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036107 (2009)]. A condition for the existence of global cascades is also derived. Applications of this approach
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I. INTRODUCTION

Emergent behaviors in a complex system depend crucially
on the pattern of interactions between its components [1–3].
For example, we observe a cascade when local interactions
in the vicinity of an initially isolated effect allow that
effect to propagate globally [4,5]. The network substrate of
a system represents this pattern in its most abstract and
analytically tractable form. This information can be used to
construct network models, which provide theoretical insights
into the causes of such behaviors. A fundamental problem
for the construction of these models is the determination of
precisely which structural features are requisite to explain the
phenomenon in question and which others are superfluous.

In the configuration model [6,7] an ensemble of random
graphs is prescribed by a degree distribution pk . In each
realization drawn from this ensemble, a randomly selected
vertex will have k incident edges with probability pk . This
distribution represents the first order of complexity for most
network models. From this, a more realistic model can be
constructed by including degree-degree correlations [8–11]
and/or various forms of clustering [12–15], both of which are
explicitly absent from the configuration model. Recently, the
study of multiplex networks has introduced a further degree of
complexity to this general approach [16–18]. These networks
consist of connected layers of networks, where each layer
involves interactions of a fundamentally unique kind.

In this paper we focus on random graphs with clustering;
specifically, those defined by Gleeson in [15]. Real networks
typically contain a large number of short cycles in which a
small set of vertices maintain a closed loop of connections.
One way to measure the propensity for a vertex to form these
types of bonds is through the local clustering coefficient, which
is defined as the fraction of pairs of neighbors of a vertex that
are also neighbors of each other [19]. The degree-dependent
clustering coefficient or clustering spectrum ck is found by
averaging the local clustering coefficient over the class of
vertices of degree k [20,21]. A global measure of clustering
C2 can be defined by averaging the local coefficients of all
N vertices in the graph. Gleeson [15] has shown how the
configuration model can be modified to generate ensembles of
highly clustered graphs (see also [12–14]). This is achieved
by embedding cliques of connected vertices into an otherwise
treelike structure. Each ensemble is prescribed by the joint
distribution γ (k,c): the probability that in any realization a

randomly selected vertex has degree k and is in a clique of c

vertices (a c-clique).
Our aim is to provide a generalized analytical approach

to determining the expected cascade size on these γ (k,c)
or clique-based graphs. This goes far beyond the bond
percolation process studied in [15] to include a broad class
of cascade processes including Watts’s threshold model [4],
k-core decomposition [22,23], and both site and bond per-
colation [24,25]. Also of relevance is our earlier work [26]
on cascades on edge-triangle graphs [13,14]. Edge-triangle
graphs are created by embedding 3-cliques, and only 3-cliques,
into an otherwise treelike structure. In each such graph a
randomly chosen vertex is incident to s single edges and 2t

triangle edges with probability p(s,t). In contrast, a γ (k,c)
graph can contain cliques of many different sizes and may
therefore have local clustering levels that are much higher
than those in edge-triangle graphs. Furthermore, γ (k,c) can
be parametrized to match the empirical clustering spectrum ck

and degree distribution pk of a real-world network [15]. This
additional complexity means that a very different analytical
approach from that of [26] is required here. Our approach thus
provides another significant extension of the methods used by
Gleeson and Cahalane [27] and Gleeson [5], who provided
analytical results for cascades on configuration-model graphs
by introducing a tree-based framework of level-by-level vertex
activations. This method was inspired by methods originally
developed to study the zero-temperature random-field Ising
model on a Bethe lattice [28–30].

The class of cascade dynamics examinable through the
tree-based framework consists of those processes that satisfy
the following list of properties: (i) Each vertex is assigned
a binary value specifying its current state, active (damaged
or infected) or inactive (undamaged or susceptible); (ii) the
probability of a vertex becoming active (in a synchronous
update of all vertices) depends only on its degree k and
the number m of its neighbors that are already active and
is termed the neighborhood influence response function Fk

m

[31,32]; (iii) for any fixed degree k, Fk
m is a nondecreasing

function of m; and (iv) once active, a vertex cannot become
deactivated [33]. Each of the processes referred to in the
preceding paragraph satisfies these constraints and is defined
by choosing an appropriate Fk

m, as detailed in [5]. The goal
of our analytical approach is the prediction of the expected
size of the cascade when a time-dependent process of the type
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described here has run to completion. Our analytical results
are defined as the fixed point of an iterative process, i.e.,
the solution of a self-consistent system of equations, but the
level-by-level activation approach used in our analysis should
not be misunderstood as a time-dependent process in its own
right; rather it is a convenient representation of the iteration
scheme for solving for the steady-state solution.

The remainder of this paper is structured as follows. In
Sec. II we describe in broad outline our generalized approach
to cascade dynamics on clique-based graphs. As well as an
analytical expression for the expected cascade size, we provide
a first-order condition for the existence of cascades whose size
scales with the number of vertices N as N → ∞. Section III
deals in greater detail with the particulars of clique member
activations. We show how to calculate in closed form the
number of active vertices in a clique of any size c � k + 1. The
analysis of both sections is described in terms of an arbitrary
response function. The particular forms that this response
takes for various processes are discussed in Sec. IV, where we
demonstrate the correspondence between our analytical results
and numerical simulations of bond percolation and Watts’s
model. In Sec. V we present a possible extension of Watts’s
model in which different weights are assigned to active clique
neighbors and active nonclique neighbors. This allows us to
vary the influence of a vertex’s neighbors on its probability
of activation between these two subgroups. We suggest that
in future analyses this may provide important insights into the
role of group structure and peer influence in processes of social
contagion, such as opinion formation [35,36].

