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Tracer diffusion in a crowded cylindrical channel
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Based on a coarse-grained model, we carry out molecular dynamics simulations to analyze the diffusion of
a small tracer particle inside a cylindrical channel whose inner wall is covered with randomly grafted short
polymeric chains. We observe an interesting transient subdiffusive behavior along the cylindrical axis at high
attraction between the tracer and the chains, however, the long-time diffusion is always normal. This process
is found to be enhanced for the case that we immobilize the grafted chains, i.e., the subdiffusive behavior sets
in at an earlier time and spans over a longer time period before becoming diffusive. Even if the grafted chains
are replaced with a frozen sea of repulsive, nonconnected particles in the background, a transient subdiffusion is
observed. The intermediate subdiffusive behavior only disappears when the grafted chains are replaced with a
mobile background sea of mutually repulsive particles. Overall, the long-time diffusion coefficient of the tracer
along the cylinder axis decreases with an increase in system volume fraction, the strength of the attraction between
the tracer and the background, and also on freezing the background.

DOI: 10.1103/PhysRevE.87.062709 PACS number(s): 87.10.Tf, 87.15.hj

I. INTRODUCTION

Diffusion in a crowded environment has been an active area
of experimental and theoretical research [1–11]. Especially
in biology it is not uncommon to find aqueous crowded
environments with agents that are important for biological
functions. Many examples where crowding and/or a sticky
interaction between the diffusing species and the surroundings
changes the rate and even the nature of the diffusion process
have been found in biological or synthetic contexts.

DNA-binding proteins search for specific binding sites on
a DNA molecule by combining one-dimensional diffusion
along the DNA strand and three-dimensional diffusion in
the bulk [7,10]. The self-diffusivity of proteins in crowded
solutions has been shown to be slowed down to one fifth of
the dilute limiting value [11]. Also the diffusion of proteins
across the nuclear pore complex (NPC) [12–18] is an example
of diffusion in a crowded environment where the crowding is
due to the presence of proteins called nucleoporins that are
rich in hydrophobic amino acids and form a brush [19,20]
or a reversible hydrogel [20,21]. Proteins diffusing through a
NPC bind to these nucleoporins and experience a slowdown.
A thorough explanation of this effect would lead to a better
understanding of the biological functioning of the NPC [8,21].
Very recently Kowalczyk et al. [18] showed how one can
actually make nanopores resembling a NPC and monitor the
transport of proteins through such a biomimetic nanopore.

Another issue is the emergence of non-Fickian, anomalous
diffusion in the presence of crowding [1]: Evidence of
anomalous diffusion was found for colloidal tracer particles in
entangled actin filament networks [6] and for soluble proteins
in highly viscoelastic cytoplasm and nucleoplasm [22], but
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also in the case of the diffusion of small molecules in
glassy polymers [23]. Very recently it has been shown that
diffusion inside the NPC could also be anomalous [24]. On the
other hand, a sticky interaction can also lead to subdiffusive
behavior even in the absence of crowding. It has been shown
experimentally that functionalized colloidal particles with
DNA sticky ends diffuse anomalously on a complementarily
coated surface [25]. Diffusion in hydrogels and gel-like
media [26–29] are also examples of diffusion in a crowded
environment, and subdiffusive behavior in an intermediate
time scale has been observed in computer simulations [26]
and signatures of subdiffusive behavior have been observed
experimentally [3].

These observations suggest that similar physical principles
govern the diffusion processes under very different conditions.
We investigate these principles in a simple and generic model
and shed light on the role of crowding and sticky interactions
by means of molecular dynamics simulations.

We study the diffusion of tracer particles inside a cylindrical
channel grafted with polymeric chains from the inside. The
study of tracer dynamics inside a cylindrical channel grafted
with chains needs to be carried out, although the tracer
dynamics in a polymer matrix has been studied extensively by
means of computer simulations [23,30–34]. Examples include
diffusion of small molecules such as O2, H2, N2 in short
polymers [30] or in dense polymers subject to thermal motion
[23], penetrants in amorphous polymers [31], or ethylebenzene
in polystyrene [34]. The polymeric chains consist of mutually
repulsive monomers connected with springs. In the field of
polymer science, this is a typical model for a polymer in a
good solvent [35]. Tracers are added to the system and the
impact of their interaction with the polymer chain on their
diffusional property is studied. The thermal effects of the sur-
rounding water is replaced by a standard Langevin thermostat.
In this sense it is a solvent-implicit model where hydrodynamic
effects are neglected.

