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Nutrient shielding in clusters of cells
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Cellular nutrient consumption is influenced by both the nutrient uptake kinetics of an individual cell and
the cells’ spatial arrangement. Large cell clusters or colonies have inhibited growth at the cluster’s center due
to the shielding of nutrients by the cells closer to the surface. We develop an effective medium theory that
predicts a thickness � of the outer shell of cells in the cluster that receives enough nutrient to grow. The cells are
treated as partially absorbing identical spherical nutrient sinks, and we identify a dimensionless parameter ν that
characterizes the absorption strength of each cell. The parameter ν can vary over many orders of magnitude among
different cell types, ranging from bacteria and yeast to human tissue. The thickness � decreases with increasing
ν, increasing cell volume fraction φ, and decreasing ambient nutrient concentration ψ∞. The theoretical results
are compared with numerical simulations and experiments. In the latter studies, colonies of budding yeast,
Saccharomyces cerevisiae, are grown on glucose media and imaged under a confocal microscope. We measure
the growth inside the colonies via a fluorescent protein reporter and compare the experimental and theoretical
results for the thickness �.
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I. INTRODUCTION

Nutrient uptake is essential for all life and has been
studied in a variety of model organisms; however, the physical
mechanisms involved in the uptake are not yet well understood.
A cell commonly takes up nutrients from its surrounding
medium via facilitated diffusion or active transport: Special-
ized transporters on the cell surface move the nutrient down
(facilitated diffusion) or up (active transport) a concentration
gradient from the ambient medium into the cell. The cell’s
absorption of nutrients in its immediate vicinity sets up
and maintains a concentration gradient outside the cell that
gradually depletes the nutrient from the surrounding medium.
This is the method used by budding yeast cells for acquiring
glucose, for example [1–3].

Nutrient consumption via facilitated diffusion is ubiquitous
in nature and occurs in a variety of contexts, including
oxygen consumption by human tissue cells, calcium uptake
by intestinal cells, bacterial absorption of various sugars,
etc. [4–6]. In many of these examples, cells grow in clusters
and shield each other from the available nutrients. In Fig. 1, we
see confocal microscope images of yeast colony cross sections
in which yeast cells marked green (light shade) are growing
due to an abundance of glucose. Nutrient (glucose) shielding
in larger colonies (Colonies 2 and 3) prevents cell growth in
the colony interiors [red (darkly shaded) regions in Fig. 1] and
only an outer shell of thickness � is able to grow (illustrated
for Colony 3 in Fig. 1).

Typical bacterial and yeast cell colonies (e.g., those in
Fig. 1) are dense cell clusters with large cell packing fractions
φ � 0.5 [7,8]. In this paper, we characterize cells packed in
spherical clusters at various values of φ. The shape of colonies
in the experiments shown in Fig. 1 can be approximated
by a dome-shaped section of a sphere, as follows from
the observation that yeast colonies growing on flat surfaces
can be described by a contact angle [9]. Our theoretical
calculations for nutrient shielding by complete spheres should

apply whenever the penetration depth � is small compared
to the dome height or when the domes are approximately
hemispherical.

Dilute clusters with φ � 0.1 can be constructed artificially,
by suspending microbial cells in a gelatinous matrix. Immo-
bilized microbial cells have a very wide range of industrial
and environmental applications (see Ref. [10] for a review).

FIG. 1. (Color online) Confocal microscope images of cross
sections through the bottom of three budding yeast colonies (scale
bars represent 100 μm). The red (darker shade) color is the
constitutive expression of a protein in all cells, whose level is
largely independent of growth rate. The green (lighter shade) color is
ribosomal protein expression, indicating growth. Colony 1: 0.5 mM
glucose, 43 h after inoculation; Colony 2: 1.5 mM glucose, 47 h after
inoculation; Colony 3: 4.5 mM glucose, 56 h after inoculation. Small
colonies such as Colony 1 receive enough nutrients for all cells to
grow. Colonies 2 and 3 are larger and growth occurs only in an outer
shell of thickness � (illustrated for Colony 3). The red (darkly shaded)
cells in the interior are shielded from the nutrients. We assume the
colonies have a spherical cap shape (see Sec. IV for a discussion of
the shape and experimental details).
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For example, gelatinous beads are seeded with yeast cells and
used in reactors to produce ethanol [11]. To better understand
the growth dynamics and physical properties of these systems,
it is important to characterize the nutrient transport properties
of cell clusters as a function of both single-cell nutrient uptake
kinetics and the geometry of specific cell packings.

A nutrient concentration ψ in some medium, such as water
or gel, with a constant diffusion coefficient D0 obeys the
diffusion equation

∂tψ = D0∇2ψ. (1)

In the steady state, the left-hand side of Eq. (1) vanishes,
and the equation reduces to Laplace’s equation. This is an
important and well-studied equation in electrostatics, as it is the
equation for the electrostatic potential �(r) ≡ ψ(r) in regions
of space without any charges.

In the case of nutrient diffusion, Eq. (1) must be satisfied
everywhere in the medium outside of the cell. However, to
completely solve Eq. (1) in the steady state, we must specify
boundary conditions. One natural boundary condition is to set
the concentration field at infinity to some constant value, i.e.,
ψ(|r| → ∞) → ψ∞, corresponding to a large nutrient bath
with a uniform concentration ψ∞. We also need boundary
conditions on each cell surface. For example, if the cell is a
perfect nutrient absorber, then for all points r on the cell surface
S, the nutrient concentration vanishes, i.e., ψ(r) = 0. In the
electrostatic analogy, this condition means zero electrostatic
potential on every cell surface, i.e., each cell is a perfect
grounded conductor. Conversely, if the cell does not absorb any
nutrient (i.e., it is a perfect reflector), then Fick’s first law of
diffusion tells us that the derivative of the concentration along
a direction n̂ perpendicular to the cell surface must vanish.
More precisely, the local nutrient flux density J (r) into the
cell at some point r ∈ S on its surface satisfies

J (r) = D0n̂ · ∇ψ(r) (2)

so J (r) = 0 for all r ∈ S implies n̂ · ∇ψ(r)|r∈S = 0. In the
electrostatic analogy, this would correspond to a perfect
insulator with no surface charge, with a vanishing normal
electric field. Of course, living cells are neither perfect
absorbers nor perfect reflectors. A more realistic boundary
condition interpolates between these two ideal cases.

A boundary condition on the cell can be derived from a more
microscopic model of the nutrient transporters. For example,
Berg and Purcell modeled transporters as small perfectly
absorbing disks on the surface of an otherwise reflecting
cell [12,13]. They showed that the cell requires very few
transporters to act as an effectively perfect absorber: A cell
with as little as a 10−4 fraction of its surface covered by
transporters takes in half the nutrient flux of a perfect absorber.
Zwanzig and Szabo later extended this result to include
the effects of transporter interactions and partially absorbing
transporters [14,15]. They showed that a homogeneous and
partially absorbing cell surface model captures the average
effect of all the transporters. As discussed below, in many cases
of biological interest, the cell cannot be treated as a perfect
absorber. The same partially absorbing boundary condition
used by Zwanzig and Szabo will be derived in a different way
in the next section.

Although Eq. (1) is easily solved in the steady state for a
single spherical cell with the appropriate boundary conditions
[12,13], the complicated arrangement of cells in a typical
multicellular system, such as a yeast cell colony, implies a
complex boundary condition that makes an exact solution
intractable—one would have to constrain ψ(r) and its normal
derivative on a highly irregular object, like the surface of
a cluster of grapes. In this paper, we explore an “effective
medium” approximation to the exact solution of this problem.

Effective medium theory treats a cluster of cells, or nutrient
sinks, as a region with uniform effective nutrient transport
properties (such as an effective diffusivity and nutrient absorp-
tion constant) that depend on the arrangement of cells in the
cluster and the individual cell nutrient absorption properties.
A key feature of the effective medium theory is that these
effective transport properties are derived in a self-consistent
way. These theories have been used to calculate many
effective properties in heterogeneous systems such as con-
ductivity, elasticity, and reaction rates (see Refs. [16,17] and
Chapter 18 in Ref. [18] for reviews).

The paper is organized as follows: We develop our the-
oretical model for nutrient uptake in single cells, dilute cell
clusters, and dense clusters in Sec. II. In Sec. III we compare
our analytic results with numerical solutions of Eq. (1) in the
steady state for clusters with hundreds of partially absorbing
cells. We discuss experimental tests of our model in Sec. IV
and provide concluding remarks in Sec. V.

II. THEORETICAL MODEL

We now discuss how to couple single-cell nutrient uptake
kinetics to the nutrient uptake behavior of an entire cluster or
colony of cells via effective medium theory. In what follows we
assume the cells are all identical and spherical. Although our
experimental model is the budding yeast cell, the theoretical
treatment is quite general and can be adapted to any cell cluster
that absorbs nutrients that reach it via diffusion.

A. Single-cell nutrient uptake

We first review nutrient uptake by a single cell, with nutrient
transporters following Michaelis-Menten kinetics. We smooth
out the effect of a discrete set of transporters within the
cell wall and study a radially symmetric model of nutrient
uptake. A Michaelis-Menten model then means that the total
nutrient current Icell into a cell is related to the ambient nutrient
concentration ψ∞ via

Icell = Imaxψ∞
Km + ψ∞

, (3)

where Imax (sometimes called Vmax in the literature) is the
saturating nutrient current into the cell as ψ∞ → ∞ and
Km is the concentration at which Icell = Imax/2, as shown
in Fig. 2. Even if a cell does not obey these kinetics for
all ψ∞, one can often define a range of concentrations ψ∞
characterized by effective kinetic parameters Imax and Km, a
characterization often used in experimental studies of nutrient
uptake. Many studies infer an effective Imax and Km from the
measured amount of nutrient consumed by a dilute suspension
of cells [3,19,20].
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FIG. 2. (Color online) A plot of the nutrient current Icell (solid red
line) into a cell as a function of the ambient nutrient concentration
ψ∞, which follows Michaelis-Menten kinetics. The maximum current
Imax and the kinetics parameter Km are also shown.

