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Rheology of polymer solutions using colloidal-probe atomic force microscopy
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We use colloidal-probe atomic force microscope (AFM) to study the rheological behavior of polymer solutions
confined between two surfaces: the surface of a sphere and a flat surface on which the fluid is deposited.
Measurements of the hydrodynamic force exerted on the sphere by the flowing liquid allowed retrieving the
viscosity of the solution for different distances between the sphere and the flat surface. This method has been
experimentally tested for Newtonian fluids for which the viscosity does not vary versus the gap dimensions. On
the other hand, for non-Newtonian fluids, such as the large molecular weight polymer solutions used here, the
measured viscosity depends on the gap height D between the flat surface and the sphere. The decrease of the
viscosity versus gap height is similar to previously observed variations in colloidal suspensions. Depletion of
polymers in the gap region due to the high shear rates involved is a possible cause for such a variation.
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I. INTRODUCTION

Fluids such as polymer solutions, surfactant solutions,
emulsions, or colloidal suspensions behave very differently
from low molecular weight liquids such as water when a flow
field is imposed. These differences are usually highlighted by
the manner in which the viscosity of such solutions depends
on the deformation rate and by the existence of a nonzero
elastic modulus. This behavior is generally due to the presence
of mesoscopic constituents that interact with each other and
with the flow field. It is the complexity of these interactions
that is responsible for the rich behavior of complex fluids.
Different methods are used to characterize the behavior of
these fluids subjected to a flow deformation. Rheological
measurements turn out to be very sensitive to the nature of
the fluid studied. The rheology of these fluids is a key issue
in several domains of applications, such as food processing,
materials processing, cosmetics, and lubrication, where the
fluids are subjected to strong deformations. Conventional
methods for measuring the rheological properties of a given
fluid rely on the use of commercial rheometers using different
geometries [1,2]. The classical rheometer [1,2] measures the
viscosity of a fluid as a function of imposed shear stress or
shear rate and provides information about the viscoelasticity
(elastic and viscous moduli) of the probed fluid for different
time scales. Despite the widespread use of this technique, it
is limited by the performance of the device: a rheometer does
not allow rheological measurements beyond a certain range
of frequencies, for example, and demands large quantities
of fluid for operation. To overcome the frequency-range
limitation, alternative methods dubbed “microrheology” have
been developed [3,4]. These methods are well adapted to
miniaturization, thereby allowing the characterization of a
given material using very small volumes. The ability to
characterize small volumes of fluid enabled these techniques
to be widely used in the field of biocharacterization, for
example [5,6]. The major drawback of such a technique is the
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long image and signal processing times needed to extract the
rheological properties. Further developments also include the
use of microelectromechanical systems (MEMS) to measure
the local viscosity of fluids as well as their viscoelastic
response in small volumes [7,8]. These usually rely on the
use of miniature cantilevers that oscillate in the solution to be
studied. The oscillations of the cantilever are sensitive to the
ambient medium properties so quantities such as the viscosity
of the solution or its elastic response can be extracted. The
reduction in fluid volume accompanied by the reduction of
the gaps used to create flow may pose a certain number of
problems. When mesoscopic constituents are present (consider
large molecular weight polymers in a liquid or colloids or
nanoparticles in solution that introduce a characteristic size),
if the gap used approaches a few characteristic sizes, the local
concentration of the constituents may vary with solicitation.
Recent calculations and observations have highlighted the fact
that local concentrations of nanoparticles in small gaps may
be much smaller than the bulk concentration, for example
[9,10]. The role of confinement on the behavior of fluids is,
therefore, essential not only for probing their properties at
scales comparable to their constituents’ dimensions but also
for a better understanding of the results of different recent
techniques.

In this paper, we use a colloidal-probe atomic force
microscope to measure the rheological properties of confined
polymer solutions between two surfaces: the surface of a
sphere glued on the probe of a microcantilever and the flat
surface holding the liquid. The principle of the technique
is simple: if the sphere approaches the bottom surface at a
constant velocity, the fluid exerts a hydrodynamic force on the
sphere and this force gives direct information about the local
viscosity of the fluid. This technique was used previously to
study the hydrodynamic interaction between a fluid and a solid
surface and to determine the boundary conditions for liquid
flow near a solid surface [11–16].

The properties of the liquid near the solid surface play
a major role in setting the forces acting on the sphere. In
the 1960s, Brenner and others [17,18] have theoretically
determined the hydrodynamic force on a colloidal particle
flowing in a Newtonian fluid near a solid wall. This force
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depends on the separation distance between the sphere and the
flat surface and on the viscosity of the fluid.