II. CASCADE ANALYSIS

As was also the case for edge-triangle graphs [26], in
order to extend to clique-based graphs the approach of [5] we
must first reconcile the presence of clustering with the locally
treelike approximation on which that approach is founded. In
considering how best to proceed, let us return briefly to [15]
and remind ourselves of the structural properties of the γ (k,c)
ensemble.

In Fig. 1 we have reproduced Fig. 2 of [15]. This figure
shows a portion of an arbitrary γ (k,c) graph that has been
reconfigured into a treelike formation. The essential character-
istics of this reconfiguration can be explained most succinctly
by looking at the local edge topology of the randomly chosen
vertex A. This vertex, positioned on level n + 1 of the tree,
has degree k = 6 and is a member of a 4-clique. Its six
incident edges are made up of c − 1 = 3 internal edges,
which connect A to its neighboring clique members, and
k − c + 1 = 3 external edges (emphasized). Of these external
edges, one connects A to its parent vertex on the next level
up, while the remaining k − c = 2 connect A to its external
children on level n. The clique neighbors are positioned on an
unlabeled intermediate level between A and its grandchildren
(circled with dashed line) on level n. This categorization and
positioning of vertices is representative of how the tree-based
framework operates throughout the graph. Note that any vertex
may be treated similarly to A regardless of the size of the clique
to which it belongs. For any (k,c) pairing such that k � c − 1
(see [15]), c − 1 clique neighbors can always be made to reside
in the interspace between a vertex and the level below and one

n+1

n

A

FIG. 1. (Color online) Level-by-level cascade propagation in
a γ (k,c) graph using the tree approximation. External edges are
emphasized.

may also stipulate in general that at most one external edge
leads to the parent above. In extreme cases, a vertex with no
internal edges is simply a member of a 1-clique and therefore
all of its connections will pass directly from one level to the
next (c − 1 = 0), as in [27]. A vertex with no external edges
must reside either at the root of the tree and have no parent if it
is part of a clique or it must be entirely isolated and have zero
connections in total.

This, then, was the key that allowed Gleeson to calculate the
giant connected component (GCC) size S in bond percolation
on γ (k,c) graphs. Equation (5) of [15] was used to determine
the conditional probability that a vertex like A is active (part of
the GCC) on each level of the tree and Eq. (6) of [15] then gave
S as the probability of activation of the root vertex by using the
steady-state value from Eq. (5). The restriction of this theory
to bond percolation arises primarily from its reliance on a set
of polynomials that were defined and tabulated by Newman
in [37]. Crucially, however, those polynomials play no role
in the conceptualization described above. Thus our task of
extending the theory of [5] amounts to taking this framework
and introducing the response function mechanism. Since we
shall not apply the polynomials of [37], a straightforward
substitution of Fk

m will not suffice. In fact, as we will now show,
our approach requires a set of equations entirely different from
those of [15].

A. Expected cascade size

With the theoretical foundations in place, we can begin
to derive generalized analytical expressions for cascades
on γ (k,c) graphs. We proceed in the familiar manner by
considering the probability qn+1 that the randomly selected
vertex A in Fig. 1 is active, conditional on its parent vertex
being inactive. As is usual for the tree-based approach, we
stipulate that the vertex A can become active only due to
the influence of the states of the neighboring vertices directly
below it in the tree. In this case, however, A has two different
types of neighbors: It has k − c external children on level n and
c − 1 clique neighbors on the intermediate level. Significantly,
the ways in which these two types of neighbor can become
active in their own right are quite distinct from each other.
Thus their contributions to the probability of activation of A

must be calculated separately. This is the first problem to be
addressed.

Starting with the simpler of the two contributions, let us
write down the probability that an arbitrary number, call it
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j , of A’s external neighbors are active. Since there is no
clustering between these vertices, each one is independently
activated by its own children on level n − 1 with probability
qn. Therefore, the probability that a total of j out of k − c

external neighbors are activated in this way is given simply by
the binomial probability mass function (PMF)

Bk−c
j (qn) =

(
k − c

j

)
qn

j (1 − qn)k−c−j . (1)

For the second contribution to A, matters are made
considerably more complicated by the fact that its c − 1 clique
neighbors are fully connected. This means that the probability
that each of these clique neighbors is active depends not only
on the states of their children—the four grandchildren of A on
level n—but also on the states of one another. Recall from the
derivation of our theory for cascades on p(s,t) graphs in [26]
that we had to account for the fact that each vertex at the base
of a triangle can directly influence the state of the other. We
are faced with a similar problem here; however, since we are
now dealing with γ (k,c) graphs we have a whole spectrum of
clique sizes to contend with.

One can appreciate how much more intricate this will make
our calculations by imagining that A were part of a very large
clique [as it could be, depending on our choice of γ (k,c)]. For
example, if A were in a 10-clique, then c − 1 = 9 intermediate
vertices would each have a role to play in determining each
others’ states. The solution in this case would require an
extensive list of combinatorial expressions similar to, but
extending far beyond, Eqs. (5)–(8) of [26]. Ideally, we would
like to avoid tabulating combinatorial terms altogether and
instead have a single compact analytical expression that is
flexible enough to deal with any clique size. This expression
would allow us to feed in the total number of clique neighbors
as a variable and would then return the probability that a certain
fraction of them are active. Evidently, the derivation of such an
expression is not straightforward. We shall therefore postpone
this task until later in our presentation.