From a biological perspective this model, although very
simple, is inspired by the brush model of the central plug of
a NPC [36]. Nucleoporins rich in hydrophobic units form a
brushlike structure [21] and it is believed that proteins being
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transported through the central plug bind to these nucleoporins
[19,37]. These bindings are believed to be hydrophobic in
nature, and each binding is in the range of 1–2kBT [38,39].

To mimic the aspect of crowding we have chosen a re-
pulsive interaction between all chain monomers and the tracer
particles. To investigate the role of interaction we incorporate a
Lennard-Jones potential between the tracer and the monomers
of which we vary the interaction strength in a range from
1kBT to 2.5kBT corresponding to the interaction strength of
hydrophobic contacts between proteins and nucleoporins in
the NPC. The resulting diffusive behavior is characterized by
investigating the mean-square displacement for the tracer on
different time scales.

The paper is structured as follows. In Sec. II, the model,
the simulation methods, and the classification of observed
diffusion processes are discussed. In Sec. III the results and
interpretations for the different models are given. The paper
ends with the conclusions in Sec. IV.

II. MODEL AND METHOD

The model described in the following section is evaluated
using molecular dynamics. We use so-called Lennard-Jones
units in which the Lennard-Jones parameter σ (see below)
is chosen as the unit of length, the temperature multiplied
with Boltzmann’s constant is the unit of energy, and mass is
measured in units of the monomer mass in the chain molecules.
All quantities in the following are expressed in this unit system.

A cylinder with height 24σ and radius 9σ is created from
particles with a diameter σ and a mutual distance of 1σ so that
a closed cylindrical surface is formed on which each particle
has four next neighbors. These particles, which we call wall
particles, are fixed in space, i.e., their equations of motions are
not integrated, independent of the force acting on them. The
cylinder axis is chosen to be the z axis. Each of the polymeric
chains is made of N = 12 monomers, connected through a
finite extensible nonlinear elastic (FENE) potential:

UFENE(r) = −Kf r2
max

2
log[1 − (r/rmax)2]. (1)

Here Kf is the force constant and rmax is the maximum
displacement of the bond. In the simulation the parameters
are chosen to be Kf = 7, rmax = 2, N = 12. The cylindrical
surface is grafted randomly with polymeric chains by fixing
the end monomer of each of the chains to one of the wall
particles.

The repulsive interaction between the monomers them-
selves and with the wall is modeled via the purely repulsive
variant of the Lennard-Jones potential, also known as the
Weeks-Chandler-Andersen (WCA) potential [40]:

VWCA(r) =
{

4ε
[(

σ
r

)12 − (
σ
r

)6] + ε, if r < (2)1/6σ,

0, otherwise,
(2)

with ε = 1 and σ = 1.
The tracer particles are of the same size σ and of the same

mass as the monomers. They interact with the wall particles by
means of the WCA potential, and with the grafted polymers
either via the WCA potential (for simple crowding), or by an

FIG. 1. (Color online) Illustration of the simulation setup. Tracer
particles (white spheres) inside a cylindrical pore with rigid walls
(black) grafted from inside with polymeric chains (blue/light gray).
For graphical clarity the polymer chains are represented as (thinner)
continuous curves, and the size of the tracer particles is exaggerated.

attractive (=“standard”) Lennard-Jones potential:

VLJ(r) =
{

4ε
[(

σ
r

)12 − (
σ
r

)6]
, if r < rcut,

0, otherwise,
(3)

where the cutoff radius is fixed at rcut = 2.5 and the attraction
strength ε is varied.

The degree of crowding is characterized by the grafting
density γ , i.e., the number of chains per unit area of the
cylinder. A typical value of n = 75 chains corresponds to
γ = 0.055. A typical representation of the investigated system
is shown in Fig. 1 by using the Visual Molecular Dynamics
program (VMD) [41].