The parameters Imax and Km are determined by the
microscopic kinetics of each individual cell transporter and
the density of these transporters on the cell surface. A third
contribution arises from the structure of the cell wall, which
influences the rate of transport of the nutrient into the cell. We
can find Imax and Km by appealing to a microscopic model
of the transporters. Berg and Purcell, for example, modeled
each transporter as a small, perfectly absorbing disk on the
surface of a perfectly reflecting cell [12,13]. Zwanzig showed
that the large-scale physics of this model are approximated
by a partially absorbing boundary condition on the surface of
the cell [14]. We will now derive this boundary condition in
another way and connect Imax and Km to our model.

To model the cumulative effect of many microscopic details,
such as transporter kinetics, the cell wall, etc., on the nutrient
uptake we introduce a potential energy barrier U (r). Once a
nutrient molecule surmounts this barrier, it gets absorbed by
the cell. The nutrient concentration ψ(r) obeys the Fokker-
Planck equation

∂tψ = D0∇ ·
[

∇ψ + 1

kBT
(∇U ) ψ

]
, (4)

where kB is the Boltzmann constant and T is the temperature
of the nutrient solution [21]. Simple diffusion is recovered
when the potential is constant. For simplicity, let us suppose
that the nutrient must overcome a radially symmetric potential
barrier U (r) that has a rectangular “lip” of height u0 at r = a

and with width w ≡ a − a′ (see Fig. 3). Thus,

U (r) =
⎧⎨
⎩

0 r > a

u0 a′ � r � a

0 r < a′
, (5)

where u0 is the height of the barrier. We assume perfect
absorption at a′ and a constant nutrient concentration infinitely
far away,

ψ(r = a′,t) = 0
(6)

ψ(r → ∞,t) = ψ∞.

To determine the nutrient flux into the cell, we solve Eq. (4)
for the steady-state profile ψ0(r). In addition to the boundary
conditions [Eq. (6)], we ensure the continuity of the nutrient
flux at r = a via the “jump conditions” at r = a, as discussed

FIG. 3. (Color online) A radially symmetric model of nutrient
uptake in a single cell. We specify a steady concentration ψ∞ far away
from the cell. The cell is centered at the origin and has radius a. The
steady-state concentration profile ψ0(r) (black solid line) is calculated
for a rectangular potential barrier (red dashed line) of height u0

(designed to model the complex uptake dynamics of the cell wall)
and a perfectly absorbing nutrient sink at r = a′. The concentration
profile approaches ψ∞ at large r and exhibits a jump discontinuity at
r = a. The nutrient currents are constrained to be continuous.

in Ref. [22]. The resulting concentration profile reads

ψ0(r) =
⎧⎨
⎩

ψ∞ − aa′ψ∞
a′+(a−a′)eu0/kB T

1
r

r � a

a(r−a′)ψ∞
(a′+(a−a′)eu0/kB T )

1
r

a′ � r < a
, (7)

with ψ0(r) = 0 for r < a′. The shape of the solution ψ0(r) is
shown in Fig. 3.

Let us now consider narrow potential barriers relative to the
cell radius (w = |a − a′| � a). Then, from Eq. (7), we find
the concentration gradient just outside the cell surface,

∂rψ0|r→a+ ≈ 1

w
exp

[
− u0

kBT

]
ψ0(a+) ≡ κψ0(a+), (8)

where the + superscript indicates that we take the limit r → a

from outside the cell. Equation (8) reveals that the gradient
of ψ0 normal to the cell surface is proportional to ψ0(r)
just outside. Notice that κ → ∞ when w → 0 (we also let
u0 → 0), so ψ0(a+) → 0 at the cell surface to keep the flux
finite. Thus, the cell is perfectly absorbing within our model if
there is no potential barrier. Similarly, for a very large barrier
(u0 → ∞,w finite), we have κ → 0 so there is no flux of
nutrient into the cell and ∂rψ0(a+) → 0, signifying a perfect
reflector.

The proportionality between a field and its gradient at
a boundary is called a radiation boundary condition in the
physics literature and can be derived quite generally [23]. This
boundary condition is a natural coarse-grained description
of the Berg and Purcell model of transporters as absorbing
disks. Zwanzig and Szabo [14,15] have used the radiation
boundary condition to successfully model the physics of
both perfectly and partially absorbing disks on scales larger
than the disk spacing, thus confirming our expectation that
the coarse-grained nutrient uptake can be modeled by the
ubiquitous radiation boundary condition with an appropriate
choice of κ .

The absorptive strength of the cell can be parameterized
by the dimensionless number ν ≡ κa, where a is the cell
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radius. In chemical engineering, ν is sometimes referred to
as a Sherwood number [24]. If Pabs is the probability that a
nutrient particle at the cell surface will be absorbed by the cell
(instead of escaping to infinity), then first-passage techniques
from probability theory [25] lead to

Pabs = ν

1 + ν
. (9)

Thus, ν = κa � 1 indicates poor nutrient absorption while
ν 
 1 indicates a good absorber. Note that at ν = 1, the
nutrient has equal probability of being absorbed at the cell
surface or escaping to infinity.

We now connect ν with the measurable biological param-
eters Imax and Km. Recall that the nutrient flux into a single
cell is related to the ambient nutrient concentration ψ∞ via
the Michaelis-Menten relation Eq. (3). Suppose for now that
the cells are well separated, so the nutrient uptake Icell of any
given cell is independent of the others (i.e., there is no nutrient
shielding), and that the ambient nutrient concentration ψ∞
is held constant so the parameters Imax and Km at each cell
can assume their steady-state values. We assume the nutrient
solution experiences no macroscopic flows, such as convection
currents, that would bias the isotropic absorption kinetics of
the cell. The nutrient concentration ψ(r ≡ |r|) then satisfies
∇2ψ(r) = 0 in the steady state, with the boundary conditions
ψ(r → ∞) = ψ∞ and n̂ · ∇ψ |S = κψ |S at each cell surface
S, as discussed above.

On inserting Eqs. (7) and (8) into Fick’s first law [25] [see
also Eq. (2)], we find the steady-state nutrient current into an
individual cell,

Icell =
∫

S

D0n̂ · ∇ψ(r)a2 d	 ≈ 4πD0ψ∞νa

1 + ν
, (10)

where we integrate over the surface of the cell S (so d	 =
sin θ dθ dφ in spherical coordinates) and again assume w =
a − a′ � a. Comparison of Eq. (10) with Eq. (3) leads to ν as
a function of biological parameters. In the limit of low ambient
nutrient concentration (ψ∞ � Km), we have

ν = Imax

4πaD0Km − Imax
. (11)

It is also possible to define an effective ν for a reflecting spher-
ical cell uniformly covered by identical, partially absorbing
disks with radius adisk and absorption parameter κdisk. In this
case, using the boundary condition Eq. (8) on each disk surface,
Zwanzig and Szabo find that the effective parameter ν for
the entire cell (for adiskκdisk � 4/π ) is ν = Ndiska

2
diskκdisk/4a,

where Ndisk is the number of disks on the cell surface (see
Ref. [15]).

A rough estimate of ν for glucose uptake by a
Saccharomyces cerevisiae cell follows from values for Imax

(4.2 × 107 molecules/s), Km (7.4 mM), a (2 μm), and D0

(670 μm2/s) found in the literature [3,26,27]. The Imax is
particulary difficult to estimate as the nutrient uptake rate
in experiment is calculated per gram of dried yeast taken
out of a liquid culture. To get an uptake rate per cell, we
estimate that a yeast cell has a 2-pg dry weight [28]. We
find that these yeast cells are in fact very poor absorbers
with Pabs, yeast ≈ νyeast ≈ 6 × 10−4 ∼ 0.001 within an order of
magnitude. Gram-negative bacterial cells differ substantially.

Again using literature values for Imax (2 × 107 molecules/s),
Km (1 μM), and a (0.5 μm) [19,29] for a single Escherichia
coli cell, we find that Pabs, gram−n. ≈ νgram−n. ≈ 0.09 ∼ 0.1.
Thus, this bacterium is ∼100 times more absorbent than the
yeast cell: This striking difference has profound biological
implications since, as we will show in the next sections, the
parameter ν greatly influences the growth of a cell colony.

The large disparity in ν values may be due to the thicker
cell walls of S. cerevisiae compared to Gram-negative bacteria
like E. coli. The presence of a cell wall can have two effects.
First, the diffusion coefficient of the transported nutrients
may be lower in the cell wall medium than it is in the bulk
solution. Second, the absorbing surface lies at the plasma
membrane, not the surface of the wall. The second effect
implies that the absorbing surface is at a distance a − w from
the cell center (rather than a), where a is the cell radius
and w the thickness of the wall. So, even if the diffusion
coefficient inside the wall is the same as in the bulk and we
have a perfectly absorbing plasma membrane, the effective
value of ν is ν = a/w − 1. This argument is consistent with
the measured glucose uptake kinetics for the Gram-positive
bacterium Luconostoc mesenteroides, which has a cell wall
thicker than E. coli and thinner than S. cerevisiae. We find
Pabs, gram p. ≈ νgram p. ≈ 0.05 from the literature values of the
parameters [20,30]. Of course, other factors apart from the
cell wall thickness could be relevant.