In the meantime, we continue our analysis of cascade
propagation by simply providing the name of this function
and taking it for granted that later in Sec. III we will define
precisely how it operates. Let us call the relevant function
Rc−1

m (qn) and in doing so refer to it as the probability that in
a clique of c − 1 intermediate vertices a total of m are active,
conditional on the top vertex of the c-clique to which they
belong (vertex A in Fig. 1) being inactive. The dependence
on qn arises from the fact that each intermediate vertex has its
own set of children on level n and each of those children (A’s
grandchildren in Fig. 1) is active with probability qn. Summing
over all possible values of m gives

∑c−1
m=0 Rc−1

m (qn) = 1.
If we accept the meaning of the label Rc−1

m (qn) and combine
it with Eq. (1) above, we now have the necessary terms in which
to express the contribution of A’s external children and clique
neighbors towards its probability of activation qn+1. This takes
us very close to defining an iterative equation for qn+1 in terms
of qn. The missing ingredient is the probability ζ (k,c) that the
random vertex A, while having degree k and being a member of
a c-clique, is also the child of a random vertex on level n + 2.
This probability plays a role similar to that of the term (k/z)pk

in Eq. (1) of [5], which gives the probability of reaching a

child of degree k by traveling along a randomly chosen edge
from its parent in a nonclustered graph (see [38]). Similarly,
here ζ (k,c) closes our iteration by allowing us to average over
all vertices on level n + 1 in the correct manner. We express
this probability as

ζ (k,c) = (k − c + 1)γ (k,c)/ze, (2)

where ze = ∑
k,c(k − c + 1)γ (k,c) is the average number of

external edges per vertex.
Combining all three of our ingredients, we can now write

our generalized iterative equation in terms of an arbitrary
response function Fk

m+j as

qn+1 = ρ0 + (1 − ρ0)
∑
k,c

ζ (k,c)�(qn,k − 1), (3)

where

�(qn,x) =
x−c+1∑
j=0

c−1∑
m=0

Bx−c+1
j (qn)Rc−1

m (qn)Fk
m+j . (4)

Thus we have derived an analytical expression for the
probability that a randomly chosen vertex on the next level
up, generically called n + 1, is active, conditional on its parent
being inactive. Referring once again to Fig. 1, Eq. (3) tells us
that the vertex A will be found active if it was initially activated
as part of the seed fraction ρ0 or (with probability 1 − ρ0) if
it subsequently became active in response to the states of the
x = k − 1 neighbors directly below it in the tree. For the latter,
Eq. (4) indicates that there are two distinct contributions from
two different sets of neighbors: one from the external children
of A and the other from the intermediate clique members. A
total of j of the first type of neighbor are active with probability
Bk−c

j (qn) and m of the second type with probability Rc−1
m (qn).

Whether the sum of j and m is sufficient to activate A is
determined by the response function Fk

m+j .
In the usual manner, iterating Eq. (3) to the steady state

will give us q∞. This value can then be used in the following
expression to determine the probability of activation of the
root vertex:

ρ = ρ0 + (1 − ρ0)
∑
k,c

γ (k,c)�(q∞,k). (5)

The probability ρ is equivalent to the expected cascade size
(see the discussion in [26]). The differences between this
equation and Eq. (3) above are attributable to the fact that
the root vertex has no parent. This means that all of the root’s
k edges extend downward to its children, hence �(q∞,k). It
also means that the correct term for averaging is simply γ (k,c).

Taken together, then, Eqs. (3)–(5) constitute the core of
our present analytical approach. We can use these equations
to investigate various different cascade processes by applying
the appropriate definition of the response function Fk

m+j in
each case. In Sec. IV we will provide the definitions of Fk

m+j

for bond percolation and Watts’s model. Before that, we must
also define the function Rc−1

m (qn). This task will occupy all of
Sec. III. Next, let us conclude Sec. II by deriving a general
first-order cascade condition.
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B. Cascade condition

The cascade condition determines whether an infinitesi-
mally small seed fraction ρ0 of active vertices will generate a
nonvanishing mean cascade size as the total number of vertices
in the graph diverges (N → ∞). For this to happen the iteration
of Eq. (3) must cause the activation probability qn to grow from
an initial value q0 = 0 to a nonzero steady state q∞ [5]. If we
regard Eq. (3) (with ρ0 = 0) as a nonlinear function of q of
the general form qn+1 = H (qn), then this last condition can be
expressed, to first order, as H ′(0) > 1.

To evaluate H ′(0) we require the following results for the
binomial PMF of Eq. (1):

Bk−c
j (0) = δj,0, (6)

d

dq
Bk−c

j (q)

∣∣∣∣
q=0

= (k − c)(δj,1 − δj,0). (7)

Using Eqs. (6) and (7) in Eq. (3), we find that the first derivative
of H (q), evaluated at q = 0, may be expressed as

H ′(0) =
∑
k,c

ζ (k,c)
c−1∑
m=0

[
(k − c)

(
Fk

m+1 − Fk
m

)
×Rc−1

m (0) + Fk
m

d

dq
Rc−1

m (q)

∣∣∣∣
q=0

]
. (8)

This is the left-hand side of our cascade condition. Note that
because this expression depends on Rc−1

m (0) and the first
derivative of Rc−1

m (q) at q = 0 it becomes an increasingly
arduous task to calculate H ′(0) from Eq. (8) as the size of
the largest clique in our graph increases. As we shall see
in the next section, the evaluation of the function Rc−1

m (q)
becomes increasingly difficult as the value of c increases. For
this reason, in our analysis in Sec. IV we will choose γ (k,c)
such that the cliques in our graphs are constrained to sizes of
c � 4. In addition, we shall make the simplifying assumption
that Fk

0 = 0 (see [26]). This implies that a vertex will never
activate if none of its neighbors are active and is a suitable
approximation for the calculation of our first-order condition.