This hydrodynamic force has been tested explicitly by
Honig and Ducker [19], who used colloidal-probe atomic force
microscopy to study the hydrodynamic force exerted by the
flow on a small sphere approaching a flat surface in a sucrose
solution. Measurements of the viscosity of the solution, using
the hydrodynamic force expression calculated by Brenner,
turn out to be insensitive to the gap width as expected for
a Newtonian fluid. It should be noted here that such a result
may not be valid at gap widths comparable to the molecular
dimensions of the fluid. Previous experiments [in surface force
apparatus (SFA), for example, or using the colloidal probe]
have observed ordering near solid surfaces for gap widths near
five molecular sizes [20].

On the other hand, Bhattacharya and Blawzdziewicz [9]
have carried out a theoretical analysis of the hydrodynamic
force exerted on a colloidal particle approaching a solid
surface in a dilute solution of smaller, nonadsorbing, spherical
particles. The authors found that as the particle-flat surface gap
width diminished, the viscosity in the gap region varied. At
large separations with respect to the small particle diameter,
the viscosity asymptotically approached that of the solution.
At smaller distances, the viscosity is very close to the solvent
viscosity. Specifically, the viscosity in the gap region was less
than the solution viscosity at separation distances as large as
20 particle diameters. The local concentration of the small
particles diminished as the gap between the sphere and the
flat surface decreases. This calculation has been tested by
G. K. James and J. Y. Walz [10], who used the colloidal-probe
force microscopy technique to measure the hydrodynamic
forces exerted on a 30-μm-diameter sphere being moved
toward or away from a flat surface in an aqueous solution
of nanoparticles (22 nm diameter). They have shown, for
large separation distances, that the measured viscosity of this
confined solution is close to the viscosity measured using
classical rheology. At small separation distances, they found,
using the hydrodynamic force of Brenner, that the viscosity
was smaller than that measured using classical rheology and
close to that of the solvent. The viscosity measured did not
depend on the velocity, and the changes in the effective
viscosity extended to large (at least 20-nanoparticle diameters)
separation distances. These results are consistent with the
predictions of Bhattacharya and Blawzdziewicz [9].

Does such a phenomenology persist when the colloids are
replaced by deformable objects such as polymers? Defor-
mation of polymers in high shear rate regions or depletion
of such molecules from such regions (as may occur near
boundaries) has been observed before [21] and may affect the
hydrodynamic resistance experienced by a sphere approaching
a solid surface. In this paper, we examine this issue in
detail.

In the experiments presented here, we have used the
colloidal-probe atomic force microscopy technique to measure
the force exerted on a sphere, as it approached a flat solid
surface at different velocities, in a large molecular weight
polymer solution. The separation distance between the sphere
and the flat surface was varied from about 10 μm down to
a fraction of a micrometer. These separations span a range of
distances from about 50 molecular diameters down to less than

1 molecular diameter. Confinement effects were, therefore,
probed over a wide range of distances with respect to the
polymer molecular dimensions. The diameter of the (probe)
sphere was much larger than the molecular dimensions and was
in the range of 115 to 125 μm. Through the hydrodynamic
force exerted on the sphere, we deduce the viscosity of the
fluid in the gap as a function of the velocity, the distance
D separating the sphere from the flat surface, and the shear
rate

.
γ within this gap. We systematically compared the mea-

surements made by colloidal-probe atomic force microscopy
to measurements using classical rheology. Our main results
indicate that the measured viscosity is systematically smaller
than the viscosity measured using a classical rheometer when
the separation distance decreases. The effect is found even
at distances as large as 20 times the radius of gyration of
the polymer used. Depletion of polymer molecules in the
gap region, most probably due to the high shear rates in
the gap [21], is a probable reason for such a decrease of
the viscosity of the solution. Complementary measurements
using the Brownian motion of small particles in the gap region
confirm these observations.

II. MATERIALS AND METHODS

On a silicon nitride rectangular cantilever (Veeco ORC8)
of 200 μm in length and 40 μm in width, we glued a
borosilicate sphere of diameter ranging from 115 to 125 μm
(GL0186B/106-MO-Sci Corporation) using an epoxy glue.
The advantage of using such large-sized spheres is to increase
the hydrodynamic interaction and to minimize the contribution
of the hydrodynamic drag force due to the cantilever itself.
A small droplet of the studied liquid was deposited on a
hydrophilic mica surface. The cantilever and the sphere were
immersed in the droplet. Before each experiment, the mica
substrate was cleaved, ensuring a clean and smooth surface.
The sample (mica surface) was fixed on a piezoelectric stage
(Nano-T225, City Labs Inc., Madison, WI, USA), which has
a displacement of 5 μm/V.

