4 + 4ε2(1 − ε)2 + ε4
.

(42)
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FIG. 4. (Color online) The dynamics of 〈�ρ(ρ)〉 of CA and CB,
while the lines have been calculated using Eq. (14).

Significantly, simulation experiment displayed in Fig. 4
indicates that the two state classifiers enable CA and CB to
meet Condition I.

We remark that a series of neural cryptography can be
formulated in such way, and also we can hopefully search for
some better cases by comparing their security.

B. Attacks on neural cryptography

Suppose that the attacker E is equipped with the same
structured networks as A’s and B’s. In addition, E can
eavesdrop all the information on the public channels but cannot
tamper or intercept them, so that only passive attacks are
considered.

For the simple attack [7], E aspires for synchronization
with A just by imitating the learning behavior. So E trains its
networks with the examples, including the input vector x and
the output τA, by applying one of the following rules:

(1) Hebbian learning rule:

wE
i,j = g

[
wE

i,j + xi,j d
A�

(
σ E

i dA
)
�(τAτB)

]
. (43)

TABLE IV. The state classification of CASE B (K = 5).

Name τ d State vector σ

(+1, +1, +1, −1, −1),(+1, +1, −1, −1, +1)
(+1, −1, −1, +1, +1),(−1, −1, +1, +1, +1)

τ1 +1 (+1, +1, −1, +1, −1),(+1, −1, +1, −1, +1)
(−1, +1, −1, +1, +1),(+1, −1, +1, +1, −1)
(−1, +1, +1, −1, +1),(−1, +1, +1, +1, −1)

(−1, −1, −1, +1, +1),(−1, −1, +1, +1, −1)
(−1, +1, +1, −1, −1),(+1, +1, −1, −1, −1)

CB τ2 −1 (−1, −1, +1, −1, +1),(−1, +1, −1, +1, −1)
(+1, −1, +1, −1, −1),(−1, +1, −1, −1, +1)
(+1, −1, −1, +1, −1),(+1, −1, −1, −1, +1)

(−1, −1, −1, −1, +1),(−1, −1, −1, +1, −1)
(−1, −1, +1, −1, −1),(−1, +1, −1, −1, −1)
(+1, −1, −1, −1, +1),(−1, +1, +1, +1, +1)

τ3 0 (+1, +1, −1, +1, +1),(+1, −1, +1, +1, +1)
(+1, +1, +1, +1, −1),(+1, +1, +1, −1, +1)
(+1, +1, +1, +1, +1),(−1, −1, −1, −1, −1)
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(2) Anti-Hebbian learning rule:

wE
i,j = g

[
wE

i,j − xi,j d
A�

(
σ E

i dA
)
�(τAτB)

]
. (44)

(3) Random-walk learning rule:

wE
i,j = g

[
wE

i,j + xi,j�
(
σ E

i dA
)
�(τAτB)

]
. (45)

It’s not hard to see that the simple attack is appropriate for
all neural cryptography despite low efficiency.

If E is an intelligent attacker, it may try to predict the σ A/B

in each learning step by taking hE
i into account. Geometric

attack [29] is one kind of guess attack using single networks.
The geometric attack is the same as simple attack in the case
of τA = τB = τE. But, as long as τA = τB �= τE, E attempts
to change τE by means of correcting σE in consideration that
A will still update the wA. Note that the lower absolute value
of |hE

i | represents the higher probability of σ A
i �= σ E

i . So, the
attacker can flip one σ E

i with the smaller |hE
i | to enable τA/B =

τE. Then, the attacker can utilize the same learning procedure
as the case of τA = τB = τE. In fact, even the geometric attack
cannot predict the σ

A/B
i perfectly; it always outperforms simple

attack.
Remarkably, the original geometric attack is only appro-

priate for TPM and TCM. So, as a result, this paper puts
forward a modified geometric attack for the instances based
on TSCM. The modified geometric attack tries to enable
τA/B = τE by means of flipping multiple σ E

i with the smaller
|hE

i | instead of one. It is verified by the simulation in the
next subsection that the modified geometric attack is more
effective than the original geometric attack for TSCM-based
neural cryptography, including the cases presented in Ref. [31].