III. ACTIVE CLIQUE NEIGHBORS

Backtracking slightly in the flow of our presentation,
we will now derive a concise closed-form expression for
the probability labeled above as Rc−1

m (qn). Let us begin by
recapitulating the meaning of this label. According to our
earlier definition, it is the probability that m out of c − 1
intermediate-level c-clique vertices are active, given that their
own externally linked children are each independently active
with probability qn and that the parent vertex at the top of
the c-clique is inactive. In Fig. 1, for example, R3

m(qn) is the
probability that m of the vertex A’s three clique neighbors are
active, given that each of the four grandchildren of A (circled)
has an activation probability of qn and that A is itself inactive.

In considering how to calculate Rc−1
m (qn) in general, we

see immediately that it is not the states of the external
grandchildren that will cause us difficulty, but rather the fact
that the state of each intermediate clique member can influence
the states of all other members. In our framework, every
c-clique has one of its (internally linked) members designated

as the parent and placed on level n + 1. This leaves each of
the remaining c − 1 clique members on the intermediate level
with k − c + 1 external edges to connect to its own children on
level n. The probability that some number j of these children
are active is given by the binomial PMF Bk−c+1

j (qn). Thus the
probability that an intermediate clique member is activated
by its children is quite easy to calculate. In contrast, in order
to deal with the influence of the c − 1 clique members on
one another, we will have to consider carefully the various
combinations of states that may exist within the intermediate
portion of the clique.

Our first step in tackling this problem is to provide a mech-
anism for the intermediate clique members to be activated,
which combines both internal and external influences. We
define

Gc−2
d (qn) =

∑
k

γ (k,c)

pc

k−c+1∑
j=0

Bk−c+1
j (qn)Fk

d+j , (9)

for c � 2, as the conditional probability that an intermediate c-
clique vertex will be activated if d of its c − 2 clique neighbors
on the same level are active, given its external children are
each active with probability qn and its parent on level n + 1
is inactive. The term γ (k,c)/pc is the degree distribution of
vertices that belong to a c-clique, where pc = ∑

k γ (k,c).
The response function Fk

d+j will determine whether d active
neighbors plus j active children are enough to cause activation.
Defined as such, Gc−2

d (qn) provides a fundamental term in
which to express the various possible active configurations,
thus permitting us to begin the procedure of counting.

We consider first the simplest nontrivial case, namely, c =
3. Suppose we pick from some arbitrary γ (k,c) graph a vertex
with degree k that is also a member of a 3-clique. If we let
this vertex reside on level n + 1 of the tree and also position
its c − 1 = 2 clique neighbors between level n + 1 and level
n below, our task then is to calculate R2

m(qn). To do this, let
us refer to Fig. 2 and look at the possible states of these two
vertices in isolation from their inactive parent.

Starting with both vertices inactive—the configuration
labeled c0 in Fig. 2—we first count the possible configurations
of states after one round (i = 1) of synchronous updates.
Since we have started from c0, with both vertices inactive,
the probability of either vertex becoming active in this first
round is simply G1

0. Therefore, each possible outcome (c1,
c2, or c3 in Fig. 2) is determined by a binomial PMF with
probability of success G1

0. Configuration c1, in which both
vertices have remained inactive, will occur with probability
B2

0 (G1
0). Similarly, configuration c2, in which one vertex has

been activated and the other has remained inactive, will occur
with probability B2

1 (G1
0). Finally, configuration c3, in which

both vertices have been activated, will occur with probability
B2

2 (G1
0). [Note that in each term Gc−2

d ≡ Gc−2
d (qn); we will use

this abbreviation throughout.]
Having determined the three distinct outcomes of the first

round of updates, we will now categorize each configuration
into either of two types: terminal or volatile. In a terminal
configuration no further changes of state are possible because
all vertices have reached their own steady state of either per-
manent activation or inactivation. In a volatile configuration,
however, there exists at least one inactive vertex that is liable
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FIG. 2. (Color online) Transition probabilities for a pair (c − 1 =
2) of intermediate clique neighbors in a γ (k,c) graph. Color indicates
vertex state: light gray, inactive; dark gray (green), active.

to become active. Thus, as long as volatile configurations are
produced we must continue with another round of updates. The
process of updating will reach its end when all configurations
are terminal. Categorizing the outcomes of round one tells us
whether or not a second round is necessary and also indicates
which configurations need to be updated. Configuration c1

is clearly terminal since the transition from c0 to c1 has
established that neither vertex can activate while the other
remains inactive. Similarly, c3 is also terminal for the simple
reason that we do not allow active vertices to revert to
being inactive. Configuration c2, however, is volatile since
the transition from c0 to c2 has shown us that one of these
vertices can activate without the other first being active, but
that the same is not true of this other vertex. That is to say, we
know that the inactive vertex in c2 cannot activate without an
active neighbor. What is not clear from c2 is whether the vertex
that did activate in round one is now sufficient to activate the
vertex that remained inactive in that round. The only way to
determine this is to run a second round (i = 2) of updates on c2.

As was the case in the first round, to begin the second round
we must provide an appropriate probability of activation. We
want to know if the active vertex in c2 is enough to activate
the inactive vertex in c2, given that the inactive vertex cannot
activate without an active neighbor. This can be decided upon
by using the activation probability ξ1(0,1) defined by the
function

ξc−2(a,b) = Gc−2
b (qn) − Gc−2

a (qn)

1 − Gc−2
a (qn)

. (10)

Equation (10) gives us the conditional probability that in a
clique of c − 1 intermediate vertices b active vertices are
enough to cause the activation of one of their inactive clique
neighbors, given that a active vertices are insufficient to do so.
The function ξc−2(a,b) is defined for 0 � a � b � c − 2 and is
non-negative for all such values since by Eq. (9) Gc−2

d (qn) is an
increasing function of d. This latter property is true of Gc−2

d (qn)
since Fk

m is defined (see Sec. I) to be a nondecreasing function
of m [and therefore so is Fk

d+j in Eq. (9)]. The configurations
produced by updating with this probability are once again
given by a binomial PMF. With probability B1

0 (ξ1(0,1))
the inactive vertex will remain inactive, thereby producing
configuration c4. Conversely, with probability B1

1 (ξ1(0,1)) the
inactive vertex will activate, thereby producing configuration
c5. Categorizing c4 and c5, we find both configurations are
terminal and therefore the process of updating may now cease.