The displacement of the piezoelectric system is controlled
by a function generator using triangular waveforms with
frequencies in the range of 0.01–1 Hz and a peak-to-peak
amplitude of 8 V to move the fluid sample toward the probe
and away from it. During the displacement of the sample,
the deflection of the cantilever due to the hydrodynamic
force exerted by the displacement of the fluid on the solid
surface toward the probe is detected using a photodetector. An
acquisition system is used to acquire the electrical signal from
the photodetector.

We studied different fluids in this configuration: water-NaCl
at 10 mM, an aqueous solution of polyethylene glycol [PEG;
from Fluka Chemika Cat. No. 81300 Lot No. 408095/1;
Mw = 20 000 g/mol (16 000–24 000 g/mol), radius of gyration
Rg = 4 nm, and polymer overlap concentration c∗ = 124 000
ppm; the Zimm relaxation time is τzimm = 1.6.10−8 s, the
concentration used is 18 300 ppm or c/c∗ = 0.15] and
an aqueous solution of a large molecular weight polymer
polyacrylamide (PAA; Polyscience Cat. No. 18522, Lot No.
518644; Mw = 18 × 106 g/mol, Rg = 300 nm) at different
concentrations. The polymer overlap concentration c∗ for PAA
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is about 200 ppm [22]. The estimated Zimm relaxation time
of this polymer is 6.8 ms. We examined concentrations
both below and above c* for the PAA solution. Rheological
measurements were performed in a controlled stress rheometer
(AR1000, TA Instruments) in cone-plate geometry (radius
30 mm, cone angle 1◦). The truncated gap (the smallest
distance between the cone and the plate) is 15 μm. This is
larger than the range of gaps explored using the AFM.

A. Hydrodynamic force

Our experiments make explicit use of the hydrodynamic
force exerted on a sphere as it approaches a flat solid surface.
This problem has been solved in the 1960s by Brenner, and
we here recall the main result. For a solid sphere approaching
a flat solid surface with a velocity V , the hydrodynamic force
acting on the sphere is given by Brenner’s expression [17]:

F = −6πηRV λ, (1)

where

λ = 4

3
sinh(α)

∞∑
n=1

n(n + 1)

(2n − 1)(2n + 3)

×
{

2 sinh[(2n + 1)α] + (2n + 1) sinh(2α)

4 sinh2[(n + 1
2 )α] − (2n + 1)2 sinh2(α)

− 1

}
(2)

and

α = cosh−1

(
1 + D

R

)
. (3)

In Eqs. (1)–(3), R is the sphere radius, D is the separation
distance between the surface of the sphere and the mica
surface, and η is the liquid viscosity.

In the case where D is very small compared to the sphere
radius (D � R), λ = R

D
and the force expression reduces to

Taylor’s form:

F = −6πηR2

D
V. (4)

On the other hand, when the distance D is very large
compared to the sphere radius (D � R), the force expression
simply reduces to the Stokes’s form:

F = −6πηRV. (5)

These expressions assume no slip boundary conditions on
both the sphere surface and the flat surface.

B. Cantilever calibration

The measurements carried out here are based on recording
the deflection of the cantilever with the sphere attached as
the bottom flat surface is approached toward the sphere or
retracted from it. The hydrodynamic force exerted by the fluid
on the sphere causes the cantilever deflection. In order to
extract the fluid characteristics, the cantilever properties and
contact position with the flat surface need to be determined.
The calibration of the cantilever deflection was performed
in situ by making use of the cantilever deflection measured by
the photodiodes as the mica substrate approached the sphere
in a solution of water [23]. The addition of salt to the water

reduces electrostatic forces between the mica surface and the
sphere.

To convert the photodiode voltage to deflection in nanome-
ters and get the contact position (D = 0) we have followed
the procedure described in Refs. [19,24]. For each realization,
we determine the slope of the measured photodiode voltage
versus the piezo displacement in the constant compliance
zone when the sphere and the substrate are in contact. This
gives the cantilever deflection zc. Extrapolation of the constant
compliance zone data to zero intercepts the displacement axis
at the contact position (D = 0), allowing us to determine the
latter with a precision of roughly 5 nm. This procedure is
explained in Fig. 1(a). In order to obtain the actual separation
distance, the cantilever deflection was added to the piezo
displacement. The actual velocity (during the approach or
withdrawal phases) is obtained from the full sphere-substrate
distance by calculating its time derivative:

V = dD

dt
. (6)

A typical example of the measurement of the cantilever
deflection resulting from the hydrodynamic force acting on the
sphere is presented in Fig. 1(b). The deflection of the cantilever
is positive when the mica surface approaches the sphere. On
the other hand, when the mica surface is withdrawn from
the sphere surface, the deflection is negative. The approach
phase (A) and the withdrawal phase are similar in shape
down to about 400-nm separation as shown in the inset to
Fig. 1(b). This inset displays the sum of the deflections [upon
approach (A) and upon withdrawal (W)], which is zero down
to 400 nm, showing that the withdrawal and approach phases
are symmetric for distances larger than 400 nm. The difference
between the deflections is also shown and deviations due to an
asymmetry between the two phases also appears at distances
smaller than 400 nm. This asymmetry between the approach
and withdrawal is due to differences in the approach and
withdrawal velocities at these distances.