The experimental results discussed here for single cells
tell us that it is important to consider a large range of the
parameter ν = κa: ν can range over at least two orders
of magnitude (0.001 < ν < 0.1) for yeast, Gram-positive,
and Gram-negative bacteria. Thus, neither perfectly reflecting
nor perfectly absorbing boundary conditions are relevant for
nutrient uptake in many cell populations. Instead, we develop
a theory for the nutrient absorption by a cluster of cells with
arbitrary ν. This is the subject of the next section.

B. Nutrient uptake in cell clusters

We now consider nutrient absorption by a cluster or colony
of cells. In general, this is a very complicated problem involv-
ing solving the diffusion equation in the interstitial area of the
cluster while making sure the boundary condition [Eq. (8)]
is satisfied at each cell surface. Although analytical results
are possible for a single cell, we must resort to numerical
solutions and approximations when dealing with a cluster.
A typical 1-mm-diameter yeast cell colony contains over
106 cells, making the exact solution for nutrient uptake by
such a colony intractable even numerically.

To model nutrient uptake (and nutrient shielding) in a group
of cells, we again consider the steady-state diffusion equation
with boundary conditions provided by a disorderly cluster of
N identical spherical cells all with radius a and no overlaps
(see Fig. 4(a)). Let the cells be located inside a spherical
region of radius b 
 a with centers at positions R0

i , where
i = 1, . . . ,N . We also employ local spherical coordinates at
each cell to write vectors ri = (a,	i) pointing at positions on
the cell surface, where 	i ≡ (θi,φi) is a pair of polar angles
that specifies the direction of ri relative to the center of the
i-th cell [see Fig. 4(c)]. Consider a particular configuration
of these N cells and denote by �(r) the exact solution to the
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FIG. 4. (Color online) Schematic of the effective medium approx-
imation, which replaces N orange (gray) cells in a spherical cluster
with radius b (enclosed by the dashed lines) in (a) by a homogeneous,
attenuating medium in (b) shown in dark and light shades of green.
The lightly shaded green rim of width � illustrates the section of the
cluster receiving enough nutrients to grow. ψ∞ is the limiting nutrient
concentration in the variably shaded red region, outside the cluster.
To analyze this problem, we use the coordinate system in (c), with
an origin at O, cell centers located at {R0

i }N
i=1, and vectors ri pointing

from the cell center to the surface of the cell.

steady-state concentration field in the interstitial region for this
particular configuration.

On assuming a time-independent steady state, we modify
Eq. (1) to include a set of Lagrange multiplier functions σi(r)
defined on the cell walls,

D0∇2�(r) =
N∑

i=1

∫
σi(ri) δ(r − Ri) d	i + s(r). (12)

We also set Ri ≡ R0
i + ri [see Fig. 4(c)] and choose r to be in-

side the cell cluster. The Lagrange multiplier functions {σi(ri)}
will be chosen to satisfy the radiation boundary condition
at each cell surface (the functions {σi(ri)} would be charge
densities in electrostatics). These boundary conditions [given
Eq. (8) with ν = κa for a single cell] read, for all i and Ri ,

�(Ri) = ν−1 ri · ∇�(Ri) ≡ Qi�(Ri), (13)

where Qi ≡ ν−1 ri · ∇ is a convenient gradient operator used
in the detailed effective medium calculation in the Appendix.
The source function s(r) allows us to incorporate additional
boundary conditions on the concentration field.

We now average over all possible cell configurations
(consistent with excluded volume interactions between cells)
to obtain the average transport properties of the nutrient in a
cell cluster. On averaging both sides of Eq. (12), we find

D0∇2ψ(r) =
〈

N∑
i=1

∫
Si

σi(ri) δ(r − Ri) d	i

〉
+ s(r) (14)

≈
∫

�(r′ −r) ψ(r′) dr′ + s(r), (15)

where ψ(r) ≡ 〈�(r)〉. The bracket average is an ensemble
average over cell configurations and �(r) is a linear response
function describes how the cells deform the concentration field.

The linear response approximation, justified here by
comparisons with simulations, is only valid away from the
cluster edges and for sufficiently small concentration field
deformations. In addition, this approximation often breaks
down for time-dependent diffusion [31] because the tran-
sient diffusive dynamics are dominated by slowly decaying
modes due to large voids inside the cell cluster [32]. Reference
[33] uses a more microscopic description of nutrient diffusion
to examine the validity of the linear response approximation in
more detail. We will forgo these complications here and exploit
the linear approximation above, checking our assumptions
using experiments and simulations, as had been done for the
physics of fluorescence quenching [34].

An exact evaluation of �(r) involves an ensemble average
denoted by brackets in Eq. (14). This average requires the full
probability distribution P ({R0

i }Ni=1) of observing N cells with
centers {R0

i }Ni=1. Unfortunately, an exact solution obtained in
this way would require knowledge of all of the correlations
between the cell positions, which may not be experimentally
accessible. We will assume for now that this distribution
is known. Later, the effective medium theory developed in
Sec. II E will approximate �(r) in a self-consistent way using
just the one and two cell center distributions.

What happens to the configurationally averaged solution
ψ(r) of Eq. (15) over distances large compared to the size
of a single cell? Specifically, how does the cell colony
absorb nutrients on average, as if it were the homogeneous
medium illustrated in Fig. 4(b)? To answer this question, we
perform a gradient expansion of Eq. (15). As discussed in
Ref. [33], such a gradient expansion neglects intrinsically
nonlocal contributions to �(r) due to the fluctuations in
the concentration field that cannot be averaged over large
distances. The mean-field approximation used here then uses
the resulting transport coefficients to describe the absorptive
properties of the cluster. Simulations have shown that this
approach correctly models the physics in related systems [35].

Equation (15) in Fourier space reads

−D0q
2ψ(q) = �(q)ψ(q) + s(q), (16)

where we have applied the convolution theorem and all the
functions are now their Fourier transformed functions of the
3D wave-vector q. On average, the cells in the cluster should
be distributed isotropically and �(q) can only depend on q ≡
|q|. Expanding � around q = 0 gives us the desired gradient
expansion,

−D0q
2ψ(q) = �(q = 0)ψ(q) + �′′(q = 0)q2ψ(q)

2
+O(q4) + s(q)

≡ kψ(q) + δDq2ψ(q) + O(q4) + s(q), (17)

where we have identified an absorptive term kψ and a
correction to the diffusion term δDq2ψ . We neglect higher
powers of q (i.e., higher-order derivatives of the concentration
field) in our coarse-grained reaction-diffusion description of
nutrient transport in a large colony of cells. On returning to
real space, we find the desired macroscopic transport equation
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for the configurationally averaged nutrient concentration,

D∇2ψ(r) − kψ(r) = s(r), (18)

where D = D0 + δD. The coefficients D and k characterize
the macroscopic diffusion and absorption, respectively, of the
nutrient in the cell colony. The crucial question is how the
effective diffusion constant D and absorption k depend on
parameters such as ν and the cell volume fraction φ.

In general, we expect that k will be a positive, increasing
function of the cell volume fraction φ, since the cluster
becomes more absorbent as we introduce more cells. It will
also increase with ν = κa as each cell will absorb more
nutrients as ν increases. The sign of δD is more subtle, because
of two competing factors: The confinement of the nutrient by
the cells in the interstitial space will decrease the effective
diffusion constant D, while the nutrient gradients in random
directions induced by nutrient uptake by cells will increase
D. Since ν controls the amount of absorption, we expect that
(for small φ) δD < 0 for ν � 1 and δD > 0 for ν 
 1. This
is confirmed by our effective medium calculation of D in
Sec. II E.

We assumed that the radii of the cells in the cluster are
monodisperse. This approximation might not be realistic in cell
clusters at different stages of their cell cycle. However, in both
polydisperse and monodisperse cases, we can still define a cell
volume fraction φ. The effective transport coefficients D and k

will depend on this volume fraction and the polydispersivity of
the radii. For a fixed φ, polydisperse cell radii will decrease the
total cell surface area and, consequently, decrease the nutrient
absorption k. For example, the ratio of the total cell surface area
Spoly of a cluster of cells with a Gaussian radius distribution
(with average 〈a〉 and variance σa � 〈a〉) to the total surface
area Smono for a cluster of cells with the same radius 〈a〉 is
given by [18]

Spoly

Smono
= 〈a2〉〈a〉

〈a3〉 = σ 2
a + 〈a〉2

3σ 2
a + 〈a〉2

< 1. (19)

Also, we do not expect the correction to vary much with ν

since the main effect of polydispersivity seems to be from
the surface area decrease. Finally, computer simulations for
two discrete sphere sizes reveal that the ratio kbidisp/kmono of
absorption coefficients for (perfectly absorbing) cells satisfies
kbidisp/kmono ≈ (Sbidisp/Smono)2 [36,37] over a wide range of
packing fractions. Thus, it may be possible to approximate
polydispersity in our theory by reducing the absorption
coefficient k by such a geometric factor. However, unless stated
otherwise, we henceforth ignore this complication and instead
consider cell clusters with monodisperse radii.

C. The macroscopic screening length ξ

An important nutrient screening length associated with
Eq. (18) for cell clusters is

ξ ≡
√

D

k
. (20)

We now use effective medium theory to calculate ξ and relate
this length to cell configurations and single-cell nutrient uptake
kinetics.

