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Surface-diffusion-driven decay of high-aspect-ratio gratings:
Existence of morphologically related classes
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We present numerical and theoretical results concerning the technologically important process of evolution of
high-aspect-ratio profiles due to surface diffusion under thermal treatment. We show how a broad class of initial
gratings adopt, after a short transient stage, a typical shape that can be accurately described as a curve whose
curvature has only two single Fourier modes as a function of the arc-length parameter. Moreover, we introduce a
set of evolution equations for the relevant parameters that accounts very accurately for both morphological and
kinetic aspects of the transformation processes for these curves in a wide region in parameter space. Regarding
the decay of rectangular gratings, our numerical results show the existence of geometrically related classes that
asymptotically approach to the same trajectory in parameter space. Gratings belonging to the same class pass
through the same sequence of morphologies before reaching the final equilibrium state.
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I. INTRODUCTION

In the last few years, high-temperature thermal treatments
have found new technological applications, particularly in the
industry of semiconductors [1–6]. When a high-temperature
treatment is applied to a solid sample, it suffers important
morphological modifications due to the enhancement of
particle mobility. Although different mechanisms, such as
evaporation-condensation or bulk diffusion, can contribute
to such shape transformation, often, especially in nanoscale
applications, surface diffusion is the most important mass-
transport process. Surface diffusion processes have attracted
considerable interest in several branches of surface science,
from both the theoretical and the experimental points of view
[3,5,7–9], and important applications of high-temperature
thermal annealing have been recently reported to obtain
devices with specific photonic or electronic properties. In
particular, high-temperature hydrogen annealing has been used
on silicon substrates to reduce their surface roughness [1,2], to
round trench corners [6], to obtain special topologies [3–5], etc.
Regarding the theoretical interpretation of these applications
of high-temperature hydrogen annealing to change the mor-
phological properties of semiconductor samples, it is worth
remarking that such results have been properly interpreted in
terms of the continuous theory of surface diffusion for isotropic
materials [2,6,10,11].

The continuous theory of interface evolution mediated
by surface diffusion started more than 50 years ago with
the pioneering work of Herring and Mullins [12,13]. In this
framework, the interface evolution for an isotropic sample is
governed by the Mullins equation:

νn = −K�SC, (1)

where νn is the normal velocity at a given point on the evolving
surface, �S is the intrinsic surface Laplacian (the so-called
Laplace-Beltrami operator), and C is the local curvature. The
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coefficient K depends both on the type of material considered
and on the temperature through the relationship K = DSγ�2ν

kBT
,

where Ds is the diffusion constant, γ is the surface tension,
� is the atomic volume, ν is the adatom density on the
surface, kB is the Boltzmann constant, and T is the absolute
temperature [14].

When a high-aspect-ratio (HAR) grating decays due to sur-
face diffusion currents, typically the interface adopts a partic-
ular sinuous shape that evolves in time. In the case of gratings
having an inversion symmetry (the so-called peak-valley sym-
metry), this particular shape can be accurately described as a
curve in which the curvature is a sine function of the arc-length
parameter. Such curves were named “sine-generated curves”
after Leopold and Langbein [15] introduced them to describe
the typical shape found in river meanders. As sine-generated
curves are inversion invariant, they cannot be used to describe
the morphology of interfaces that do not have this symmetry
property. The difference between both situations is clearly
shown in Fig. 1, where the shape of the interface is shown at
successive times for both cases: the symmetrical one (left side
of Fig. 1) and the nonsymmetrical one (right side of Fig. 1).

Performing a detailed study about the kinetic and morpho-
logical aspects during the surface-diffusion-driven decay of
high-aspect-ratio gratings like that shown on the right side
of Fig. 1 is the main goal of this paper. In order to describe
the morphology of a general-type grating we will need to
generalize the class of sine-generated functions, as we will
show in the next section. Such generalization let us describe
not only morphological aspects but also kinetic properties of
the decaying process.