Majority attack [23] and genetic attack [30] are two other
kinds of guess attack. They attempt to improve the E’s ability to
predict the σ

A/B
i by using multiple networks instead of single

networks. In particular, a better resistance to attack based on
single networks indicates a better resistance to attack using
multiple networks.

C. Security

Consider that the majority attack and genetic attack are
based on simple attack, original geometric attack, or modified
geometric attack as an element; therefore, we only involve the
attack using single networks here.

In the case of simple attack for all TSCM-based neural
cryptography, a repulsive step occurs between one pair of
corresponding hidden units with the probability

P E
r (ε) = ε. (46)

and an attractive step with the probability

P E
a (ε) = a(1 − ε), 0 < a � 1. (47)

Here, a is the percentage of the updating hidden units.
Meanwhile, UE(ρ) for any attacker is same as UTPM(ρ), so
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FIG. 5. (Color online) The dynamics of the max 〈�ρ(ρ)〉 of E,
while the lines have been calculated using Eq. (48).

we can obtain

〈�ρ(ρ)〉E = P E
a (ε)〈�ρa(ρ)〉 + PE

r (ε)〈�ρr (ρ)〉
� (1 − ε)〈�ρa(ρ)〉 + ε〈�ρr (ρ)〉. (48)

As shown in Fig. 5, it demonstrates that the simple attack is
not sufficient to break neural cryptography.

In the case of original geometric attack for TPM (K = 3),
the probability for a successful correction of the hidden units
is given by Ref. [23]:

Pg =
∫ ∞

0

∏
j �=i

( ∫ ∞

hi

2√
2πQj

1 − ε
p

j

1 − εj

e
− h2

j

2Qj dhj

)
2√

2πQi

ε
p

i

εi

e
− h2

i
2Qi dhi. (49)

Here, ε
p

i is the prediction error [35]:

ε
p

i = 1

2

⎡
⎣1 − erf

⎛
⎝ ρi√

2
(
1 − ρ2

i

) |hi |√
Qi

⎞
⎠

⎤
⎦ , (50)

and Qi is the initial length of the weight vectors [29]:

Qi ∼ L(L + 1)

3

(
1 + 8

5
√

3π

L√
N

)
. (51)

In this case, the probabilities of the attacker can be computed
as

P E TPM
a (ε) = 1

2 (1 − ε)3 + 1
2 (1 + 2Pg)(1 − ε)2ε

+ 1
2 (1 − ε)ε2 + 1

6ε3;

P E TPM
r (ε) = 2(1 − Pg)(1 − ε)2ε

+ 2(1 − ε)ε2 + 2
3ε3.

(52)

However, modified geometric attack faces the challenge
of flipping more than one hidden unit, so the probability of
flipping correctly is confirmed to be less than Pg . In this
case, one can calculate the probability of the occurrence of
an attractive and a repulsive step for the attacker in attacking

062804-7



NANKUN MU, XIAOFENG LIAO, AND TINGWEN HUANG PHYSICAL REVIEW E 87, 062804 (2013)

CA:

P E CA
a (ε) < 2

3 (1 − ε)3 + (1 + Pg)(1 − ε)2ε

+ 1
3 (3 + Pg)(1 − ε)ε2 + 1

3ε3;

P E CA
r (ε) > 2(1 − Pg)(1 − ε)2ε

+ 2
3 (3 − Pg)(1 − ε)ε2 + 2

3ε3; (53)

and CB

P E CB
a (ε) < 3

5 (1 − ε)5 + (2 + Pg)(1 − ε)4ε

+ 2
5 (10 + 2Pg)(1 − ε)3ε2

+ 1
5 (11 + 10Pg)(1 − ε)2ε3

+ 1
5 (5 + 2Pg)(1 − ε)ε4 + 1

5ε5;

P E CB
r (ε) > 2(1 − Pg)(1 − ε)4ε

+ 2
5 (10 − 4Pg)(1 − ε)3ε2

+ 2
5 (19 − 10Pg)(1 − ε)2ε3

+ 1
5 (20 − 4Pg)(1 − ε)ε4 + 4

5ε5.