FIG. 5. (Color online) Plot of the thickness � of actively growing
cells in a spherical cluster of size b as a function of the nutrient bath
concentration ψ∞ for various values of the penetration depth ξ .

Consider, first, a spherical cell cluster (or “colony”) of
radius b in which ψ satisfies the effective medium result
Eq. (18). Assume as well that ∇2ψ = 0 outside this spherical
region. Then, with the boundary condition ψ(r → ∞) = ψ∞
and continuity of the nutrient current at r = b, we find

ψ(r) =
{

D0ψ∞ξ

Dr cosh(b/ξ )
sinh(r/ξ )

1+(D0/D−1)T (b/ξ ) r � b

ψ∞
[
1 + b

r

[
T (b/ξ )−1

1+(D0/D−1)T (b/ξ )

]]
r > b

, (21)

where T (x) ≡ tanh(x)/x. When b 
 ξ , the concentration field
ψ(r) ≈ D0ψ∞ξ

Dr
exp[(r − b)/ξ ] near the colony surface and

decays exponentially as we move further into the interior. Thus,
ξ is a characteristic e-folding length of the nutrient decay.

Equation (21) leads to the total flux Icluster into the cell
cluster in the same way as the single cell discussed above. We
will see in the next two sections that a good approximation is
D ≈ D0. The nutrient flux into the cluster then is

Icluster = 4πD0ψ∞

[
b − ξ tanh

(
b

ξ

)]
. (22)

Thus, when ξ � b so the nutrient does not penetrate far into
the cell colony, Icluster ≈ 4πD0ψ∞b and the entire colony acts
as if it is a single, perfectly absorbing sphere with radius b.
Conversely, if ξ 
 b, then nutrient penetrates deep into the
colony. In this limit we have

Icluster = 4πD0ψ∞b3

3ξ 2
+ O(δ4), δ = b

ξ
� 1, (23)

so the total nutrient absorption is down relative to a perfectly
absorbing colony by a factor of δ2/3 � 1. Icluster now scales
with colony volume (∝ b3), since each cell in the colony
contributes to the nutrient uptake.

A related biologically relevant parameter is the thickness
� of the outer shell of actively growing cells, as illustrated
in Fig. 1 and by the lightly shaded green band in Fig. 4(b):
Suppose that cells require some minimum concentration
ψmin of nutrient in order to grow (or exhibit some level of
growth-coupled fluorescence). We can estimate � by finding
the location rmin inside a spherical colony such that ψ(rmin) =
ψmin [see Eq. (21)] and setting � ≡ b − rmin. For b 
 ξ and
D ≈ D0, this length is related to b, ξ , ψmin, and ψ∞ via (see
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Fig. 5)

� ≈ b + ξW−1

[
− ψ∞

ψmin
e−b/ξ

]
, (24)

where W−1(x) is one of the branches of the Lambert-W
function [38]. The thickness � can also be determined
experimentally using a fluorescence reporter, as shown in
Fig. 1. Experimental estimates of � in yeast cell colonies are
discussed in Sec. IV.

D. The dilute cell limit

As mentioned in Sec. I, dilute clusters of microbial cells
can be realized in experiment by embedding the cells in a
matrix. The initial cell density in such a matrix can be tuned
over a wide range and is often quite small. Moreover, since the
matrix usually has a negligible influence on the diffusion of
small molecules like glucose [39], we now develop an effective
medium theory for clusters with cell densities low enough to
neglect interactions. This theory will serve as an important and
instructive limiting case.

We approximate the nutrient flux into each cell with the
single cell result Eq. (10), replacing ψ∞ with the local value
ψ(r), where r is the location of the cell. This approximation
does not take into account the finite size of our cells or the
deformation of the concentration field ψ(r) around each cell.
Thus, we cannot use this dilute limit to find a correction to
the diffusion constant D. However, as we will see in the next
section, we expect this to be a very small correction, especially
for small packing fractions φ.

To approximate the nutrient absorption k, we assume that
each cell independently contributes to a nutrient flux per unit
volume

j (r) = 4πD0ψ(r)νan

1 + ν
= 3D0φν

(1 + ν)a2
ψ(r), (25)

where n is the cell number density which we relate to
the cell volume fraction φ = 4

3 πa3n. We conclude that the
macroscopic transport coefficients in this dilute approximation
are

D = D0 and k = 3D0φν

(1 + ν)a2
. (26)

More sophisticated theories can find a correction to D that
is linear in φ and higher-order corrections to k (see Ref. [17]
for a review). Equation (26) implies that the characteristic
screening length ξ = √

D/k in the dilute limit is given by

ξ → ξd ≡
√

1 + ν

3φν
a. (27)

Figure 6 shows ξd as a function of the absorption parameter
ν = κa: the screening length is a strong function of ν for
ν < 1 and crosses over to a perfectly absorbing regime when
ν > 1. If the cells in a dilute cluster at low volume fraction
have polydisperse radii in a Gaussian distribution of cell radii
with average 〈a〉 and standard deviation σa � 〈a〉, Eq. (27)
becomes

ξd, poly =
√

1 + ν

3φν

[〈a〉2 + 3 σ 2
a

]1/2
. (28)

FIG. 6. (Color online) Plot of the screening length ξd in the small
φ limit as a function of ν for various values of φ on a log-log scale. ξ
crosses over to the perfectly absorbing limit at ν ∼ 1. The arrows Y
and B denote, respectively, typical values of ν for baker’s yeast and
bacteria.

As expected, the reduced total cell surface area in the
polydisperse cluster leads to a larger screening length. Note
that the ratio ξd, poly/ξd is independent of ν and φ in this limit.

For yeast cells with φ ≈ 0.1 and ν ≈ 0.001, Eq. (27)
predicts ξ ≈ 60a. Thus, glucose penetrates far into the yeast
cell cluster when φ ≈ 0.1 (e.g., for yeast embedded in gel),
allowing a substantial fraction of the yeast population to
grow. Conversely, we expect that ξ ≈ 6a for a bacterial
colony (ν ≈ 0.1) at φ ≈ 0.1 volume fraction. To treat cell
arrangements like the one in Fig. 1, we clearly need to go
beyond the dilute limit and determine the dependence of ξ on
φ and ν more carefully: Yeast and other cell colonies rarely
grow at low volume fractions; cells typically clump together
and pack themselves in an amorphous structure with a volume
fraction approaching that of the random close packing density,
φ ≈ 0.6–0.7 [40].

E. Effective medium theory for dense cell clusters

For φ � 0.1, the dilute approximation breaks down, and
we must solve Eq. (12) for �(r) more exactly. On defining
the diffusive Green’s function G0(r) = (4πD0r)−1, we can
rewrite Eq. (12) as an integral equation,

�(r) =
∫

dr′ G0(r − r′)

×
[

N∑
i=1

∫
d	i σi(ri) δ(r′ − Ri) + s(r′)

]
, (29)

where we integrate over all positions r′ (dr ≡ d3r). In
principle, we could choose the functions σi(ri) to enforce the
radiation boundary condition at each cell surface [Eq. (13)] and
then average over the cell positions to obtain �(r) in Eq. (15).
However, as discussed in Sec. II B, we do not have access to
the full probability distribution P ({R0

i }Ni=1) necessary to do the
averaging. An alternative approach exploits an approximate
solution which accounts for each cell independently to first
order, the effects of pairs of cells at second order, and so
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on. This expansion requires knowledge of the probability
distributions of a single-cell position, a pair of cells, a triplet,
and so on. Such scattering expansions are plagued with
divergences due to the long-range nature of the diffusive
interaction between the cells and must be treated via careful
resummations [33,41,42]. Particular care is required, because
the Green’s function, or propagator, in this expansion is
Ĝ0(q) = (D0q

2)−1 in Fourier space, which is singular as
q → 0.

To bypass such complications, we imagine cells imbedded
in an “effective medium” with effective transport properties,
to be determined self-consistently. These transport properties
include screening which cuts off the long-range behavior of
G0(r) and renders Ĝ(q) finite as q → 0. In particular, we
assume a modified “effective medium” propagator given by

Ĝ�(q) ≡ 1

D0q2 + �(q)
, (30)

which describes the transport properties of the nutrient as it
wanders through the homogeneous attenuating medium shown
in Fig. 4(b). A self-consistency condition on �(q) leads to a
renormalized (and better behaved) scattering expansion.

In the Appendix, we follow Cukier and Freed’s effective
medium calculation of �(q) [43]. However, our cells will be
partially absorbing, which generalizes the perfectly absorbing
case Cukier and Freed considered. The calculation assumes
that the cells have uniformly distributed centers in the cluster.
Excluded volume interactions are included in an approximate
way, by assuming that the centers R0

i,j of any pair of cells i

and j are distributed according to the low-density hard sphere
pair distribution function,

P
(
R0

i ,R
0
j

) = 1

V 2
θ
(∣∣R0

i − R0
j

∣∣− 2a
)
, (31)

where θ (x) is the step function and V is the cluster volume.
This generalization was also considered by Cukier [44], but
we find an important second-order correction to his results
from the pair distribution function Eq. (31). The details are
contained in the Appendix.