II. RELEVANCE OF TWO-COMPONENT
SINE-GENERATED CURVES

One of the most distinctive features concerning the surface-
diffusion-driven decay of one-dimensional HAR gratings is the
spontaneous loss of convexity in the evolving interface; i.e.,
gratings that initially can be thought as the graph of a function
y(x) cannot be represented in that way at later times because
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FIG. 1. (Color online) (left) Symmetric and (right) nonsymmetric
interfaces and their evolution at successive time steps.

they develop a multivalued character. An alternative approach
to describe a plane curve, which can deal perfectly with such
multivalued interfaces, is provided by the so-called Whewell
equation, in which the interface is described by giving the
angle θ (s) between its tangent and a fixed axis (the x axis,
for instance) as a function of the arc-length parameter s. The
Whewell equation is an intrinsic equation in the sense that it
is independent from the choice of the origin of coordinates.

The typical grating on which we are focusing in this paper
is a periodic one (with wavelength λx) and is disposed along
the x axis in the sense that the whole pattern can be obtained
by translating, in an amount λx and parallel to the x axis,
any piece of the grating contained in a length equal to the
wavelength. Let us call λs the arc length in a period. The
grating periodicity evidently implies that θ (s) is also a periodic
function with period λs ; therefore we can expand it in a Fourier
series. Moreover, for gratings having a symmetry axis (as is
the case of the gratings in Fig. 1), after a suitable choice of the
coordinates origin we can obtain an odd function θ (s), which
contains only sine components in its Fourier expansion:

θ (s) =
∞∑

n=1

An sin(nkss), (2)

where ks = 2π
λs

. As periodicity and symmetry properties of
gratings are preserved by the surface diffusion flow, Eq. (2)
remains a valid description for the time-dependent tangential
angle θ (s,t) during the whole decay process, provided coeffi-
cients An(t) and λs(t) are time dependent. In fact, although λx

is a conserved quantity, that is not true for λs : an immediate
consequence of the Mullins equation is that the total length
L(t) of the interface satisfies the following relationship [16]:

dL(t)

dt
= −K

∫
L(t)

C2
s ds, (3)

where Cs denotes the derivative of the curvature C with respect
to the arc-length parameter. As the right side of Eq. (3) is
nonpositive, this equation proves that λs(t) decreases as time
evolves.

In Fig. 2(a) the shape adopted by a HAR interface during
the surface-diffusion-driven decay at successive times can be
seen. Figure 2(b) shows the dependence of the curvature as
a function of the arc-length parameter corresponding to each
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FIG. 2. (Color online) (a) Interface profile snapshots at different
times. (b) Curvature as a function of the arc length parameter.
(c) Fourier coefficient An as a function of index n (the arrows indicate
components n = 1 and n = 2). In all cases, the shown data correspond
to the state at the initial stage (τ0) and at three successive stages labeled
τ1,τ2, and τ3.

interface shown in Fig. 2(a). It is clear from this graph that,
in contrast to what happens with gratings having the peak-
valley symmetry, profiles at intermediate stages (τ1 and τ2)
are not single sine functions of the arc parameter. In Fig. 2(c)
Fourier coefficients An for the first harmonics are shown as a
function of the index n. While many components are relevant
at the initial stage (τ0), after a brief period of time only the
first two components contribute significantly (τ1,τ2). Later on
the second component becomes negligible, only the first one
survives (τ3) and the interface profile becomes symmetric.
This analysis suggests that the appropriate Whewell equation
to describe the class of interfaces appearing after the initial
transient stage (τ0 − τ1) [17] should have two components,
leading us to the following equation:

θ (s) = A1 sin(kss) + A2 sin(2kss). (4)

The described behavior is not restricted to the case of
initially rectangular profiles. In fact, as is shown in Fig. 3, there
are a wide variety of morphologically different patterns that,
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FIG. 3. Decay of different HAR pattern classes (trapezoidal,
distorted rectangular, and triangular) at successive times, exhibiting
a very similar morphology after an initial transient stage has elapsed.
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after a short transient stage, adopt nearly the same morphology
found for initially rectangular profiles (see Fig. 3).