The hydrodynamic force is related to the measured can-
tilever deflection by Fh = kzc. From Eq. (4), which is valid
for D � R, we have

zc = 6πηR2

kD

dD

dt
. (7)

To determine the stiffness k of the cantilever with a sphere

attached, we plot
( dD

dt
)

zc
versus D. This variation is linear with

a slope given by k
6πηR2 , as shown in Fig. 1(c). The stiffness

is obtained from the value of the slope, for a known viscosity
and known radius, giving k = 0.20 ± 0.01 N/m.

III. VISCOSITY MEASUREMENTS

For the salt water solution, the only force that acts on the
sphere during the approach or withdrawal of the solid surface is
the viscous hydrodynamic force. For a polymer solution there
could be additional forces (depletion forces, elastic forces,
etc.) that may result from the confinement and the shearing
of the solution. We note that while the viscous force changes
direction if the velocity changes direction, the additional forces
do not. To extract the effective viscosity of the studied liquids
from the measured force, we proceed as follows.
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FIG. 1. (a) Cantilever calibration. Note the linear region giving
the calibration of the photodetector voltage. Once this calibration is
carried out and the voltage converted to a distance zc, extrapolation of
this linear zone to zero (indicated by the solid line) gives the contact
position D = 0. (b) Cantilever deflection due to the hydrodynamic
force versus the distance D between the surfaces (mica and sphere)
during the displacement of the mica surface (surface carrying the
liquid). For the approach, the deflection is positive and increases as
D decreases. For the withdrawal phase, the deflection is negative. The
inset shows a close up at small distances D. Note that the approach
and withdrawal signals are not symmetric for distances below 400 nm,
as shown by the nonzero value of the sum of deflections and by the
deviation of the half difference between the deflections measured
upon approach and upon withdrawal. This asymmetry at small
distances is due to differences in velocity V between the approach
and the withdrawal phases at similar gap heights. (c) Variation of the
velocity V divided by the cantilever displacement versus the distance
D. The confined liquid between the borosilicate sphere and the flat
mica surface is salt water. The solid line is the fitting curve using
the theoretical expression of Eq. (7). The fit goes through the origin,
indicating no slip, and gives the value of the stiffness k.

We consider that the force acting on the sphere has two
components, a viscous force Fν and an additional force Fe.
When the mica surface moves toward the sphere glued on the
cantilever, the projection of the force gives

Fν + Fe = kZa. (8)

On the other hand, when the mica surface moves away from
the sphere, the projection of the force gives

−Fν + Fe = kZr . (9)

Here, Za and Zr are the cantilever deflections during the
approach and withdrawal phases. While the viscous force
changes sign, the additional forces do not. The sum and
subtraction of Eqs. (12) and (13) gives

2Fe = k(Za + Zr ), (10)

2Fν = k(Za − Zr ). (11)

From the viscous force, and using the hydrodynamic force
discussed above, we can extract the effective viscosity of the
solution:

η = k(Za − Zr )

12πRV λ
. (12)

IV. RESULTS AND DISCUSSION

As explained above, the measurement of the deflection of
the cantilever as a function of the distance D allows us to
obtain the viscous hydrodynamic force from an analysis of the
approach and withdrawal phases. We have used two polymer
solutions: a PEG solution of low molecular weight and exhibit-
ing little elasticity and a PAA solution of high molecular weight
with an important elastic response. In Figs. 2(a) and 2(b), we
show the measured deflection versus the distance between the
sphere and the flat surface for the PEG and the PAA solutions,
respectively. In the case of the PEG solution [Fig. 2(a)], we ob-
serve that the deflection of the cantilever is symmetric between
the approach and withdrawal phases. Any asymmetry arises at
distances smaller than 400 nm as seen in Fig. 1(b). As expected,
the only forces acting on the sphere are of viscous origin and
no sign of an elastic response or additional forces is observed.
However, these deflections are not symmetric, even at large
distances, in the case of PAA solutions as shown in Fig. 2(b).
The difference between both cases is related mostly to the pres-
ence of a strong elastic component for PAA. We cannot rule out
the presence of additional forces, however. In order to unravel
the information conveyed by the variation of the cantilever de-
flection versus distance D, we represent, as shown in Fig. 3(a),
the sum and the difference of the deflections for PEG solutions
using two different velocities. The sum of deflections is close
to zero for the PEG solution as expected. In this case, the force
exerted on the sphere surface is solely the viscous force, which
is low for large separations and increases markedly for low
separations and for higher velocities as expected. In Fig. 3(b),
we plot the sum and the difference of the deflections measured
for the PAA solution. We find that the deflections’ sum is
not zero but positive and increases as the separation distance
decreases. This confirms the fact that the polyacrylamide
solution is a viscoelastic liquid with a strong elastic component
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FIG. 2. (Color online) Measurement of the cantilever deflection
during the approach and withdrawal of the mica surface. (a) In the
case of Newtonian PEG solutions, symmetrical deflections between
the approach and withdrawal of the cantilever were observed. (b) In
the case of non-Newtonian polyacrylamide solutions, asymmetrical
cantilever deflections have been observed. Two different concentra-
tions (300 and 100 ppm, corresponding to 1 and 0.5 for c/c*) are
used for a velocity of 79 μm/s. This velocity refers to that of the
piezoelectric stage used to move the mica surface and not to the
relative velocity between the mica surface and the sphere.