We find that the nutrient screening length in units of the cell
radius α ≡ ξ/a satisfies

α2 = 3φαν(1 + coth α)

1 + α + ν
+ 36φ2

[
αν(1 + coth α)

1 + α + ν

]2

×
[

1

4α2
+ k1(2α)i0(α)

[
αi1(α)

ν
− i0(α)

]]
, (32)

where i�(x) and k�(x) are the modified spherical Bessel
functions of the first and second kind, respectively. For a
specific ν = κa, Eq. (32) is a self-consistent equation for
α = ξ/a. It is soluble numerically (we used Newton’s method
of successive approximation) for ξ as a function of ν and φ.

The ratio ξ/ξd , where ξd is the dilute limit formula Eq. (27),
appears as a function of φ for various ν in Fig. 7. Note
that the effective medium theory always predicts ξ < ξd , a
plausible result since this more sophisticated theory allows
for nutrient absorption mediated by repeated interactions with
individual cells. For the values of ν typical of yeast clusters
and Gram-negative bacteria (ν ∼ 0.001–0.1), ξ does not differ
from ξd by more than 20%, even for large φ ∼ 0.5. These

FIG. 7. (Color online) Plot of the screening length ξ calculated
with the effective medium theory divided by the dilute limit result ξd

as a function of the volume fraction φ for various values of ν. The
low-density result becomes increasingly inaccurate at larger packing
fractions.

results suggest that effective medium theory is a reasonable
approximation for dense clusters of cells with ν = κa � 1,
in contrast to the more problematic perfectly absorbing case
ν → ∞ [60].

The second-order term in the Taylor series expansion of
�(q) around q = 0 yields an implicit equation for the effective
diffusion coefficient D of the nutrient inside the cell cluster.
The somewhat cumbersome equation is Eq. (A20) in the
Appendix. The solutions for various ν are plotted in Fig. 8
as a function of φ. In all cases of biological interest, the
corrections to the bare diffusion coefficient D0 in the absence
of the cluster are relatively small, i.e., approximately 10–20%
and never exceeding 30%.

In the biologically relevant regime ν � 0.1, the correction
to the diffusion coefficient is close to the ν = 0 (perfectly

FIG. 8. (Color online) Plot of the diffusion coefficient D in the
cell cluster calculated with the effective medium theory divided by
the bare diffusion coefficient D0 in the absence of the cluster as a
function of the volume fraction φ for various values of ν.
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reflecting) limiting case given by

D(ν = 0)

D0
= 1

1 + φ/2 − φ2/4
, (33)

which is derived from Eq. (A20). As expected, the diffusion
coefficient D is smaller than D0 when the cells are perfectly
reflecting. Also, the structure of Eq. (33) is consistent with
the modified Maxwell-Garnett theory for diffusion of particles
in a medium with perfectly reflecting inclusions derived in
Ref. [45]. Equation (33) is also consistent with experimental
results for the diffusion coefficient of water in a suspension of
spherical colloidal particles [46]. At high volume fractions, we
expect the effective medium theory to start to break down and
higher-order terms in �(q) to contribute to transport within
the colony. Thus, the curves in Fig. 8 should be treated as
approximations and specific features, such as the crossover
between the ν = 0 and ν = 0.1 lines, might not be physical.

We now check the effective medium result against simula-
tions and experiments.

III. NUMERICAL SIMULATIONS

To obtain further insight into nutrient absorption, we now
go beyond effective medium theory and solve the diffusion
equation numerically in a densely randomly packed cluster
of spherical cells. We employ the finite element solver
discussed below to numerically solve the steady-state diffusion
equation with the appropriate boundary conditions. Given the
complicated nature of the problem, we can only test effective
medium theory for clusters of up to 400 cells in this way.
However, since the effective medium approximation is derived
in the limit of an infinite number of cells, if it works for
simulations with 100–400 cells, it should be even more reliable
when we have even more cells, as in a typical growing yeast
colony.

A. Cell cluster simulation

To check the analytic results, we solved the steady-state
diffusion equation exactly for cell clusters with hundreds of
cells. The numerical solution was found with the COMSOL 3.5a
finite element solver [47]. A MATLAB program was written to
input in the locations and radii of all the cells in the cluster. The
COMSOL program included a computer-assisted design (CAD)
feature that was then able to parse the MATLAB output and
create a particular arrangement of spherical cells that defined
our domain of interest. The coordinate list for the sphere
cluster was created via a Bennett model, originally designed
to quickly generate amorphous, dense random packings of
identical spheres [48]. These arrangements approximate the
disordered packing of cells observed in yeast colonies in the
experiments.

To prevent the cells from touching and creating singularities
in the finite element mesh, identical spherical cells with radius
a are placed at the sphere centers of a cluster generated by the
Bennett model using spheres with larger radius ã > a. This
guarantees a gap of at least 2(ã − a) between adjacent spheres.
A high volume fraction φ ≈ 0.63 (corresponding to random
close packing) is generated with ã = 1 and a = 0.999. Smaller
values of φ are generated by decreasing a for a fixed ã = 1.

FIG. 9. (Color online) A simulated cluster of cells with ν = 1
and ψ∞ = 1. The color (shading) indicates the local nutrient
concentration �(r) near the cell surfaces. In this case, the 200 cells
with radius a were confined to a cluster of radius b ≈ 7.45a, yielding
a volume fraction of φ ≈ 0.48. The radius of the large bounding
sphere on which the nutrient concentration was fixed at ψ∞ was about
56a ≈ 7.5b. To better simulate the fixed concentration ψ∞ infinitely
far from the cluster, we used COMSOL’s “infinite element” option with
spherical symmetry between radii 28a and 56a (see Sec. III A).

For example, a = 0.9 results in a volume fraction φ ≈ 0.48
(e.g., the cluster in Fig. 9).

A large bounding sphere concentric with the center of
mass of the cell cluster allowed us to impose a constant
nutrient concentration “at infinity”: �(|r| → ∞) = ψ∞, to
approximate a suspended cell cluster in an infinite nutrient
bath buffered at concentration ψ∞. We used COMSOL’s “infinite
element” option to efficiently simulate by placing extremely
large finite elements between the bounding sphere and the
cell cluster. With bounding spheres of radii typically 5 times
the cell cluster radius, this method yielded good results: Our
calculated solution was unchanged when varying the bounding
sphere radius from 5 to 10 times the cluster radius.

Finally, we specified the dimensionless nutrient uptake
parameter ν = κa for cells with identical radius a and applied
the boundary conditions given by Eq. (13) on each cell surface.
A particular cell cluster and the corresponding steady-state
nutrient concentration �(r) near each cell surface is shown
in Fig. 9. In this case, ν = 1, the packing fraction φ ≈ 0.48,
and the cluster radius b ≈ 7.45a, with ψ∞ = 1. The bounding
sphere had a radius of 56a and we inserted infinite elements
at distances between 28a and 56a. With these parameters,
the effective medium theory predicts a screening length ξ ≈
0.72a. This is consistent with what we observe in Fig. 9,
as the concentration decays by a factor of e over a distance
comparable to the cell radius a.

B. Comparison with theoretical results

To compare theoretical and simulation results, we tracked
the decay of the radially averaged nutrient concentration
�(r) ≡ (4π )−1

∫
�(r) d	 into the center of the colony and

compared it with the effective medium prediction ψ(r)
of Eq. (21). Figure 10 shows a semilogarithmic plot of
rψ(r)/aψ∞ versus δ = (b − r)/a, varying ν = κa over 3
orders of magnitude. Equation (21) predicts that this quantity
decreases exponentially near the cell surface when 1 � b/a.
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FIG. 10. (Color online) The radially averaged concentration
r�(r)/aψ∞ (symbols) and the effective medium result rψ(r)/aψ∞
(lines) for a cluster of 353 cells of radius a (with cluster radius
b ≈ 8.15a) as a function of δ = (b − r)/a on a log-linear plot. The
concentrations are rescaled to highlight the exponential decay of the
concentration into the bulk of the cluster. Cells occupy the region
0 < δ < 8.15 with the center at δ ≈ 8.15, as indicated by the dashed
lines. The cell packing fraction is φ ≈ 0.63. The bounding sphere has
a radius of 50a, with “infinite elements” inserted at distances between
25a and 50a (see Sec. III A).

Figure 10 shows how the nutrient concentration decreases as
we move into the cluster.

Figure 10 shows that, even for the large volume fraction
φ ≈ 0.63, effective medium theory provides an excellent
description, especially for small values of ν. Thus, this theory
is appropriate for modeling yeast colonies, which have a
very small ν ∼ 0.001 value. The effective medium agreement
should improve if computer resources allow more cells in the
simulation, since it was designed to handle the limit where
the cell number N → ∞ and cluster volume V → ∞, with
N/V fixed. Figure 11 shows the low ν regime (poor nutrient
absorbtion) in more detail. Although the differences between
the simulation and effective medium theory are now more

FIG. 11. (Color online) The radially averaged concentration
�(r)/ψ∞ (symbols) and the effective medium solution ψ(r)/ψ∞
(lines) as a function of δ = (b − r)/a for the same 353 cell cluster
described in Fig. 10. The dotted lines indicate the cluster edge (δ = 0)
and center (δ ≈ 8.15).

FIG. 12. (Color online) Exponential decay of the rescaled nutrient
concentration in the effective medium theory (lines) and in a
simulation (symbols) for a more dilute 85 cell cluster with b = 7a

and various ν. The cell packing fraction is φ ≈ 0.24. The cluster,
shown above the graph, now occupies the region between the dotted
lines, 0 < δ < 7.

evident, the absolute difference between the simulation and
the theory for the concentration remains small.