The Whewell equation θ = θ (s) implies the following
differential forms for the x and y components:

dx = cos[θ (s)]ds (5)

and

dy = sin[θ (s)]ds, (6)

and combining these equations with the Whewell equation (4),
we can find parametric equations for the x and y components
as functions of the arc-length parameter:

x(s) =
∫ s

0
cos[A1 sin(ksu) + A2 sin(2ksu)]du + x0 (7)

and

y(s) =
∫ s

0
sin[A1 sin(ksu) + A2 sin(2ksu)]du + y0. (8)

It is evident that the x component increases from x to x + λx

when the arc-length parameter increases in a period λs , which
allows us to obtain λx as a function of parameters A1,A2, and
λs as

λx =
∫ λs

0
cos[A1 sin(ksu) + A2 sin(2ksu)]du. (9)

Applying elementary trigonometric relationships and perform-
ing suitable changes of variables in Eq. (9), after combining
with the identities associated with the Bessel functions [18],

cos[z sin(θ )] = J0(z) + 2
∞∑

n=1

J2n(z) cos(2nθ ), (10)

sin[z sin(θ )] = 2
∞∑

n=0

J2n+1(z) cos[(2n + 1)θ ], (11)

we can obtain

λx = λsF (A1,A2), (12)

where

F (A1,A2) = J0(A1)J0(A2) + 2
∞∑

n=1

J4n(A1)J2n(A2), (13)

while Ji represents the Bessel function of the first kind and
order i.

To perform a quantitative estimation of the order of magni-
tude of the transient time in a typical case we will consider a
simulation regarding the decay of a HAR rectangular grating
whose initial shape is shown in the inset in the left panel in
Fig. 4. The time evolution of λs

λx
− 1 is shown in the left panel in

Fig. 4 [19]; evidently, this quantity tends to zero asymptotically
as the interface approaches the equilibrium flat shape. So we
can estimate the overall decaying time τd defining it as the
time at which the value of λs

λx
− 1 is a 10% of its initial value.

On the other hand, we will estimate the magnitude of the
transient time applying the Bessel-Parseval relationship to the
curvature function C(s). In fact, as C = dθ

ds
, Eq. (4) implies that

the curvature of such a curve is given by

C(a) = C1 cos(kss) + C2 cos (2kss), (14)
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FIG. 4. (Color online) Time dependence of (left) λs

λx
− 1 and

(right) ξ obtained from a simulation started with the initial condition
shown in the inset on the left panel. The meanings of ξ , τd , and τu are
explained in the text.

where C1 = ksA1 and C2 = 2ksA2 [20]. Defining ξ =
C2

1 +C2
2

2
λs

∫ λs
0 C2(u)du

, the Bessel-Parseval inequality ensures that ξ � 1,

so the two-harmonics approximation will be considered as
“good” when ξ � 0.9. The time dependence of ξ is shown in
the right panel of Fig. 4. We can see that ξ grows monotonically
until values near 1; we shall call τu the time at which ξ reaches
the value 0.9. Both τd and τu are indicated with dashed lines in
Fig. 4; considering these values, we notice that τu represents
approximately 3.5% of τd , in agreement with our previous
observation that the transient stage is rather short compared
with the overall process.

It should be noticed that not every parameter choice of
A1 and A2 in Eq. (4) gives place to a physically realistic
interface (i.e., a curve representing a real grating). For instance,
when A2 = 0 and |A1| is higher than ∼2.11, the resulting
curve self-intercepts, leading to nonphysical curves. From now
on we shall only consider parameter values belonging to the
region in parameter space where the resulting curves become
physically realistic (in the sense that they do not present self-
intersections). Such a region in parameter space, numerically
determined, is shown in Fig. 5.