We have performed five independent simulations for each
data point with 2 × 106τ each in order to allow to estimate
the statistical errors indicated in all figures. The time step
τ is chosen to be 0.005 and a velocity Verlet algorithm
is used for integration. Since the grafted chains are short,
equilibration is achieved well within 5000τ . This also ensured
equilibration of the tracer which was placed to the axis
of the cylinder at the very beginning of the simulation.
All simulations were carried out by employing a Langevin
thermostat in an NVT ensemble, thus solving the full phase
space stochastic equation of motion known as the Langevin
equation of motion. The Langevin thermostat violates Galilean
invariance and momentum conservation, and is local, hence it
screens hydrodynamical interactions. As such it disturbs the
true dynamics of the system, however, diffusional behavior
can still be extracted if the thermostat forces are much smaller
than the interparticle interactions, as in the present case. For
a critical comparison of the use of the Langevin thermostat
for nonequilibrium simulations of polymeric systems, see
Ref. [42]. Periodic boundary conditions along the cylindrical
axis are used throughout the simulation.

For a particle with mass m and the position coordinate ri

(where i stands for the ith particle), interacting with all other
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particles (i �= j ) through a general potential U (rij ) the full
phase space Langevin equation of motion reads as

m
d2ri(t)

dt2
= −∇ri

∑
j �=i

U (rij ) + FD
i + FR

i , (4)

where

FD
i = −m�

dri(t)

dt
(5)

is the frictional drag acting on the particle with friction
coefficient �, and FR

i is the random force acting on the particle.
The first moment of the random force is chosen to be zero:〈

FR
i (t)

〉 = 0. (6)

The magnitude of the random forces obeys〈
FR

i (t1)FR
j (t2)

〉 = 6�kBT mδij δ(t1 − t2), (7)

where kB is the Boltzmann constant and T is the temperature
of the Langevin thermostat.

The delta function in time between the random forces in the
above equation ensures the spectrum of the random force to be
white, corresponding to a Markovian process in phase space
with no memory. With the above choice of random forces,
a fluctuation-dissipation theorem that connects the diffusion
coefficient D and the friction coefficient � holds: The diffusion
coefficient of a single particle, up to a factor kBT /m, is the
inverse of the friction coefficient, Dfree = kBT /(m�) = 1. In
all simulations we apply a friction coefficient of 1 and the
diffusion coefficients reported in the paper are given in units
of Dfree, being also 1 in our unit system. The molecular
dynamics simulations have been carried out with the help of
the simulation package ESPResSo [43] in version 3.1 [44].

To describe the diffusion of tracer particles it is a com-
mon practice to use the mean-square displacement (MSD)
〈��rt0 (t)2〉 as a measure, where ��r(t) = [�r(t + t0) − �r(t0)]
is the displacement of the particle at time t + t0 from its
initial position at t0. The angular bracket denotes an average
over all possible realizations of the process. Under the time
translational invariance this quantity is independent of t0 and
this index can be dropped, thus t can also be interpreted as the
lag time. For ergodic systems, the average over realizations
can be replaced by an ensemble average. In the case of normal
diffusion, MSD increases linearly with time and in d dimension
reads as 〈��r(t)2〉 = 2dDt , where D is the diffusion coefficient
of the tracer particle. On the other hand, a process where the
MSD is not linear in time but proportional to tα with α �= 1
is referred to as anomalous or non-Fickian diffusion [1]. Here
α is the diffusion exponent and if α < 1, the process is called
subdiffusive, and if α > 1, the process is called superdiffusive.
For anomalous diffusion there is no well-defined diffusion
coefficient. While the definition given above is very helpful
for isotropic environments, in anisotropic environments the
diffusion constant needs to be replaced by a diffusion tensor.
As we are only interested in the diffusive behavior along the
cylinder axis (z axis), we measure the MSD in the z direction,

MSD = 〈[rz(t + t0) − rz(t0)]2〉, (8)

corresponding to the zz component of the diffusion tensor.
Throughout the paper D always represents the tracer diffusion
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FIG. 2. (Color online) The local monomer volume fraction φ(r)
at different chain grafting densities (γ ) of the mobile grafted chains.
Increasing the number of chains affects the density only but not the
structure of the brush.

coefficient along the cylinder axis and MSD is the mean-square
displacement of the tracer along the cylinder axis.

III. RESULTS

In this section, we present the results of the MD simulations.
We compute the MSD of the tracer and analyze the resulting
transient diffusive behavior with respect to the question if
anomalous diffusion appears and try to elucidate the reasons
for this by comparison to reference systems.