giving rise to a positive normal force. Possible depletion forces,
which are on the other hand attractive, cannot be ruled out even
though their magnitude was estimated to be much smaller than
the measured forces at the examined separations. The forces
exerted on the surface of the sphere in this case are both elastic
and viscous forces, which increase as the separation distance
decreases and as the polymer concentration increases.

Equation (12) can be used to calculate the viscosity of
the polymer solutions versus the gap height D. Specifically,
for PEG, which has a constant viscosity over a large range
of shear rates as measured with a Rheometer and for which
the elastic part is basically absent, we find that the viscosity
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FIG. 3. Sum and difference of deflections: (a) Newtonian liquid is
PEG at 18 300 ppm at different velocities of the mica surface and (b)
non-Newtonian liquid PAA solution at 300 and 100 ppm for a velocity
of 79 μm/s. This velocity refers to that of the piezoelectric stage and
not to the relative velocity between the surface and the sphere.

curves obtained during the approach and the withdrawal
phases are superimposed. The value of the viscosity of the
PEG solution shown in Fig. 4(a) turns out to be constant and
independent of the distance D. These results are consistent
with the rheology measurements for which the viscosity is
independent of shear rate giving η = 0.007 Pa s, as shown in
Fig. 4(b). Note that the molecular size of the PEG molecules
is well below the heights used.

As mentioned above, the PAA solution has elastic (and
perhaps additional forces) and viscous contributions to the
measured force. We will focus only on the viscous part
obtained using Eq. (12). Since these solutions are strongly
shear-thinning, we first consider the variation of the viscosity
versus shear rate and estimate the shear rate as

.
γ ∼ 3

V

D
.
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(a)
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FIG. 4. (a) Viscosity of the PEG solution versus gap height D.
(b) Viscosity of the PEG solution using rheology measurements in a
cone plate geometry. Note that the two determinations give a similar
result: a constant viscosity of about 7 mPa s.

This estimate considers a volume πD3 around the center
of the gap and assumes Poiseuille flow. In Fig. 5, we plot the
viscosity of the polyacrylamide solution at a concentration of
200 ppm (parts per million by weight) or a value of c/c* of
1 extracted from the force measurements versus the estimated
shear rate. The black curve represents the measurements
obtained with a conventional method (a rheometer in the cone
plate geometry) and the three other curves are obtained with the
colloidal-probe AFM at different velocities of the piezoelectric
stage.

From the rheology measurements, the viscosity is roughly
constant at low shear rates and decreases with shear for
rates higher than about 50 s−1, which corresponds to the
inverse of the relaxation time of the solution. The viscosity
measured with the AFM probe does not follow this variation
and the measurements seem to be below the rheology curve
and reach values close to the solvent viscosity for high
shear rates. The two viscosities seem to be close only at
low shear rates or large distances D. In order to explore
this discrepancy with respect to conventional measurements
even further, we compare data using different velocities of
the piezoelectric stage. In principle, and if the viscosity
depends only on the shear rate, the results obtained with
the three different velocities used should superimpose. It is
clear from Fig. 5 that the three viscosity curves deduced
from the measurement of the cantilever deflection are offset
relative to each other. The different realizations show that
the viscosity of a polyacrylamide solution decreases when
the shear rate increases but they do not collapse versus shear
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100 101 102 103

V = 79 µm/s
V = 39.5 µm/s
V = 7.9 µm/s

Classical rheology

η 
(P

a 
s)

γ (s-1)

PAA solution (200 ppm)

.