III. EVOLUTION EQUATIONS FOR THE PARAMETERS
OF TWO-COMPONENT SINE-GENERATED CURVES

As was stated in the previous section, numerical evidence
shows that a HAR grating develops, under a surface diffusion
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FIG. 5. Region in parameter space where the Whewell equation
(4) generates physically realistic interfaces for two-component sine-
generated curves.
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flow and after a transient stage has elapsed, a typical shape
that can be accurately described as a two-component sine-
generated curve (2CSGC). Moreover, numerical evidence also
shows that once the interface adopts that shape, it maintains
it for the rest of the decaying process. As the knowledge
of the values of parameters A1, A2, and λs is enough to
define uniquely a 2CSGC, it is clear that knowing the time
dependence of such parameters will allow us to reproduce the
shape of the interface at any time during its evolution. To obtain
a closed system of evolution equations for the parameters, we
would need three relationships involving time derivatives of
A1(t), A2(t), and λs(t).

A first relationship can be obtained using the fact that
the surface diffusion flow preserves the periodic nature of the
interface. Thus, imposing periodic boundary conditions on the
Mullins equation, we look for periodic solutions in which λx

remains fixed at the time, and therefore Eq. (12) can be written
as

λs(t) = λx

F (A1(t),A2(t))
. (15)

Equation (15) tells us that for a fixed value of λx , knowing
the time dependence of coefficients A1 and A2, we can
obtain the time dependence of λs . Differentiating Eq. (15)
with respect to t and using 2J ′

n(z) = Jn−1(z) − Jn+1(z),

we obtain

dλs

dt
= −λ2

s

λx

{
−J1(A1)J0(A2)A′

1 − J0(A1)J1(A2)A′
2

+
∞∑

j=1

[J2j−1(A2)J4j (A1)A′
2 + J2j (A2)J4j−1(A1)A′

1

− J2j+1(A2)J4j (A1)A′
2 − J2j (A2)J4j+1(A1)A′

1]

}
,

(16)

where A′
i denotes the derivative of Ai(t) with respect to t .

A second relationship among coefficients can be obtained
by evaluating Eq. (3) in a period of a 2CSGC. In such a case,
L(t) = λs(t), and using θss = Cs , Eq. (3) becomes

dλs

dt
= −8Kπ4

(
A2

1(t) + 16A2
2(t)

λ3
s (t)

)
. (17)

On the other hand, we can obtain a third relationship among
coefficients by writing down the Mullins equation in terms of
θ (s,t) (see the paper by Asvadurov et al. [21] for a detailed
derivation):

θssθt − θsθts = K
(
θsθsssss − θssθssss + θ3

s θsss

)
. (18)

Replacing in Eq. (18) the expression of θ (s,t) for a 2CSGC
(4), we obtain

−2k2
s

{
A1A

′
1 + A1A

′
2[ sin(kss) sin(2kss) + cos(kss) cos(2kss)] − A2

1
1

λs

dλs

dt
cos2 (kss) − 4A1A2

1

λs

dλs

dt
cos(kss) cos(2kss)

+A2A
′
1[4 sin(kss) sin(2kss) + 2 cos(kss) cos(2kss)] + 4A2A

′
2 − 4A2

2
1

λs

dλs

dt
cos2 (2kss)

}
= Kk6

s

{
A2

1 + 64A2
2 + A1A2[34 cos(kss) cos(2kss) + 20 sin(kss) sin(2kss)] − A4

1 cos4 (kss) − 64A4
2 cos4 (2kss)

−14A3
1A2 cos3 (kss) cos2 (2kss) − 60A2

1A
2
2 cos2 (kss) cos2 (2kss) − 104A3

2A1 cos3 (2kss) cos(kss)
}
. (19)

From this equation, we can conclude that 2CSGCs are not exact solutions of the Mullins equation since we cannot eliminate
the parameter s, which contradicts our assumption that parameters A1, A2, and λs are not dependent on s. However, numerical
simulations show that they are very good approximations to such exact solutions. To reconcile these facts, we will perform
an averaging procedure to obtain an approximated equation for dλs

dt
. The motivation for such an averaging procedure is the

following: we are attempting to find an expression for dλs

dt
that is a global quantity, so we argue that the overall contribution of

terms dependent on s in Eq. (19) can be approximated by replacing local values (i.e., dependent on s) with values averaged in one
period. Here we are understanding the averaging of functions in the ordinary sense of calculus: 〈f 〉 = 1