To explore the role of chain connectivity we compare all our
results to a system when the chain monomers are not connected
via the FENE potential, but free to move, thus forming a gas
or a “sea” of independent particles. The other reference is a
system in which the grafted chains are moving much slower
than the tracer particle, and we call this a frozen background.
For brevity we characterize the four possible combinations by
the pairs of keywords (chains-particles) and (mobile-frozen).
We will show that both properties, the chain connectivity and
the background motion, have a distinct impact on the diffusion
properties of the tracer particles.

First we discuss the structure of the polymer coating: The
radius of gyration of the chains is �6 under all reported
conditions and the mutual distance between grafting points
is smaller also for the smallest grafting densities. Thus we are
in the regime where the grafted chains overlap considerably. In
Fig. 2 we report the local volume fractions of chain monomers,
i.e., the fraction of the volume locally occupied by monomers,
assuming they are spheres of diameter σ . The local volume
fractions of up to 10% and more also indicate that locally
the crowding is significant: Under these conditions mean free
paths ∼σ are to be expected.

A. Repulsive tracer-chain interaction

We now discuss the situation where the interaction between
tracer particles and grafted chains is purely repulsive. We
perform simulations with different numbers of grafted chains
(n), hence different grafting densities (γ ), and calculate
the mean-square displacement (MSD). As we focus on the
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FIG. 3. (Color online) Comparison of the reduced mean-square
displacement MSD/2D0t of the purely repulsive tracer along the
cylinder axis of the cylinder with mobile grafted chains in the
background at different chain grafting densities (γ ). The diffusion
constant (seen as the t → ∞ limit of the curves) depends strongly on
the density of grafted chains. For comparison the (nonreduced) MSD
is shown in the inset. The lines corresponding to the different grafting
densities are almost indistinguishable. The radial component of the
MSD (shown in black) saturates.

diffusion process along the channel axes, we consider only
the axial component of the MSD. In the radial direction the
MSD follows closely the MSD in the axial direction for short
time scales. In the long-time limit it saturates to a constant
value corresponding to the square diameter of the pore. It is
shown for comparison in the inset of Fig. 3. We investigate the
four grafting densities seen in Fig. 3. In the double-logarithmic
plot of the MSD, all lines nearly collapse (seen in the inset of
Fig. 3). We thus plot the MSD of the tracer along the cylinder
axis divided by 2D0t , where D0 (=Dfree) is the free-diffusion
coefficient along the cylinder axis. Plotting this reduced MSD
allows to see the different characteristics of diffusion. On
the time scale 1/� a ballistic regime where the MSD is
proportional to the square of t is observed, corresponding to
a linear increase of the reduced MSD, and on longer time
scales the diffusion becomes normal. As depicted in Fig. 3,
the mean-square displacement of the tracer particles shows
no sign of anomalous diffusion for all investigated grafting
densities.

The long-time diffusion coefficient is reduced compared
to a freely diffusing particle by collisions with the polymer
chains. For low volume fractions of polymer chains we
thus expect the diffusion coefficient to be reduced by a
factor proportional to the (average) volume fraction, thus the
probability to collide with a monomer per unit time. Neither
the chain connectivity nor the question if the background
moves on the same velocity scale as the tracer particles
significantly influences this effect. In Fig. 4 we report the
dependence of the diffusion coefficient on the monomer
volume fraction, φ = [4/3π (σ/2)3Nn/πr2

c Lc]. In all cases the
tracer diffusion coefficient decreases similarly with increasing
monomer volume fraction. If the monomers are connected and
form chains, the impact on the diffusion coefficient is lower,
as the volume from which the tracer is excluded is smaller.
Also notice that the diffusion becomes faster with a mobile
background than with a frozen background. This is because
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FIG. 4. (Color online) The relative diffusion coefficient D/D0

for the purely repulsive tracers against the volume fraction of the
system. The lines are guides to eyes. We compare the case where the
monomers are connected by springs to form a chain to the case where
they are isolated particles and the case where they are mobile vs the
case where they are frozen.

in the frozen background the tracer practically collides with
an infinite mass and is more likely to get bounced back to
its initial position. At higher volume fractions the topology of
the background becomes less important. As can be seen from
Fig. 4, the two data sets corresponding to frozen particles and
chains coincide at higher volume fractions as do the data sets
for mobile particles and chains.