With all terminal configurations now achieved, the next step
in our derivation of R2

m(qn) is to combine the various transition
probabilities listed in Fig. 2 and use them to calculate each of
R2

0(qn), R2
1(qn), and R2

2(qn). Tracing our way through Fig. 2,
we reach a terminal state in which no vertices are active by
following the route c0 → c1. Similarly, we end with one active
vertex by following c0 → c2 → c4. Finally, a terminal state
with two active vertices is given by either of the routes c0 → c3

or c0 → c2 → c5. All of this information can be expressed
succinctly using the various transition probabilities associated
with each route if we bear in mind that a transition from
one configuration to another, symbolized by →, corresponds
to the multiplication of probabilities and also that the word
or corresponds to addition. To summarize, the set of routes
described here yields the following set of equations:

R2
0(qn) = B2

0

(
G1

0

)
, (11)

R2
1(qn) = B2

1

(
G1

0

)
B1

0 (ξ1(0,1)), (12)

R2
2(qn) = B2

1

(
G1

0

)
B1

1 (ξ1(0,1)) + B2
2

(
G1

0

)
. (13)

The final step towards our goal of writing a closed-form
expression for R2

m(qn) is to find a way of expressing Eqs. (11)–
(13) as the outputs of a single function that has been given the
inputs m = 0, 1, and 2, respectively. There may be a number
of different ways of defining such a function, some of which
may appear more elegant than others. For our own part, we
can offer a particularly concise definition by introducing a
new variable and considering how the various combinations
of states determined by Eqs. (11)–(13) can be reproduced in a
parsimonious manner.

Our new variable is called li . We define it as the number
of new activations in round i of synchronous updates. In the
scheme presented above we had two rounds; therefore, we
define the pair l = (l1,l2) as the sequence of new activations
over both rounds. This allows us to represent all possible routes
through the configurations of Fig. 2 as a collection of ordered
pairs. For example, l = (1,0) means that there is one activation
in round i = 1 and no activations in round i = 2 and therefore
corresponds to the route c0 → c2 → c4. Similarly, l = (1,1)
corresponds to c0 → c2 → c5. By applying this notation we
find that the following equation will reproduce each of the
Eqs. (11)–(13) above:

R2
m(qn) =

∑
l1+l2=m

B2
l1

(
G1

0

)
B

2−l1
l2

(ξ1(0,l1)). (14)

Note that the summation
∑

l1+l2=m in Eq. (14) is taken over
all pairs l = (l1,l2) such that l1 + l2 = m, where m is the total
number of active vertices.

To demonstrate how Eq. (14) operates let us calculate
R2

1(qn) by setting m = 1. The set of all l pairs that add up
to this value of m is l ∈ {(0,1),(1,0)}. Substituting each of
these pairs in turn into the right-hand side of Eq. (14) and
then summing gives R2

1(qn) = [0 + 2G1
0(1 − G1

1)], thereby
reproducing Eq. (12) above. The values of R2

0(qn) and R2
2(qn)

are found similarly by using the parameters m = 0 and
l = (0,0), and m = 2 and l ∈ {(0,2),(1,1),(2,0)}, respectively.

Thus, in Eq. (14) we have found an expression for R2
m(qn),

which, we remind ourselves once more, is the conditional
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probability that m of the two intermediate vertices in a 3-clique
are active, given that each of their own children is active with
probability qn, and that the vertex at the top of the clique is
inactive. Recall, however, that our ultimate goal is to provide a
general expression for Rc−1

m (qn). Our approach to this problem
has been to determine a series of expressions for increasing
values of c and then to express each of these as a special case
of a single unifying expression. Each individual expression for
Rc−1

m (qn), where c > 3, can be found by a method similar to
the one described above for R2

m(qn). The core of this method
is the same regardless of the value of c and can be summarized
in general as follows.

(i) Simultaneously update the states of all inactive vertices.
(ii) Categorize the resulting configurations of states as either

terminal or volatile, removing those that are terminal from
further consideration.

(iii) Repeat steps (i) and (ii) until no volatile configurations
remain.

Counting the terminal configurations will then provide the
various outcomes obtainable in the steady state of the cascade.
For example, in determining R3

m(qn), the application of these
three steps reveals every possible active configuration in a
triangle of connected vertices and each associated transition
probability. As above, following the different routes towards
each terminal configuration indicates the correct sequence of
multiplications and additions to employ to calculate the values
of R3

m(qn) for 0 � m � 3. This procedure yields the following
set of equations:

R3
0(qn) = B3

0

(
G2

0

)
, (15)

R3
1(qn) = B3

1

(
G2

0

)
B2

0 (ξ2(0,1)), (16)

R3
2(qn) = B3

2

(
G2

0

)
B2

1 (ξ2(0,1))B1
0 (ξ2(1,2))

+B3
2

(
G2

0

)
B1

0 (ξ2(0,2)), (17)

R3
3(qn) = B3

1

(
G2

0

)
B2

1 (ξ2(0,1))B1
1 (ξ2(1,2))

+B3
3

(
G2

0

) + B3
2

(
G2

0

)
B1

1 (ξ2(0,2))

+B3
1

(
G2

0

)
B2

2 (ξ2(0,1)). (18)

Continuing in the same manner as before, an expression
for R3

m(qn) that contains Eqs. (15)–(18) as special cases can
be defined by applying the variable li and considering each
unique sequence of activations l = (l1,l2,l3). By doing this we
have found that the equation

R3
m(qn) =

∑
l1+l2+l3=m

B3
l1

(
G2

0

)
B

3−l1
l2

(ξ2(0,l1))

×B
3−(l1+l2)
l3

(ξ2(l1,l1 + l2)) (19)

will reproduce Eqs. (15)–(18).
Observe the similarities between Eqs. (19) and (14).