We also studied a more dilute 85 cell cluster to check that
effective medium theory is indeed accurate for lower volume
fractions and an alternative cell configuration. Instead of using
the Bennett model, we placed cells with centers in three
concentric shells with radii 2a, 4a, and 6a. The cells within
each shell were placed randomly, but their positions were
adjusted to prevent the cells from touching and disrupting the
finite element mesh. Figure 12 reveals even better agreement
between the simulation and effective medium theory for the
lower volume fraction of φ ≈ 0.24. Note that good agreement
in this case is obtained for the highly absorbing limit ν � 1
as well. We conclude that effective medium theory provides a
good description of spherically averaged nutrient uptake, for
both weakly and highly absorbing cells, for volume fractions
φ � 0.6.

IV. EXPERIMENTS

We now compare the effective medium theory presented in
Sec. II to experimental results for glucose uptake in yeast cell
colonies. Yeast cell aggregates are a particularly interesting
biological application because they form naturally in the
wild and are a possible model for the initial emergence of
multicellularity [49]. Nutrient uptake in single versus clumped
cells is a crucial factor in this model system. Thus, accurately
modeling nutrient transport properties in cell clusters is key to
understanding their biological function and role in evolution.

Since yeast cells are poor glucose absorbers, the character-
istic nutrient penetration depth in a yeast colony is much larger
than a cell radius and is easily visible in colony cross sections,
as shown in Fig. 1. Their poor absorption properties are also
well suited for effective medium modeling, since we expect
that nutrient transport for small absorption parameter ν � 1 is
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FIG. 13. (Color online) (a) Confocal microscopy setup. A single
yeast cell was inoculated into a well of a glass-bottomed 96-well plate
containing 200 μl of yeast media and allowed to grow into a colony.
The bottom of the colony was imaged using a spinning-disk confocal
inverted microscope. (b) Cells were grown in shaken media, pipetted
into an empty well, and imaged immediately (before they could divide
and form colonies) with the setup shown in (a). At least 250 cells at
each concentration were imaged, and the error bars are the 95%
confidence interval using the Student’s t test. Relative fluorescence
intensity in (b) is defined as ribosomal protein expression divided by
constitutive expression. Cells in 0.167 mM glucose continue to divide
but at less than half the growth rate of cells in 0.5 mM glucose.

dominated by much longer length scales than the local colony
geometry at the single-cell scale.

A. Experimental setup

We used confocal microscopy to measure the distribution of
growth in a yeast colony. To start the experiment, we filled each
well of a 96-well, glass-bottomed microtiter dish (Greiner Bio-
One 655892) with 200 μl of minimal, synthetic yeast media
(recipe in Ref. [49]). Figure 13(a) shows the confocal setup
and Fig. 1 shows representative images. We engineered a yeast
strain (yJHK192) with two fluorescence protein (FP) reporters:
(1) Cerulean, a stable CFP (cyan) variant, was constitutively
expressed from the ACT1 promoter, and (2) mCitrine, a YFP
(yellow) variant, was expressed from the ribosomal protein
RPL7A promoter. The expression of RPL7A has been shown
to correlate with growth rate [50]; the correlation between
growth rate and glucose concentration has been well studied in
yeast [51], and we verified that the YFP fluorescence correlated
with glucose concentration in cells grown in shaken media
[Fig. 13(b)]. mCitrine was destabilized by adding a CLN2
PEST sequence to the C terminus, which is expected to yield a
protein half-life of about 30 min [52]; a destabilized fluorescent
protein was essential to see decreased expression of RPL7A in
cells that had stopped growing. Note that the 30-min half-life
is much shorter than the yeast doubling time of 2.5 to 3.5 h in
low glucose.

When grown on agar, small yeast cell colonies (less than
1 mm across) form a spherical cap with a contact angle θ

between the edge and the agar surface. The contact angle θ

increases with agar concentration and θ ≈ 40◦ for 2% agar [9].
Unfortunately, in our experiment, the side view of the colonies
was optically inaccessible and a precise characterization of
the colony morphology was not possible. However, since
our colonies are very small, we expect that surface energy
minimization is most important in determining the shape so
the colonies are approximately spherical caps. Also, we know
the edges of the colonies were at least three cells thick (the
maximum depth we were able to see by microscope).

We grew colonies in three glucose concentrations: 0.5,
1.5, and 4.5 mM. We inoculated one cell per well using
a fluorescent activated cell sorter (MoFlo FACS, Beckman
Coulter, Inc.); the cells had been grown to saturation in 1 mM
glucose synthetic media. Inoculation was verified under a
microscope, and those wells with a cell closest to the middle
of the well (at least 3 wells per glucose concentration) were
selected for colony tracking. The plate was incubated without
shaking at 25 ◦C for 3 days. Each colony was imaged a day
after inoculation and an additional 2–3 times over the next
2 days. The radius of the largest imaged colony in each glucose
concentration was less than half of the average colony size after
2 weeks of growth (610 μm in 0.5 mM glucose, 920 μm in
1.5 mM glucose, and 1170 μm in 4.5 mM glucose), indicating
that the carbon source was not yet depleted. Images were
taken with a 20× objective on a Nikon inverted Ti microscope
with a Yokagawa spinning disk unit and an EM-CCD camera
(Hamamatsu ImagEM); CFP was excited with a 447-nm laser
and YFP was excited with a 515-nm laser; exposure times for
all images (including single-cell images) were 200 ms (CFP)
and 1000 ms (YFP). All images were focused on the bottom
layer of cells in the colony, and multiple, overlapping images
were taken of colonies that exceeded the field of view. Three
independent experiments were performed. Figures 14 and 15
show the combined results of all experiments.

B. Data analysis and results

Images were processed using the Fiji distribution of
ImageJ [53]. Images were converted to 8-bit, stitched together
[54], and merged into a single RGB image. Contrast was
not adjusted during processing. Fluorescence intensity as a
function of colony radius was measured using a custom script
written in PYTHON. The basic algorithm is as follows: (1)
The constitutive (CFP) image was thresholded using Li’s
minimum cross entropy thresholding method [55]. (2) Noise
and cells not attached to the colony were removed by eroding
and then dilating the binary image a total of 3 times with a
four-pixel-diameter circular structuring element. (3) A series
of mask rings was made by a series of morphological erosions
and subtractions from the original image. The distance
between rings was approximately 8 μm (or 2 cell diameters).
(4) The masks were used to generate images of concentric rings
using both the constitutive (CFP) and the growth-dependent
expression (YFP) image. (5) The average fluorescence of each
ring was measured; the reported, relative fluorescence is the
average expression (YFP) fluorescence divided by the average
constitutive (CFP) fluorescence. Figure 14 shows the intensity
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FIG. 14. (Color online) Relative fluorescence intensity (riboso-
mal protein expression divided by constitutive expression) as a
function of distance d = b − r from the edge of the colony. Here
b is the colony radius and r is the observation position. Each point
is the average fluorescence of an 8-μm-thick ring whose edge is
located an equal distance from the edge of the colony. The last point
on each connected set of lines represents the radius of the colony
and larger radii reflect longer periods of incubation. Each line is
one colony. Colonies were grown in 0.5 mM glucose (top), 1.5 mM
glucose (middle), and 4.5 mM glucose (bottom). Profiles from the
three colonies shown in Fig. 1 are shown as orange (gray) triangles.

as a function of distance from the edge of the colony; each
point in the figure is a measurement of fluorescence at one of
the concentric rings, and a line joins the values from a single
colony.

In order to compare the experimental results to the effective
medium theory, we assume that each colony is a hemisphere
with a radius b equal to the radius of the bottom cross
section. Since the colonies are small compared to the glass
well dimensions and since the glucose molecules do not stick
to the glass, we also assume that the hemispheres sit on an
infinite, reflecting surface. At the infinite surface I , the per-
fectly reflecting boundary condition holds: n̂ · ∇ψ(r)|r∈I = 0,
where n̂ is the surface normal. Also, note that we can bisect a
spherical colony in an infinite medium into two hemispheres
with an imaginary plane. The symmetry of the spherical colony
across the plane guarantees that the same boundary condition
n̂ · ∇ψ(r)|r∈I = 0 holds on this imaginary surface as well.
Therefore, the region on one side of the imaginary plane has
the same boundary conditions as a hemispherical colony sitting
on an infinite reflecting plane. Hence, the concentration profile
ψ(r) for a hemispherical colony on a reflecting surface is given
by the solution for spherical colonies [Eq. (21)], where r is the

FIG. 15. (Color online) Penetration depth � as a function of
colony radius b. Penetration depth in the experiment (symbols)
is the distance from the edge of the colony at which relative
fluorescence drops below 0.4. The theoretical results (solid lines) are
calculated by numerically solving ψ(r = b − �) = ψmin [Eq. (21)] for
�, where we assume that ψmin ≈ 0.25 mM local glucose concentration
corresponds to a 0.4 relative fluorescence level. As discussed in the
text, this level is slightly higher than the level at which the cells
stop growing and expressing the ribosomal protein. We also use
a cell radius of a = 2 μm, a cell packing fraction φ = 0.56, and
ν = 6 × 10−4.

distance from the colony center (measured above the infinite
plane).

As discussed in the previous section, the colonies in the
experiment could be spherical caps with a smaller contact
angle θ < 90◦ at the glass well bottom. A smaller contact
angle corresponds to a more shallow colony with an increased
nutrient penetration depth, due to nutrient diffusion from the
top of the colony. However, we expect that the corrections due
to smaller θ to be small when the penetration depth � is small
compared to the colony height.