B. Attractive tracer-chain interaction

The dynamics of a tracer particle which interacts with the
chains through an attractive Lennard-Jones potential as defined
in Eq. (3) is more complex and shows interesting features that
are missing in the case of a purely repulsive interaction. Very
different modes of motion are important in the case of an
attractive polymer-tracer interaction: An attractive tracer can
get attached to one of the chains, follow the chain movement,
move along the chain, hop from one chain to another, or hop
back to the same chain. It can also move back to the bulk
where it executes normal diffusion. The emerging process
is a combination of all these modes of transport and should
strongly depend on the strength of attraction between the tracer
and the chain and also on the density of the grafted chains. We
do not expect anomalous diffusion on long time scales, but
see this rather as a transient phenomenon. This is what one
would expect as long as the noise is white and the background
is translationally invariant.

In the simulations the strength of attraction between the
tracer and the polymer (ε) is varied from 1 to 2.5. The choice
of this range of attraction is inspired by the fact that, during the
transport through the NPC, proteins bind to the nucleoporins
through hydrophobic contacts which are in the range of 1–
2kBT [39].

First we investigate the influence of the attractive interaction
on the position where the tracer can be found. In Fig. 5 the
probability density to find the tracer at a given distance r from
the cylinder axis for different attraction strengths at a fixed
grafting density 0.055 is reported. Notice that the probability
of finding the tracer along the radial direction [p(r)] changes
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FIG. 5. (Color online) The probability of finding the tracer along
the radial direction [p(r)] for different attraction strengths ε at fixed
grafting density γ = 0.055. For comparison we repeat the density of
monomers φ(r) from Fig. 2 (solid line). For repulsive chain-tracer
interactions the tracer is pushed towards the polymer-free center of
the cylinder, while the attractive interaction pulls it into the polymer
brush.

profoundly on making the tracer-chain interaction attractive. In
the case of purely repulsive tracers, p(r) is high at the center
of the cylinder (r = 0) and gradually decreases towards the
chains and vanishes at the cylinder wall (r = 9). On the other
hand, in the case of attractive tracers, the density profile is
qualitatively different. The tracer has a low density around the
center of the cylinder (r = 0) and has a high density close to
the chains. As expected, the attractive interaction significantly
pushes the tracers from the center of the cylinder towards the
area of the grafted chains. For comparison we also insert the
density profile φ(r) of chain monomers.

Increasing the attraction strength between the tracer particle
and the chains in general slows down the diffusion. In
Table I we report the long-time diffusion coefficients obtained
for different attraction strengths (ε) at the grafting density γ =
0.055. When the attraction strength is increased, a subdiffusive
regime for an intermediate time period is observed in the plot
of the reduced MSD against t (Fig. 6) for ε � 2kBT .

We give the following interpretation: The energy landscape
seen by a tracer particle for a fixed configuration of the polymer
chain has minima in which the particle gets trapped on these
intermediate time scales. These minima are especially deep in
the vicinity of kinks in the polymer chain, where the attractive
regions of several monomers overlap. This also occurs in the
vicinity of points, where two chains closely pass by each
other. When a particle gets trapped, it moves together with
the monomers responsible for the trapping. Since the chains
are connected, the corresponding displacement will only be

TABLE I. D

D0
of the tracer with grafted mobile chains in the

background at the grafting density γ = 0.055 for different attraction
strengths (ε). Increased attraction strength slows down diffusion.

ε D

D0

1.0 0.38 ± 0.02
1.5 0.23 ± 0.01
2.0 0.125 ± 0.005
2.5 0.074 ± 0.003
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FIG. 6. (Color online) Comparison of MSD/2D0t along the
cylinder axis for the purely repulsive case and different attraction
strengths (ε) with mobile grafted chains in the background.

small. The structure of the polymer chains itself is subject to
Brownian motion, and this motion eventually helps the tracer
to escape the traps.

To justify this interpretation we perform independent
control experiments with a system where the chain monomers
are not connected (a sea of particles) and investigate the impact
of strongly slowing down the motion of the background,
hence looking at the motion of the tracer particle on a frozen
background. We report here only the results for attraction
strength ε = 2, but qualitatively the results that were obtained
for the other investigated attraction strengths of 1kBT , 1.5kBT ,
and 2.5kBT are similar.