FIG. 5. Viscosity of the PAA solution (200 ppm, c/c* = 1) as a
function of shear rate using different velocities. The results from AFM
measurements are compared to rheological measurements. Note the
differences between the measurements for different velocities and
with the rheological measurements. The velocity refers to that of the
piezoelectric stage and not to the relative velocity between the surface
and the sphere.

rate as they should. All three curves are also offset from the
rheology measurements. This behavior shows that the decrease
of the viscosity observed here is not solely due to the shear
thinning character of the solution. If this were the case, the
viscosity curves should collapse versus shear rate for the three
different velocities used and should agree with the rheology
measurements.

On the other hand, if the viscosity is examined versus the
distance D between sphere and surface, a surprising result
emerges. Figure 6(a) shows that the curves of the viscosity
at a concentration of 200 ppm for different piezoelectric
stage velocities are superimposed when plotted versus the
distance D. This shows that the viscosity is independent of the
displacement velocity of the mica surface. This is reminiscent
of the results mentioned above on nanoparticle suspensions,
where the effective viscosity of the solution decreases with
decreasing gap height due to a lowering of the suspension
concentration in the gap region [9,10]. Note that for large
gaps the viscosity is close to that of the bulk solution at low
shear rates but the decrease persists at distances as high as
6 μm (about 10 molecular diameters). Our results also explore
heights comparable to and even smaller than the molecular
dimensions of the polymers. For such small dimensions where
the gap can hardly accommodate more than one molecule, it
is probably not surprising to find small viscosities.

Other concentrations show a similar behavior. The decrease
in viscosity when the distance D between the two surfaces
decreases is obtained for a 100 ppm solution or a value of
c/c* of 0.5 as shown in Fig. 6(b) for different displacement
velocities. A summary of these results is shown in Fig. 7. The
measured viscosity depends on the concentration of polymer
and on the distance between the surface and the sphere but is
independent of the velocity. As the concentration increases,
the viscosity increases as expected. For large distances, the

062601-6



RHEOLOGY OF POLYMER SOLUTIONS USING . . . PHYSICAL REVIEW E 87, 062601 (2013)

10-3

10-2

0.1 1 10

V = 7.9 µm/s
V = 39.5 µm/s
V = 79 µm/sη(

P
a 

s)

D(µm)

PAM solution ( 200 ppm )

2 R
g

10-3

10-2

0.1 1 10

V = 7.9 µm/s
V = 39.5 µm/s
V = 79 µm/s

η(
P

a 
s)

D(µm)

PAM solution (100 ppm)

2 R
g

(a)

(b)

FIG. 6. (a) Viscosity of a PAA (200 ppm) solution at different
velocities (79 μm/s, 39.5 μm/s, and 7.9 μm/s) versus the distance
D. (b) Viscosity of a PAA (100 ppm, c/c* = 0.5) solution at different
velocities (79 μm/s, 39.5 μm/s, and 7.9 μm/s) versus the distance
D. Note that the different curves collapse onto a single curve. Note
also that the large distance measurements are close to the low shear
rate viscosity of the solution, which is near 4 mPa s for the 200 ppm
solution and near 2 mPa s for the 100 ppm solution. The velocity
refers to that of the piezoelectric stage and not to the relative velocity
between the surface and the sphere.

extracted viscosity follows the viscosity measured with the
rheometer. The inset to this figure shows the low shear rate
viscosity from rheology measurements and that extracted at
large distances. The two viscosities follow the same trend
with values close to each other for the different concentrations
examined. As the distance decreases, however, the viscosity
shows a large decrease and reaches values close to the solvent
viscosity for small distances.

The distance D is, therefore, an important parameter that
controls the viscosity variation. The shear rate as estimated
from the simple expression above does not seem to be
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FIG. 7. (Color online) Viscosity of the PAA solution at different
concentrations (500, 300, 200, and 100 ppm, corresponding to c/c*
values of 2.5, 1.5, 1, and 0.5) for a velocity of 39.5 μm/s. This velocity
refers to that of the piezoelectric stage and not to the relative velocity
between the surface and the sphere. The inset shows the zero shear
viscosity from rheology measurements and the AFM measurements
at large separation D.

a relevant parameter to collapse the viscosity data. Shear
thinning alone is, therefore, not sufficient to explain the
variation of the viscosity measured here. Furthermore, the fact
that the viscosity decreases to values as small as that of the
solvent cannot be explained by shear thinning alone since the
rheology measurements indicate that at high shear rates (above
1000 s−1) the viscosity remains higher than that of the solvent.