Some predictions of the effective medium theory are
qualitatively confirmed by the experimental data. The
effective medium theory described in Sec. II predicts that for
these dense cell colonies, the characteristic shielding length is
50 μm (about 12 cell diameters). This is consistent with the
fluorescence curves in Fig. 14. The theory also predicts that
the glucose level at the outer edge of the colony decreases
like 1/b, where b is the colony radius [see Eq. (21)]. We see
this effect in Fig. 14, where shorter curves (corresponding to
smaller colonies) have a higher fluorescence level at d = 0.
However, the fluorescence level has a complicated, nonlinear
relationship to the glucose concentration in the bulk medium
[see Fig. 13(b)] and the specific 1/b scaling cannot be tested.

Figure 15 shows the penetration distance � as a function
of colony size; penetration distance is defined here as the
distance from the edge of the colony at which the relative
fluorescence intensity falls to less than 0.4. This intensity is
chosen to be well above the background fluorescence level.
For the smaller colonies, the fluorescence is higher than
0.4 throughout the colony. For these colonies, we say that
the penetration depth is equal to the colony radius: � = b.
Equation (21) is used to find a theoretical result for the
penetration depth � inside the colony. We assume that the
relative fluorescence intensity of 0.4 corresponds to a local
glucose concentration of ψmin ≈ 0.25 mM. Again, note that
this level is slightly higher than the minimum glucose level
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required for growth. We estimate the packing fraction of
cells inside a colony, φ ≈ 0.56, by looking at cell colonies
growing on agar (data not shown). Then, assuming a cell radius
a = 2 μm and absorption parameter ν = 6 × 10−4, we find
reasonable agreement between the theoretical solution for �

and the experimental data in Fig. 15.
Assuming a hemispherical colony, it is also possible to

approximate the total number N of growing cells inside the
yeast colony. If � is the penetration depth, then N ≈ 2πφ[b3 −
(b − �)3]/3. In the experiment, a direct measurement of N is
not possible because we only have access to a single slice
through the colony. However, from the penetration depth �

results in Fig. 15, we see that for small colonies, � = b and
all the cells grow so N ∝ b3. As the colony gets larger, the
center stops growing and the penetration depth � starts to
decrease. An analysis of Eq. (24) predicts that � is constant,
but with negative contributions that grow logarithmically with
b. Hence, N should grow like b2 with logarithmic corrections.
The experimental results in Fig. 15 have the predicted decrease
in � at large radii b. However, a test of the specific scaling
arguments for N would require testing larger colonies and
measuring the three-dimensional colony shape.

We do see some disagreements between the experimental
and theoretical results in Fig. 15, especially at the 0.5 mM
glucose concentration. In general, we expect to underestimate
the penetration depth due to our approximation of colonies as
hemispheres. The deviations may also indicate the presence of
biological mechanisms that allow the cell clusters to adapt to
particular nutrient environments. For example, yeast cells can
modify their nutrient uptake parameter ν = κa by expressing
different nutrient transporters on their surface [1]. Our theory
assumes that each cell in a colony has the same absorption
strength ν, an approximation suitable provided all cells employ
the same nutrient transporter system, and the ambient nutrient
concentration is small enough so we are in a linear regime
of nutrient absorption in a Michaelis-Menten-type curve (see
Fig. 2). Therefore, deviations from our theory may indicate
deviations from the linear regime or the presence of regulatory
mechanisms in cells that modify nutrient uptake kinetics
during colony growth.

V. CONCLUSION

We have developed and tested an effective medium theory
of nutrient transport in clusters of cells. Simulations and
experiments support the theoretical results. The key parameters
in our model are the single-cell nutrient absorption parameter ν

and the packing fraction φ of cells in the cluster. The parameter
ν can vary widely depending on many factors, such as the
nutrient transporter expression, transporter kinetics, and cell
wall thickness. We expect ν to decrease with increasing cell
wall thickness as discussed in Sec. II A.

The wide variation in ν for different cell types such as yeast
(ν ∼ 0.001) and Gram-positive (ν ∼ 0.01) and Gram-negative
(ν ∼ 0.1) bacteria has important implications for nutrient
absorption. Effective medium theory predicts very different
nutrient shielding properties of cell clusters as ν varies (see
Figs. 10 and 12). Thus, the fraction of actively growing cells
at a cluster surface will vary significantly with cell types.
For instance, we predict that the screening length � for an S.

cerevisiae colony is about 10 times longer than the length in a
Gram-negative E. coli bacteria colony and 3 times longer than
in a Gram-positive L. mesenteroides bacteria colony, measured
in units of the respective cell diameters. More specifically,
the glucose concentration in a tightly packed yeast colony
(φ ≈ 0.56) will fall off exponentially into the colony with a
characteristic (e-folding) length of 50 μm. A similarly packed
E. coli colony will have a much more rapid falloff with a 1 μm
characteristic length.

Our theory also predicts that nutrient shielding is more
sensitive to the volume fraction φ when each cell is a good
absorber (i.e., for ν � 0.1). As φ increases, correlations
between the cells become more important as nutrient collisions
with multiple cells create a stronger shielding effect. Thus, a
colony of good absorbers, such as Gram-negative bacteria,
should be able to change its nutrient shielding properties by
tuning the separation between each cell. This hypothesis could
be tested by placing bacterial cells in a gelatinous matrix at
various cell densities and observing their growth. As discussed
in Sec. II D, these artificial colonies have many industrial and
environmental applications.

It would be interesting to extend our theory to include
nonspherical cell shapes and cell radius polydispersivity.
Polydispersivity should increase the screening length, but a
detailed understanding of its effect on cell correlations is
lacking. One could also account for spatial variability in φ. Cell
clusters should “thin out” near the cluster surface, where the
cells have not had time to grow into a densely packed structure.
If this density variation occurs on scales large compared to the
cell radii, it should be sufficient to replace φ by a spatially
dependent φ(r) in our effective medium calculations.

To extend the experimental results and test the effective
medium theory more precisely, one could control for the
variability of the ν parameter in the colony. One possibility is to
use engineered yeast strains with fixed nutrient uptake kinetics,
such as the mutants constructed by Reifenberger et al. [2].
These cells express a single type of glucose transporter in
a medium with a low glucose concentration. In addition, it
would be interesting to more precisely characterize the local
glucose concentration in the colony by using either a more
direct reporter or more precisely characterizing the relationship
between glucose level and ribosomal protein expression.
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APPENDIX: DETAILED EFFECTIVE MEDIUM
CALCULATION

Our effective medium calculation of the response function
� will closely follow Cukier and Freed’s analysis of the
perfectly absorbing cell case [43]. We generalize their work by
allowing for partially absorbing cells via the radiation bound-
ary condition [Eq. (13)]. Cukier also considered this case [44],
but only to first order in scattering in the effective medium. We
extend his argument to include the pair distribution function
of the cells, which leads to an important correction term.

We begin by solving for the Lagrange multiplier functions
σα(ri) in Eq. (12) in terms of an “effective medium propagator”
GW (r,r′). On assuming the effective nutrient transport prop-
erties are homogeneous over the cell cluster, the propagator
is translationally invariant [GW (r,r′) ≡ GW (r − r′)] and, in
Fourier space,

ĜW (q) ≡ [D0q
2 + W (q)]−1, (A1)

where W is some suitable approximation to the self-energy
� that tells us how nutrients diffuse through a medium
consisting of the nutrient sinks and their interstitial space.
To simplify the analysis, we introduce an operator notation
for all of our convolution integrals. For example, [W�]r ≡∫

W (r − r′)�(r′) dr′. Subtracting the convolution W� from
both sides of the equation for �(r) [Eq. (12)] yields

�(r) = −
∫

dr′ GW (r − r′)

×
[

N∑
i=1

σ̃i(r′) + s(r′) − [W�]r′

]

≡ −GW

[
N∑

i=1

σ̃i + s − W�

]
, (A2)

where σ̃i(r) = ∫ d	i δ(r − Ri)σi(ri), and GW [. . .] ≡∫
GW (r − r′)[. . .]r′ dr′ is another example of the convolution

described above.
To solve for σi via Eq. (A2), denote the inverse of the

GW operator on the i-th cell surface by K−1
i (ri ,r′

i), where ri

and r′
i are two vectors from the cell origin to the cell surface

[see Fig. 4(c)]. Then, since Eq. (A2) is an equation for �(r)
for all points r in the cluster, �(r) in Eq. (A2) is evaluated
at an arbitrary point r = Ri on the i-th cell surface. In the
perfectly absorbing case Cukier and Freed [43] considered, the
boundary condition �(Ri) = 0 is then used to solve Eq. (A2)
for σi(ri). The analogous condition for partially absorbing cells
is Eq. (13). Using the partially absorbing boundary condition
yields

σi(ri) = −
∫

d	′
i gi(ri ,r′

i)

×
⎡
⎣(1 − Q′

i)GW

⎛
⎝s − W� +

∑
j �=i

σ̃j

⎞
⎠
⎤
⎦

r′=R′
i

.

(A3)

where gi ≡ [1 − K−1
i QiGW ]−1K−1

i is an operator defined on
the surface of the i-th sphere and does not depend explicitly on
the sphere center R0

i . Q′
i is the gradient operator with respect

to the r′ coordinate. Equation (A3) corresponds to Eq. (2.9)
in Cukier’s analysis [44]. Note that in the operator notation,
gi multiplying a function implies a convolution over the i-th
sphere surface: gi[. . .] ≡ ∫ d	′

igi(ri ,r′
i)[. . .]r=R′

i
.