They indicate that to create an expression for R3
m(qn) from

that for R2
m(qn) above all one must do (besides set c = 4)

is place additional indices l2 and l3 in the appropriate
positions and include one more multiplicative term, namely,
B

3−(l1+l2)
l3

(ξ2(l1,l1 + l2)). By running the entire scheme of
categorization and route counting over again with c = 5
and l = (l1,l2,l3,l4), we have observed (in calculations not
provided here) that a similar relationship also holds between

R3
m(qn) and R4

m(qn). The pattern of similarities detected in our
calculations strongly suggests the following form for a general
expression for Rv

m(qn), where v is an integer v � m:

Rv
m(qn) =

∑
|l|=m

v∏
i=1

B
nv,i

li
(θv,i). (20)

Let us unpack this expression. First, note that the variable
nv,i in Eq. (20) is defined as nv,i = v − ∑i−1

j=1 lj for i � 2
with nv,1 = v. Next, the variable θv,i is defined as θv,i =
ξv−1(

∑i−2
j=1 lj ,

∑i−1
j=1 lj ) for i � 3 with θv,1 = Gv−1

0 and θv,2 =
ξv−1(0,l1). Finally, the term |l| in the summation of Eq. (20)
is defined in multi-index notation (see, for example, [39]) as
|l| = l1 + · · · + lv .

By setting v = c − 1 in Eq. (20), we have the prob-
ability Rc−1

m (qn) expressed in closed form [40]. Applying
this definition in Eqs. (3)–(5) (see Sec. II) completes our
analytical description of cascades on clique-based graphs
and permits us to proceed with the task of verifying our
approach. We will provide this verification in the next section
by comparing predicted values of the expected cascade size
from Eq. (5) against the results of numerical simulations of
bond percolation and Watts’s model.

It must be noted, however, that as the size of the largest
clique of in our graph cmax increases it becomes more and more
computationally intensive to evaluate Rc−1

m (qn) using Eq. (20).
This is primarily because of the exponentially increasing
number of possible combinations for the multi-index l as the
number of active clique members to be counted m increases.
It can be shown that the number of different choices of l that
give nonzero contributions to the sum in Eq. (20) is 2m−1.

IV. SIMULATIONS

To test the theory of the previous two sections we require an
appropriate set of definitions for the response function Fk

m+j ,
corresponding to the processes in our familiar broad class (see
Sec. I). The function F , however, is the same one that has been
used throughout our groups’ previous publications [5,15,26].
Gleeson began in [5] by writing it in its simplest generalized
form: Fk

m. There it defined the probability that a k-degree
vertex in a locally treelike graph may be activated by m

active neighbors. In [26], F s+2t
m gave the probability that a

k-degree vertex in an edge-triangle graph may be activated
by m active neighbors, where k = s + 2t . In the current
presentation, Fk

m+j prescribes the probability that a k-degree
vertex in a clique-based graph may be activated by m + j

active neighbors, where j and m are the numbers of external
and internal neighbors, respectively. Since F has not changed
(only its arguments have), the same justifications of our use of
the response function mechanism as were given in [26] apply
equally here. Therefore, similarly to [26], the definitions of
Fk

m+j for different processes are found by replacing m with
m + j in the definitions of Fk

m given in [5]. With this aspect
clarified, we can begin testing our approach against numerical
simulations of various processes.

062801-6



CASCADES ON CLIQUE-BASED GRAPHS PHYSICAL REVIEW E 87, 062801 (2013)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

φ
b

S

α=0.0, β=1.0
α=0.8, β=0.1
α=0.0, β=0.0

FIG. 3. (Color online) Bond percolation on γ (k,c) graphs of
N = 105 vertices and Poisson degree distribution pk with mean
degree z = 3. Numerical simulations (symbols) averaged over 100
realizations and theory of Sec. II (lines) on a plot of GCC size S vs.
bond occupation probability φb.

A. Bond percolation

We consider first the process of uniform bond percolation.
In this process each edge of the graph (external or internal) is
deleted with probability 1 − φb. The quantity φb is the bond
occupation probability and nondamaged edges are termed
occupied. Replacing m with m + j in Eq. (6) of [5] defines
Fk

m+j for this process:

Fk
m+j = 1 − (1 − φb)m+j . (21)

Applying this definition in the respective ρ0 → 0 limits of
Eqs. (3)–(5) above allows us to use these equations to calculate
the expected GCC size S of a clique-based graph, which is
nonzero for φb > φ̂b. This critical value, φ̂b, is known as the
bond percolation threshold.