(54)

One can easily obtain

P E CI
a

P E CI
r

>
P E TPM

a

P E TPM
r

. (55)

This indicates that CI is not more secure than TPM under
geometric attack. But for CB, it is hard to get an accurate
inequality with TPM, so we cannot select the better one
directly. Then the simulations results in Tables V and VI can
be show the comparison on security clearly. Successful attack
probability P is defined as the probability that the attacker
knows 98 percent of the weights at synchronization time. CI
is the case considered better than TPM on security [31].

It is worth noting that all the existing algorithms enhancing
the security of TPM (K = 3) can also improve all TSCM-
based neural cryptography.

From Tables V and VI, one can see that the comparison of
security between these instances is

Simple at tack : CI > CB > TPM > CA, (56)

Geometric at tack : CB > TPM > CI > CA. (57)

CI performs well under simple attack, because CI is based
on bidirectional synchronization, which brings about more
repulsive steps for simple attack. But in the face of geometric
attack, CI is unreliable because of its defective state classifier.
Each class of the state classifier in CI only contains two vectors,
so the probability that the CI’s state is predicted correctly by

TABLE V. Success probability P of the simple attack as a function
of L. Results are obtained in 10 000 simulations with random-walk
learning rule using K × N = 3000.

Name L = 1 L = 2 L = 3 L = 4

TPM (K = 3) 0.4617 0.0393 0.0006 0
CI (K = 3) 0.3176 0.0073 0 0
CA (K = 3) 0.4901 0.0936 0.0030 0
CB (K = 5) 0.4061 0.0315 0.0004 0

TABLE VI. Success probability P of the geometric attack (orig-
inal or modified) as a function of L. Results are obtained in 10 000
simulations with random-walk learning rule using K × N = 3000.

Name L = 1 L = 2 L = 3 L = 4

TPM (K = 3) 0.7673 0.5883 0.4276 0.2799
CI (K = 5) 0.9879 0.8999 0.7080 0.4926
CA (K = 3) 0.9251 0.9038 0.8759 0.8552
CB (K = 5) 0.7271 0.5497 0.3955 0.2642

E is very high. So, disagreeing with the opinion of Ref. [31],
CI is not better than TPM.

Similar to CI, the state classifier in CA is also unsatisfactory.
Meanwhile, CA is not based on bidirectional synchronization.
So CA is the worst case.

However, the state classifier in CB contains more vectors in
one class, and also means that the attackers have to correct
more hidden units as τA = τB �= τE. Owing to these, the
attackers will have much more trouble to perfectly correct.
So, CB outperforms TPM.

Furthermore, the success probability of the attacker in
neural cryptography is confirmed as e−y(L−L0) [23]. This
scaling behavior is the same for all attacks, and the constants
y and L0 are different for each attack. Clearly, y and L0 can
be determined by enough simulations.

Based on all of the above, we conclude that CB is a more
secure case against all attacks known up to now. It means that
the attackers are unable to break the security of CB in the limit
L → ∞. Meanwhile, this verifies the validity and applicability
of our approach to designing neural cryptography.

V. CONCLUSION

Different from most of the previous works that are focused
on the existing neural cryptography, we have carefully elab-
orated how to design and secure neural cryptography. The
main result, namely the TSCM with a heuristic rule, provides
an effective approach for designing neural cryptography. In
addition, CB proposed in this paper has also demonstrated that
the better instances can be achieved from our results. These
results have also been verified by simulations.
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