λs

∫ λs

0 f (s)ds. Applying
this procedure, we obtain

dλs

dt
=

〈
dλs

dt

〉

= 2λs

A2
1(t) + 4A2

2(t)

{
A1(t)A′

1(t) + 4A2(t)A′
2(t) + Kk4

s

[
A2

1(t) + 64A2
2(t) − 3

8
A4

1(t) − 24A4
2(t) − 15A2

1(t)A2
2(t)

]}
. (20)

Then, eliminating dλs

dt
from Eqs. (15), (17), and (20) and introducing the definitions

P (A1,A2) = −J1(A1)J0(A2) +
∞∑

n=1

J2n(A2)[J4n−1(A1) − J4n+1(A1)], (21)

Q(A1,A2) = −J0(A1)J1(A2) +
∞∑

n=1

J4n(A1)[J2n−1(A2) − J2n+1(A2)], (22)

O(A1,A2) = k4
s

(
1

8
A4

1 + 8A4
2 + 10A2

1A
2
2 − A2

1 − 64A2
2

)
, (23)

T (A1,A2) = 1

2
k4
s

(
A2

1 + 16A2
2

)
F (A1,A2) (24)
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FIG. 6. (Color online) Comparison between analytical predic-
tions (dashed lines) and numerical results (solid lines) regarding the
time evolution of (left) λs and (right) Ai for a 2CSGC with parameters
λs = 1000 nm, A1 = 1.0, and A2 = 0.5 at the initial condition.

to lightening the notation, we obtain the following evolution
equations for parameters A1 and A2:

A′
1(t) = K

(
OQ − 4T A2

QA1 − 4PA2

)
(25)

and

A′
2(t) = K

(
T A1 − PO

QA1 − 4PA2

)
. (26)

Equations (25) and (26) taken in conjunction with Eq. (15)
form a complete set of evolution equations for 2CSGC relevant
parameters. Given that we have used the approximation
established in Eq. (20), this set of evolution equations must
be also understood as an approximation of the real evolution.
To test the ability of this approximated scheme to reproduce
the actual evolution, we have contrasted theoretical predictions
against direct numerical integrations of the Mullins equation
for a wide range of initial gratings. Thus, for an initial 2CSGC
with parameters values A1 = 1.0 and A2 = 0.5, Fig. 6 shows
excellent agreement between the numerical simulation (solid
lines) and theoretical expectations (dashed lines). Similarly, we
have found also a very good agreement between theoretical and
numerical results for several cases in which the initial values
of parameters A1 and A2 were restricted to the range (∼0.5,
∼1.0). However, in cases in which one of these parameters
has a smaller initial value, the differences between theoretical
and numerical results increase dramatically. For instance,
this behavior can be seen in Fig. 7, where initial values of
parameters were taken to be A1 = 1.5 and A2 = 0.1.

To understand the origin of this singular behavior (the
approximation gets poorer when one of the parameters
approaches zero [22]) we must study what the behavior of
the denominator (QA1 − 4PA2) in Eqs. (25) and (26) is
for values of the parameters near the origin. In fact, from
a simple Taylor expansion, we obtain (at the lowest order)
(QA1 − 4PA2) ∼ 3

2A1A2, which implies that the factor A1A2

should be present in all terms in the numerator of Eqs. (25)
and (26) to produce a nonsingular behavior. In particular, the
presence of terms containing just one of parameters A1 and A2

will carry a singular contribution to evolution equations (25)
and (26). By performing Taylor expansions in both numerators
(OQ − 4T A2) and (T A1 − PO) we can verify that this
is precisely the case: due to the approximation introduced
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FIG. 7. (Color online) Comparison between analytical predic-
tions (dashed lines) and numerical results (solid lines) regarding the
time evolution of (left) λs and (right) Ai for a 2CSGC with parameters
λs = 1000 nm, A1 = 1.5, and A2 = 0.1 at the initial condition. It
can be seen that curves corresponding to parameter A2 have a very
different behavior when A2 → 0.