In Fig. 3 we have plotted our calculations of S from Eq. (5)
against the results of numerically simulated γ (k,c) graphs
(see the caption). The parameters chosen for this figure are
the same as those used in Fig. 3(a) of [15]. Each graph has a
Poisson degree distribution pk = zke−z/k! with mean degree
z = 3. Following [15], we set γ (k,c) = [(1 − α − β)δc,1 +
αδc,3 + βδc,4]pk for k � 3, where α,β ∈ [0,1]. In this way we
create nonzero clustering by assigning a fraction α of k-degree
vertices to 3-cliques and a fraction β to 4-cliques. Additionally,
since a 2-degree vertex cannot belong to a clique of size c > 3,
we assign a fraction α of these vertices to 3-cliques using
γ (2,c) = [(1 − α)δc,1 + αδc,3]p2. We let vertices of degree
zero or one belong to 1-cliques: γ (k,c) = pkδc,1. This choice
of γ (k,c) limits the largest clique size to cmax = 4 and therefore
makes the evaluation of Rc−1

m (qn) relatively simple. By varying
α and β different levels of clustering can be prescribed. Again
following [15], we use three (α,β) pairs: (0,0), (0.8,0.1),
and (0,1). Evidently, (0,0) produces a nonclustered graph
(downward-pointing triangles). We can use Eq. (2) of [15] to
define the global clustering coefficient C2 = ∑

k pkck . From
this one may show that (0.8,0.1) produces a clustered graph
with C2 = 0.31 (squares) and also that (0,1) gives a graph with
C2 = 0.35 (upward-pointing triangles).

The percolation thresholds for each nonzero value of C2

can be calculated from our cascade condition of Sec. II by

setting H ′(0) = 1 in Eq. (8) and solving for φb (see [26]). This
of course requires that we first substitute Eq. (21) into Eq. (8).
We also require the following results for the function Gc−2

d (q)
of Eq. (9) in order to evaluate Rc−1

m (0) and the first derivative
of Rc−1

m (q) at q = 0:

Gc−2
d (0) =

∑
k

γ (k,c)

pc

F k
d , (22)

d

dq
Gc−2

d (q)

∣∣∣∣
q=0

=
∑

k

γ (k,c)

pc

(k − c + 1)
(
Fk

d+1 − Fk
d

)
. (23)

Using Eqs. (21)–(23) in Eq. (8) we calculate the threshold
for C2 = 0.31 to be φ̂b = 0.349, while for C2 = 0.35 we
get φ̂b = 0.423. The threshold for C2 = 0 is simply the
configuration model value φ̂b = 1/z [41].

The match obtained between theory and numerics in Fig. 3
provides a clear validation of our approach in the case of bond
percolation. Furthermore, because we have chosen the same
parameters as Fig. 3(a) of [15], the results shown in that figure
should correspond exactly with the results shown here in Fig. 3.
Comparing these two figures will reveal to the reader that they
do indeed match. This illustrates that our approach contains
within its scope the ability to produce the same predicted
values of S as the theory of [15]. However, as noted earlier
at the beginning of Sec. II, Gleeson’s equations depend on
a set of polynomial functions defined and tabulated in [37].
These polynomials limit the application of his equations to
bond percolation. The advantage of our approach over that
of [15] is its purported applicability to other processes besides
bond percolation. To confirm that it really does possess this
flexibility we consider for our second test Watts’s model [4].

B. Watts’s model

Watts’s model provides a simplified description of
threshold-dependent cascade dynamics on complex networks.
In a sociological setting this model may provide a crude
approximation of the processes of contagion that underlie
such phenomena as fashions, rumors, or popular opinions.
Given, for example, a network of acquaintanceships between
a group of people, we can use Watts’s model to calculate
the steady-state fraction of active vertices in the following
binary-state decision process.

We begin by assigning a threshold ri drawn from the
probability distribution q(r) to each vertex 1 � i � N in the
network. At each discrete time step t the state of vertex i is
vi(t) ∈ [0,1], where vi(t) = 1 indicates the participation of i

in the cascade and vi(t) = 0 indicates nonparticipation. The
dynamics is instigated by activating a small seed fraction of
vertices at t = 0. From t = 1 until the steady state t̄ the state
of each vertex is updated synchronously at each t according to
the rule

vi(t) =
{

1 if 1
ki

∑
j aij vj (t) > ri

unchanged otherwise,
(24)

where aij is the value in position (i,j ) of the adjacency matrix
of the network and ki is the degree of vertex i. By this
mechanism vertex i will join the cascade if the fraction of its
direct neighbors that are active exceeds its threshold, otherwise
it will remain inactive. Once active, i will remain in this state.
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FIG. 4. (Color online) Watts’s model on γ (k,c) graphs of N =
106 vertices and Poisson degree distribution pk with mean degree
z = 3. Thresholds are drawn from a Gaussian distribution with mean
R and standard deviation σ = 0.1. Numerical simulations (symbols)
averaged over 100 realizations and theory of Sec. II (lines) on a plot
of cascade size ρ vs. R. In (a) wi = 1 and we = 1. In (b) wi = 1.3
and we = 0.85.

In the steady state the final fraction of active vertices is
given by 1

N

∑
i vi(t̄). By averaging this last value over many

individual runs of the model we can determine a numerical
evaluation of the expected cascade size ρ.

With the appropriate choice of response function Fk
m+j ,

our Eqs. (3)–(5) provide an analytical match to the numerical
results of Watts’s model. In Fig. 4 we present values of ρ from
Eq. (5) plotted against the results of simulations on γ (k,c)
graphs. The thresholds in each of these graphs are drawn from
a Gaussian distribution: q(r) = N (R,0.1) (see the caption).
Therefore, the response function for our equations is defined
by replacing m with m + j in Eq. (2) of [5]:

Fk
m+j = 1

2

[
1 + erf

(
(m + j )/k − R

σ
√

2

)]
. (25)

The choice of q(r) = N (R,0.1) means some vertices will be
assigned negative thresholds and will therefore automatically
activate. This allows us to set ρ0 = 0 in Eqs. (3)–(5). The
structural variables used for this figure are the same as those
applied previously in Fig. 3. All graphs have Poisson degree
distribution pk with z = 3 and γ (k,c) is defined by the same
three equations as above. We apply two (α,β) pairs, (0,0) and
(0.8,0.1), corresponding to C2 = 0 and 0.31, respectively.