A useful “scattering” operator used in the following is

Ti(r,r′) ≡
∫

δ(r − Ri)gi(ri ,r′
i)(1 − Q′

i)

× δ(r′ − R′
i) d	i d	′

i . (A4)

The operator Ti describes the scattering of a nutrient off of the
surface of the i-th cell. We now substitute Eq. (A3) into the σ̃i

term in Eq. (A2) and solve Eq. (A2) for � by iteration:

� = GW

⎡
⎣ N∑

i=1

TiGW

⎛
⎝s − Wψ +

∑
j �=i

σ̃j

⎞
⎠− s + W�

⎤
⎦

=
⎡
⎣1 − GWT +

∑
i,j �=i

GWTiGWTj − . . .

⎤
⎦GW (W� − s)

= −[1 + GW (T − W )]−1GWs, (A5)

where T ≡∑i Ti . In Eq. (A5), it is important to incorporate
an exclusion condition for consecutive sums in the expansion
of [1 + GW (T − W )]−1, e.g., T GWT =∑i,j �=i TiGWTj (see
Refs. [43,44] for more details). Note also that Eq. (16) (main
text) implies that the ensemble averaged field ψ = 〈�〉 in
Fourier space satisfies

−D0q
2ψ − Wψ = �ψ − Wψ + s

ψ = −GW (� − W )ψ − GWs

ψ = −[1 + GW (� − W )]−1GWs. (A6)

The field ψ in Eq. (A6) must be equal to the ensemble average
of Eq. (A5). We combine the two expressions and set W = �

to find a self-consistent equation for �. After some algebraic
manipulations (see Cukier’s analysis [44] for details), the
equation can be expanded in a series in T . The expansion
up to second order is

� ≈ 〈T 〉 −
∑
i,j �=i

〈TiG�Tj �=i〉 + 〈T 〉G�〈T 〉. (A7)

It makes sense to expand in T because this operator describes
a single interaction of the nutrient with any of the cells.
The higher-order terms in the expansion describe multiple
scattering events, which we expect to be less probable. We will
calculate all three terms on the right hand side of Eq. (A7),
extending Cukier’s analysis of the first term [44].

The various operators in Eq. (A7) are computed by moving
to Fourier space and exploiting expansions in spherical
harmonics. For example, GW (	i,	

′
i) ≡ GW (ri − r′

i) [given
by Eq. (A1)] is expanded in Fourier modes eiq·(ri−r′

i ), which
are then rewritten in terms of spherical harmonics via the
spherical wave expansion of the plane wave [56]. We find

GW (	i,	
′
i) =
∑
�,m

γ�Y�m(	′
i)Y

∗
�m(	i), (A8)

where l = 0,1, . . ., m = −�, − � + 1, . . . ,�, and

γ� ≡
∫ ∞

0

2q2dq

π

j�(qa)2

D0q2 + W (q)
. (A9)
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The j� functions are the spherical Bessel functions of the
first kind. Cukier [44] describes this procedure in more detail.
Another important result [Cukier’s Eq. (A15) generalized to
arbitrary W ] is

gi(ri ,r′
i) =
∑
�,m

[
1 − γ −1

� ζ�

]−1
γ −1

� Y�m(	i)Y
∗
�m(	′

i), (A10)

where

ζ� ≡ 2a

πν

∫ ∞

0
dq

q3j ′
�(qa)j�(qa)

D0q2 + W (q)
. (A11)

Now that we have an expression for gi , it is possible to
compute 〈T 〉. The bracket ensemble average will require an
averaging over all cell positions, so let us assume that a single-
cell center is distributed uniformly over the cluster volume
V , so P (R0

i ) = V −1 for all i = 1, . . . ,N . After averaging, the
operator 〈T 〉 acts on an arbitrary function f (q) in Fourier space
as follows:

〈T 〉f (q) = c

∫
e−iq·r0g0(r0,r′

0)(1 − iν−1r′
0 · q′)

× eiq′ ·r′
0ei(q′−q)·rf (q′) d	0 d	′

0
dq′

(2π )3
dr

= 4πc
∑

�

κ�(2� + 1)j�(aq)

× [j�(aq) − ν−1aqj ′
�(aq)]f (q)

≡ T (q,q)f (q), (A12)

where c = N/V is the concentration of cells and κ� ≡ [1 −
γ −1

� ζ�]−1γ −1
� . In the last line of Eq. (A12), we have introduced

T (q,q′), a convenient scattering operator (averaged over the
single-cell center distribution P (R0

i ) = V −1). In Fourier space,

T (q,q′) ≡ 4π
∑

�

κ�[j�(aq ′) − ν−1aq ′j ′
�(aq ′)]

× j�(aq)(2� + 1)P�(cos θq), (A13)

where θq is the angle between q and q′ and P� are the Legendre
polynomials. Only the diagonal elements T (q,q) contribute to
〈T 〉. The off-diagonal terms will contribute to the second-order
correction term

∑
i,j �=i〈TiG�Tj �=i〉 in Eq. (A7).

The second-order correction term requires the use of the
pair distribution function P (R0

i ,R
0
j ) for the centers of pairs of

cells i and j . We use the approximation Eq. (31) for P (R0
i ,R

0
j )

and find∑
i,j �=i

〈TiG�Tj �=i〉 = N (N − 1)

V 2

∫
T (q,q′)Ĝ�(q′)

× θ̂ (q′ − q)T (q′,q)
dq′

(2π )3
, (A14)

where θ̂(q) is the Fourier transform of θ (|r| − 2a),

θ̂ (q) = − 32πa3j1(2aq)

2aq
+ (2π )3δ3(q). (A15)

We assume N is large enough so N (N − 1) ≈ N2 and then
substitute Eq. (A14) into Eq. (A7) to find that to second order

in scattering in the effective medium

�(q) = cT (q,q) + 4a3c2

π2

∫
T (q,q′)Ĝ�(q′)

× j1(2a|q′ − q|)
2a|q′ − q| T (q′,q) dq′. (A16)

In principle, Eq. (A16) could be solved for �(q) numerically
using an iterative procedure. However, the second-order terms
involve an integral of Ĝ�(q) = [D0q

2 + �(q)]−1 multiplied
by various Bessel functions. Due to the oscillatory nature
of the Bessel functions, these kinds of integrals have poor
convergence properties using standard numerical techniques
and require special integration methods [57]. To avoid these
complications, we make a “hydrodynamic” approximation
[33,44,58] in which �(q) is approximated by the first two
terms of its Taylor expansion: �(q) ≈ k + δDq2.

The constants γ� and ζ� have closed forms in the hydrody-
namic approximation and involve integrations over spherical
Bessel functions (tabulated in Ref. [59]). We first note that

γ� = 2

Dπa

∫ ∞

0

j�(x)2

x2 + α2
x2 dx = αi�(α)k�(α)

Da
, (A17)

where α ≡ a/ξ is the ratio of the cell radius to the correlation
length ξ = √

D/k and i�(x) and k�(x) are the modified
spherical Bessel functions of the first and second kinds,
respectively. Next, we have

ζ� = 2

πνDa

∫ ∞

0

j ′
�(x+)j�(x)

x2 + α2
x3 dx = α2i�(α)k′

�(α)

νDa
,

(A18)

where the x+ means we evaluate the derivative of the Bessel
function at x + ε and let ε → 0. Using Eq. (A17) and
Eq. (A18) to evaluate T (q,q′) in Eq. (A13) and substituting
T (q,q′) into Eq. (A16) (evaluated at q = 0) yields

k = cT (0,0) + 8a2c2

πD

[
4πDaαν(1 + coth α)

1 + α + ν

]2

×
∫ ∞

0

j0(x)j1(2x)[j0(x) − ν−1xj ′
0(x)]

x2 + α2
x dx, (A19)

where the integral over the product of three spherical Bessel
functions is performed by writing the Bessel functions in terms
of elementary functions such as powers and exponentials and
then using contour integration techniques. The final result
reduces to the implicit equation for ξ , given in the main text
as Eq. (32).

The diffusion coefficient D can be calculated by looking
at the second-order term in the Taylor expansion of Eq. (A16)
around q = 0. Note that for the purposes of determining the
effects on nutrient shielding in a cell cluster, the relevant
quantity is the screening length ξ . A lengthy calculation of
the change in the diffusion coefficient δD = D − D0
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yields

δD

D
= c

2D

d2

dq2
[T (q,q)]

∣∣∣∣
q=0

+ a3c2

Dπ2

d2

dq2

[∫
dq′ T (q,q′)Ĝ�(q′) × j1(2a|q′ − q|)

a|q′ − q| T (q′,q)

]∣∣∣∣
q=0

= (1 − ν)(κ̃0 − κ̃1)

ν

[
1 + 6κ̃0

α2
φ

]
φ − 9κ̃2

0

α4
φ2 + 36

{
κ̃0i0(α)

[(
1

α2
+ 1 − 1

3ν

)
k1(2α) + 2k0(2α)

3α

]

+ 2(1 − ν)k2(2α)κ̃1i1(α)

3ν

}
κ̃0

[
i0(α) − αi ′0(α)

ν

]
φ2 + 12κ̃1

ν
[κ̃1(ν − 1)k1(2α)i1(α) − 2νk2(2α)κ̃0i0(α)]

×
[
i1(α) − αi ′1(α)

ν

]
φ2, (A20)

where α ≡ a/ξ is given by the self-consistent solution to Eq. (32) and [κ̃�(α)]−1 ≡ αi�(α)[k�(α) − αk′
�(α)
ν

] for � = 0,1.
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