One possible explanation for such a decrease of the
viscosity for small distances D (below about 5 μm) is depletion
of polymers from the gap. This has been observed and
predicted for colloidal solutions where the lowering of the
particle concentration in the gap region is responsible for a
lower viscosity. This effect has been noted for gap heights
as large as 20 particle diameters. For the case of polymer
solutions, it has been noted before that large shear rates induce
migration of polymers away from the solid boundaries where
the shear is high [21]. Such a depletion layer has been observed
experimentally in different experiments [21] and its thickness
L is predicted to scale as L ≈ RgWi2/3. Here, Wi is the so
called Weissenberg number given by Wi = .

γ τr , where τr is
the relaxation time of the polymer solution. Typical depletion
layer thickness is, therefore, comparable or higher than the
radius of gyration Rg of the molecules for Wi greater than
1. The radius of gyration of the PAA molecules used here is
0.3 μm. We may, therefore, expect that at small distances and,
therefore, relatively high shear rates, both near the surface of
the sphere as well as on the flat surface, a depletion layer almost
devoid of polymers exists that renders the hydrodynamic force
acting on the sphere smaller than expected. This effect will give
rise to a viscosity that is smaller than that at the macroscopic
scale measured with the Rheometer. Note that for the PEG
solution, the radius of gyration is estimated at 4 nm [25], and
the relaxation time of the solution is estimated to be smaller
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than 0.1 ms, so depletion effects may arise only at very small
distances of order a few nanometers, so it is not surprising that
the measured viscosity in this case remains close to that of the
solution for gap heights larger than 80 nm.

Further checks of such a hypothesis follow through mea-
surements of the Brownian motion of small colloidal particles
in the gap between the sphere and the surface. These additional
experiments explore the Brownian motion of small particles
in the gap between the sphere and the surface and, therefore,
probe the local viscosity of the solution within the gap. If
depletion does occur, we may expect enhanced diffusion with
respect to the bulk polymer case and, therefore, a lower
effective viscosity.

Fluorescent nanoparticles of diameter 200 nm were used in
the solution. The concentration of particles is kept extremely
small so no particular effects due to the presence of particles
in solution are expected. The same large sphere diameter was
used for this experiment, but instead of mica as the bottom
surface, a microscope glass slide was used. The concentration
of polymer (PAA) was fixed to 500 ppm (c/c *= 2.5). The
sphere was approached toward the surface at a velocity of
180 μm/s down to a distance D of 4 μm from the surface. The
movement was then stopped and the particles tracked using an
epi-fluorescence set up with a microscope objective of 63×
magnification. A sensitive camera working at 120 frames per
second was used to image the particles and their Brownian
motion in the gap between the sphere and glass slide.

The mean-square displacement of the nanoparticles was
calculated from a time trace of the particles’ trajectories
as 1/2〈[x(t + τ ) − x(t)]2 + [y(t + τ ) − y(t)]2〉. The brackets
refer to an average over time t and over different particles.
Different positions from the center of the gap were examined
and different times after cessation of the flow were analyzed.

Figure 8 displays the mean-square displacement of these
nanoparticles in the bulk polymer solution, below the sphere
in the polymer solution, and in the reference salt water solution.
Note that the mean-square displacement varies linearly with
time τ as expected for Brownian motion in all three cases.
The slope of this variation gives the diffusion constant DSE,
which is given by kBT

6πηRp
, where kB is the Boltzmann constant,

T is the temperature, η is the fluid viscosity, and Rp is the
nanoparticle radius. The slope extracted from the water case
gives a value of the viscosity of 1.3 ± 0.4 mPa s slightly higher
but close to that expected for water. Similarly, the slope for
the polymer solution gives a value of 7.5 ± 3 mPa s, which
is slightly lower than the viscosity of the solution measured
at low shear rates (we expect 10 mPa s). The value of the
slope for the polymer solution confined between the sphere
and the surface right after cessation of the flow is, however,
higher than that of the solution itself. This value corresponds
to a viscosity of 3 ± 1 mPa s and is, therefore, smaller than
the value of the viscosity of the polymer solution measured
in the rheology experiments or in the Brownian diffusion
experiments. This result is consistent with the fact that the
AFM probe measurements suggest a smaller value for the
viscosity of the solution at a similar gap height. For a gap height
of 4 μm, the probe experiments give a value of 5 mPa s, while
that from the Brownian motion gives a value of 3 mPa s. Both
values are smaller than those measured for much larger gaps.
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FIG. 8. (Color online) Mean-square displacement (in one di-
mension) of 200-nm-diameter spheres in bulk water, bulk polymer
solution, and for a confined polymer solution between a sphere
and a flat surface. The sphere’s displacement was at a velocity of
180 μm/s. The measurements started after the sphere’s displacement
was stopped at a distance of 4 μm from the flat surface. The
measured diffusion constant is given. The inset shows the mean-
square displacement of one particle, in the gap between the sphere
and the surface for two different time periods. Note that for later times
after cessation of the sphere’s movement toward the flat surface, the
diffusion constant decreases, indicating a higher viscosity.