The observed reduced MSDs in all four cases are shown
in Fig. 7. By giving up the chain structure of the environment
we expect to facilitate diffusion as the deep traps where the
attractive regions of several monomers overlap are less likely
as entropy drives them away from each other. The long-time
diffusion coefficient is increased by a factor of 2.2 and the
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FIG. 7. (Color online) Comparison of MSD/2D0t along the
cylinder axis for different cases for ε = 2 at the grafting density
γ = 0.055. Subdiffusive transient behavior indicated by a negative
slope is seen in all cases, except for the case where the monomers are
not connected and allowed to move. Chain structure and freezing the
background facilitates subdiffusion.
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FIG. 8. (Color online) Plot of D/D0 for the tracer at a fixed
volume fraction ∼10% against the grafted chain length (N ). Lines
are guides to eyes.

reduced MSD no longer exhibits any subdiffusive behavior.
Fixing the position of the disconnected monomers slows
down diffusion again, as this suppresses the joint diffusion
of complexes of tracers and monomers, but merely stops the
tracers until they can escape from their traps. For ε = 2 this
stopping effect is so pronounced that a transient subdiffusive
behavior occurs (corresponding to the negative slope of the
yellow curve with triangles in Fig. 7), but for weaker attraction
it disappears.

Freezing the structure of the chains does not change the
distribution of traps, but it changes their lifetimes. Trapped
particles have to escape by their own Brownian motion and
the random motion of the chains no longer facilitates their
escape due to random displacements of the traps. It is seen that
a substantially more pronounced subdiffusive regime occurs.
The long-time diffusion coefficient is decreased by 70%
by freezing the background. This observation qualitatively
supports the proposition of Bickel and Bruinsma [45]. They
showed with a very simple model for the transport across the
NPC that the fluctuating network of chains in the background
acts as an extra noise and actually enhances the diffusion of a
protein immersed in it as compared to a frozen network.

C. Varying chain lengths

All the results presented above deal with a fixed chain
length of the polymers (N = 12). But what would be the
effect of varying the chain lengths while keeping the volume
fraction (φ) fixed? We performed identical simulations as
mentioned above, but with different chain lengths N and
choosing the number of chains n so that a volume fraction
of ∼10% was obtained. In Fig. 8 we report the long-time
diffusion coefficient as a function of the chain length. For
the purely repulsive tracer the value of D/D0 decreases by
around 30% when changing the chain length from 8 to 16.
Interestingly, for the attractive tracers this trend is reversed:
The diffusion coefficient increases. At the highest attraction
strength (ε = 2.5) we observe an increase by almost 50%.
Our explanation is as follows: For repulsive chain-tracer
interactions the tracer is pushed into the center of the channel.
There it can diffuse relatively freely as the local monomer

TABLE II. No subdiffusion is observed in case of purely repulsive
tracers. Results for attractive tracers are summarized below.

Background Mobile Frozen

Chains Transient subdiffusion at Transient subdiffusion at
intermediate attraction intermediate attraction

Particles No subdiffusion Transient subdiffusion
at high attraction

density is reduced. Attractive interactions pull the tracer into
the brush where it is slowed down. All these trends are visible
(Fig. 5). Increasing the chain length changes the distribution
of monomers: The short chains are too short to reach the pore
axis and a empty hole appears, while for the longest chains
the monomer distribution extends to the cylinder axis. For the
two different cases extending the chain length has opposite
consequences: For the repulsive tracer, preferably located
in the low-density region in the center, additional obstacles
appear that slow it down. In the case of attractive tracers,
mostly sitting in the grafted brush, the brush density decreases
and thus diffusion is eased. Increasing the chain length to
values higher than 12 does not significantly affect the diffusion
constant for the repulsive case. This indicates that our choice
of N = 12 in the simulations shown above was sufficiently
large. Our results, however, indicate that understanding the
length of the nucleoporins in the NPCs can be very important
for understanding the mechanisms of transport in the NPC.

IV. CONCLUSIONS

In this work, we have investigated the process of the
diffusion of tracer particles inside a crowded cylindrical
channel. Our coarse-grained simulations show that if the
interaction between the environment and the tracer particle
is purely repulsive, the diffusion is slowed down significantly:
up to 80% if the background moves, and up to 95% if the
background is frozen. No subdiffusive behavior is observed
on any time scale. If the tracer interaction, however, is only
weakly attractive (1–2.5kBT ), we observe a stronger slowdown
than in the repulsive case, and also a pronounced subdiffusive
regime. The subdiffusive regime is enlarged by freezing
the background, corresponding to a much slower motion of
the background particles. These findings are summarized in
Table II.