Figure 4(a) provides a further validation of our approach
and explicitly demonstrates its flexibility. In Fig. 4(b) we
investigate a minor modification to Watts’s model. The
presence of neighbors of two distinct kinds (internal and

external) in clique-based graphs opens up some interesting
possibilities for the augmentation of the updating process
described by Eq. (24). To take one simple example, consider
the following weighting scheme. Let each active internal vertex
have weight wi ∈ (0,∞) and each active external vertex have
weight we ∈ (0,∞). The response function for this process is
given by multiplying m by wi and j by we in Eq. (25). We
propose that such a weighting may provide insights into the
role of group structure in determining the outcome of processes
of social contagion such as those mentioned above. Problems
of this nature have been of interest for quite some time (see [36]
and references therein).

When wi = we = 1 we have the conventional version of
Watts’s model in which there is no bias in favor of either type
of neighbor [Fig. 4(a)]. However, settings where wi > we or
wi < we indicate a respective bias in favor of or against one’s
clique neighbors over one’s external neighbors. If we take the
clique as a proxy for a tightly knit social group, then the first
setting describes a scenario where the influence of ones peers
is favored over influences from outside the immediate peer
group. The second setting describes the opposite scenario.

Figure 4(b) demonstrates why this modification of Watts’s
model is interesting from an analytical perspective. Here we
have set wi = 1.3 and we = 0.85. Comparing this figure to
Fig. 4(a), we see that this simple change in weighting can
cause a significant change in the expected cascade size ρ. In
Fig. 4(a) the nonclustered graph produces a larger value of
ρ than the clustered graph at every value of the threshold
distribution mean R. However, in Fig. 4(b) this trend is
reversed in the region from approximately R = 0.26 upward.
Based on this observation, we submit that weighted models
such as the one provided here may offer new insights into the
effects of clustering and decision bias in cascades on social
networks [42]. We leave the analysis and modification of this
weighted model open to further investigation.

V. CONCLUSION

We have extended Gleeson and Cahalane’s [27] analytical
approach to modeling cascading phenomena on configuration
model graphs to the highly clustered clique-based graphs
defined by Gleeson in [15]. An analytical expression for the
expected cascade size and a first-order cascade condition have
been derived. The use of the generalized response function
mechanism in these expressions permits their application to
a range of processes that includes site and bond percolation,
k-core decomposition, and Watts’s threshold model.

We have validated our approach against numerical simu-
lations of bond percolation and Watts’s model. In addition,
we have proposed a modification of Watts’s model that
employs the unique structure of clique-based graphs in an
investigation of the role of group influence in processes
of social contagion. This presents rich ground for further
investigation. The analytical framework provided by us here
may be useful for such studies.

Perhaps the most significant aspect of our contribution is
the derivation of a closed-form expression for the steady-state
fraction of active vertices inside a clique of arbitrary size. We
anticipate that this expression will find additional applications
outside the current setting.
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Finally, there are a number of significant challenges that
we have yet to address in our broad study of cascades on
clustered graphs. We have now provided approaches for a
class of monotone binary-state processes on both edge-triangle
graphs [26] and clique-based graphs; there are two directions in
which we would like to extend this work. First, we would like to
modify our techniques to investigate nonmonotone processes.
The groundwork for this has been laid in [34]. Second, we
would like to investigate cascades on a more sophisticated
class of highly clustered graphs than those dealt with so far.
Such classes have been described in [44].

ACKNOWLEDGMENTS

Discussions with Peter Sheridan Dodds are gratefully
acknowledged. This work was funded by Science Foundation
Ireland under Programs No. 06/IN.1/I366, No. 11/PI/1026, and
No. MACSI 06/MI/005.

APPENDIX: CLUSTERS IN DAMAGED GRAPHS

The results illustrated in Fig. 3 demonstrate the equivalence
of the approach to bond percolation provided in [15] and the
corresponding approach provided here. By working through
the equations of [15] and those of this paper, one may show that
the match between the two approaches hinges on the following
equation:

c∑
m=1

P (m|c)xm−1 =
c−1∑
m=0

Rc−1
m qm, (A1)

where x = 1 − Gc−2
0 and q = 1 − φb. On the left-hand side

of Eq. (A1) P (m|c) is the probability that in a c-clique that
has been damaged by the removal of its edges (each with
independent probability q) a connected cluster of m vertices
(not necessarily an m-clique) remains.

In [37] the probability P (m|c) was evaluated iteratively
using a recursive formula; an explicit formula for P (m|c) was
not provided. By making use of Eq. (A1) we can now write an
explicit formula for P (m|c).

Applying Eq. (20) allows us to expand the right-hand side
of Eq. (A1) and thereby rewrite it as

c∑
m=1

P (m|c)xm−1 =
∑

|l|�c−1

(
c − 1

l1

)
ql1

c−1∏
i=2

B
nc−1,i

li
(θc−1,i)q

li

×
l1∑

j=0

(
l1

j

)
(−1)j xc−1−l1+j . (A2)

To equate coefficients of powers of of x on the left-hand side
and right-hand side of Eq. (A2) we simply set j = m − c +
l1. This gives us the following expression for the probability
P (m|c):

P (m|c) =
∑

|l|�c−1

(
c − 1

l1

)
ql1

c−1∏
i=2

B
nc−1,i

li
(θc−1,i)q

li

×
(

l1

m − c + l1

)
(−1)m−c+l1 . (A3)

One may easily verify that Eq. (A3) satisfies the normalization
condition

∑c
m=1 P (m|c) = 1.
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