A further examination of these results was carried out by
studying the mean-square displacement at different times after
cessation of the shear, i.e., after the sphere was stopped. These
results are shown in the inset of Fig. 8. The diffusion constant
was found to decrease slowly with time, indicating that the
observed depletion at early times slowly disappears after the
cessation of the flow as the polymer solution relaxes to its
equilibrium concentration in the gap region.

The inset of the upper graph of Fig. 9 shows a typical
velocity profile versus the distance to the center r (the points
are the velocities measured using particle tracking of 200 nm
particles at 3 μm from the flat plate for D = 4 μm). The line
is the expected velocity profile assuming Poiseuille flow in
the gap in the same conditions as the measurements. The
reasonable agreement between the measurements and the
expected variation allows us to estimate, in this configuration,
the shear rate at the wall. Another estimate of the shear rate
in the gap can also be obtained by dividing the velocity of
the tracked particles by the distance to the wall; this estimate
is necessarily lower than the calculated shear rate at the wall
using the assumption of a Poiseuille velocity profile in the
gap as indirectly suggested by the inset of the upper graph of
Fig. 9. These shear values are then multiplied by the relaxation
time of the solution (0.1 s) [26] to obtain the Weissenberg
number, which is plotted in the upper graph of Fig. 9. The
difference between the data points obtained by dividing the
velocity by the distance to the wall to obtain the shear rate
(solid squares) and the solid line that uses Poiseuille flow
in the gap clearly indicates that dividing the velocity of the
particles by the distance to the wall underestimates the shear
rate but may also indicate deviations from Poiseuille flow,
which are difficult to observe due to measurement errors. In
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FIG. 9. The lower graph displays the diffusion coefficient for
the small particles (obtained by tracking several particles) in the
gap region for different distances from the center of the gap. Note
that near the center, these diffusion constants are high, indicating
smaller viscosities for the polymer solution. As the distance to the
center increases, the diffusion constant decreases, indicating higher
viscosities. The inset in the upper graph shows the variation of the
velocity versus distance r from the center of the gap along with
the expected profile assuming Poiseuille flow. These measurements
and the calculated profile are for D = 4 μm, V = 180 μm/s, and
at 3 μm from the flat surface. The main graph shows the estimated
Weissenberg number versus distance from center using the expected
profile as well as the measured velocities. Note that high Weissenberg
numbers are obtained for distances where the viscosity is low,
indicating the importance of polymer migration and depletion.

addition to this, we have measured the diffusion constant of
the nanoparticles at different distances r from the center of
the gap. The result is shown in the bottom panel of Fig. 9.
Note that farther away from the center, the diffusion constant
is small, albeit still slightly higher than the bulk value. When
the distance to the center decreases and, therefore, the gap
height decreases, the diffusion constant increases, indicating a

lower viscosity and, therefore, a smaller mean concentration
of polymers. The shear rates are high where the diffusion
constants are significantly higher than those measured for
large gaps. These shear rates give Weissenberg numbers of
the order of 10 in a large area extending up to 20 μm from
the center of the gap (see Fig. 9, upper panel). These results
suggest depletion layers of thickness greater than the molecular
diameter. These measurements point to the importance of shear
in the observed deviations from expected behavior based on
rheology measurements of the viscosity and to the importance
of shear-induced migration of polymers.

Note that it is not confinement alone that gives the trend
in diffusion constant [27]: confinement generally reduces
the diffusion constant, while here it increases as the gap
height decreases. These results, therefore, comfort our AFM
measurements in the sense that the approach of the sphere
toward the flat surface may induce depletion of polymers
within the gap, causing the viscous force to be smaller than
expected and giving Brownian probes a higher diffusion
coefficient.

V. CONCLUSIONS

We have used colloidal-probe atomic force microscopy to
study the viscosity of a class of complex fluids: large molecular
weight polymer solutions. The method relies on the use of
the deflection of a microcantilever to deduce the viscosity of
a liquid confined between a sphere glued on this cantilever
and a flat surface holding the liquid sample. The viscosity
obtained for a Newtonian fluid is constant and independent
of shear rate and separation distance between the sphere and
the surface as expected. The large molecular weight polymer
solutions, however, exhibit viscoelastic behavior, which is
strongly dependent on the gap height. The viscosity measured
with this scheme decreases with the decrease of the distance
between sphere and surface. This effect is independent of the
relative velocity between the flat surface and the probe sphere.
These measurements are confirmed by using local viscosity
probes in the gap region and are reminiscent of previous results
on colloidal suspensions. Depletion of polymers in the gap
region due to shear-induced migration is a probable cause for
the variation of the viscosity observed here.
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