Our findings suggest that the subdiffusive behavior ob-
served by Lowe et al. [24] for the diffusion of tracers
in the NPC is not caused by crowding from a polymer
brush alone. Our results clearly demonstrate that simple
attractive interactions between the crowding polymer brush
and the transported particles are sufficient to observe transient
subdiffusive behavior. The presence of attractive interactions
was recently revealed in the work of Lim et al. [46] who
showed that proteins that help transporting cargo through the
NPC do have an attractive interaction with the nucleoporins
polymers in the NPC. It, however, remained unanswered if the
nucleoporins form a gel rather than a brush phase and what
consequences this has for the cargo transport through the NPC.
In the future we want to refine and extend our present model
in this direction.
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[5] F. Höfling, K.-U. Bamberg, and T. Franosch, Soft Matter 7, 1358
(2011).

[6] I. Y. Wong, M. L. Gardel, D. R. Reichman, E. R. Weeks, M. T.
Valentine, A. R. Bausch, and D. A. Weitz, Phys. Rev. Lett. 92,
178101 (2004).

[7] J.-H. Jeon, V. Tejedor, S. Burov, E. Barkai, C. Selhuber-Unkel,
K. Berg-Sørensen, L. Oddershede, and R. Metzler, Phys. Rev.
Lett. 106, 048103 (2011).

[8] S. Frey, R. P. Richter, and D. Görlich, Science 314, 815 (2006).
[9] J. Gorman, A. Chowdhury, J. A. Surtees, J. Shimada, D. R.

Reichman, E. Alani, and E. C. Greene, Mol. Cell 28, 359 (2007).
[10] B. van den Broek, M. A. Lomholt, S. M. J. Kalisch, R. Metzler,

and G. J. L. Wuite, Proc. Nat. Acad. Sci. USA 105, 15738 (2008).
[11] F. Roosen-Runge, M. Hennig, F. Zhang, R. M. J. Jacobs,

M. Sztucki, H. Schober, T. Seydel, and F. Schreiber, Proc. Natl.
Acad. Sci. USA 108, 11815 (2011).

[12] R. Bayliss, K. Ribbeck, A. Debra, H. M. Kent, C. M. Feldherr,
D. Görlich, and M. Stewart, J. Mol. Biol. 293, 579 (1999).

[13] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and
P. Walter, Molecular Biology of the Cell (Garland, New York,
2002).

[14] J. A. Cohen, A. Chaudhuri, and R. Golestanian, Phys. Rev. Lett.
107, 238102 (2011).

[15] T. A. Isgro and K. Schulten, J. Mol. Biol. 366, 330 (2007).
[16] S. P. Bird and L. A. Baker, Biomacromolecules 12, 3119 (2011).
[17] A. Zilman, S. D. Talia, B. T. Chait, M. P. Rout, and M. O.

Magnasco, PLoS Comput. Biol. 3, 1281 (2007).
[18] S. W. Kowalczyk, L. Kapinos, T. R. Blosser, T. Magalhaes,

P. van Nies, R. Y. H. Lim, and C. Dekker, Nat. Nanotechnol. 6,
433 (2011).

[19] S. Frey and D. Görlich, Cell 130, 512 (2007).
[20] M. Elbaum, Science 314, 766 (2006).
[21] R. Lim, N. P. Huang, J. Koser, J. Deng, K. H. Aaron-Lau,

K. Schwarz-Herion, and B. Fahrenkrog, and U. Aebi, Proc. Natl.
Acad. Sci. 103, 9512 (2006).

[22] G. Guigas, C. Kalla, and M. Weiss, FEBS Lett. 581, 5094
(2007).

[23] A. A. Gusev and U. W. Suter, J. Chem. Phys. 99, 2228 (1993).

[24] A. R. Lowe, J. J. Siegel, P. Kalab, M. Siu, and J. T. Liphardt,
Nature (London) 600, 467 (2010).

[25] Q. Xu, L. Feng, R. Sha, N. C. Seeman, and P. M. Chaikin, Phys.
Rev. Lett. 106, 228102 (2011).

[26] F. Tabatabaei, O. Lenz, and C. Holm, Colloid Polym. Sci. 289,
523 (2011).

[27] B. Amsden, Macromolecules 31, 8382 (1998).
[28] T. Cherdhirankorn, A. Best, K. Koynov, K. Peneva, K. Müllen,
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