in Eq. (20) OQ − 4T A2 contains a singular term C1(A2),
while T A1 − PO contains a singular term C2(A1), whose
expressions are

C1(A2) = −8

(
2π

λx

)4

J 4
0 (A2)A2

2

× [
4A2J0(A2) + J1(A2)

(
A2

2 − 8
)]

(27)

and

C2(A1) = 1

2

(
2π

λx

)4

J 4
0 (A1)A2

1

×
[
A1J0(A1) + 2J1(A1)

(
1

8
A2

1 − 1

)]
. (28)

Evidently, to obtain a set of evolution equations having the
right behavior when parameters approach the origin, we must
eliminate these singular terms from Eqs. (25) and (26), so we
will rewrite these equations in the following way:

A′
1(t) = K

(
OQ − 4T A2 − C1(A2)

QA1 − 4PA2

)
, (29)

A′
2(t) = K

(
T A1 − PO − C2(A1)

QA1 − 4PA2

)
. (30)

We have reperformed the comparison between theoretical and
numerical results for an initial 2CSGC with A1 = 1.5 and
A2 = 0.1 using the corrected set of evolution equations (29)
and (30). As can be seen in Fig. 8 the agreement is excellent,
and the singular behavior has been removed. Further results of
the performance of these analytical findings in describing the
actual kinetic properties of the decay process are given in the
following section.

IV. NUMERICAL RESULTS

Once we obtain the set of evolution equations (29) and
(30), it is worth comparing the predicted evolution with the
real evolution. Here, we are calling the “real evolution” the
one obtained by a direct numerical integration of the Mullins
equation (1). In particular, due to the approximate nature of
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FIG. 8. (Color online) Time-evolution of (left) λs and (right) Ai ,
using the corrected set of equations (29) and (30) (dashed lines)
and those obtained from a numerical integration of Mullins equation
(solid lines). The initial interface is a 2CSGC with parameters λs =
1000 nm, A1 = 1.5 and A2 = 0.1.

evolution equations (29) and (30), we need to establish in
which cases the approximation is accurate. For instance, in
Fig. 9 we compare the evolution resulting from three different
2CSGCs as initial conditions that have the same initial value
λs = 1000 nm [initial values for the remaining parameters are
A1 = 1.0 and A2 = 0.3 (Fig. 9, row I), A1 = 1.3 and A2 = 0.5
(Fig. 9, row II), and A1 = 1.5 and A2 = 0.6 (Fig. 9, row
III)]. The agreement between predicted and real evolutions
is excellent, as curves obtained with both approaches are
almost indistinguishable. It is important to stress that such
an agreement was found in cases in which the initial interface
has extremely high-aspect-ratio features and a manifest lack
of peak-valley symmetry, as can be seen considering the initial
interfaces shown in Fig. 9, column (c).

Looking closely at the case with initial values of A1 = 1.5
and A2 = 0.6, we can observe small deviations between both
approaches (Fig. 10, left). To obtain a quantitative measure of
these errors in a typical case, we can consider the evolution
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FIG. 9. (Color online) Time evolution of λs [column (a)] and Ai

[column (b)] using the corrected set of equations (29) and (30) (dashed
lines) and those obtained from a numerical integration of the Mullins
equation (solid lines) for three different HAR initial conditions, rows
I, II, and III [snapshots and parameter values of the initial profiles are
shown in column (c)].
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FIG. 10. (Color online) Correlation between differences in (left)
Ai(τ ) and (right) their associated profiles for numerical simulations
(solid lines) and theoretical predictions (dashed lines). The initial
parameters of the 2CSGC are λs = 1000 nm, A1 = 1.5, and A2 =
0.6. Curves corresponding to different values of τ (on the right) are
displaced along the y axis for easy viewing.

of parameter A1 in the left panel of Fig. 10, which represents
the case (among all comparative curves shown in this paper)
having the poorest fitting: for that curve, the relative error
at times labeled τ1, τ2, and τ3 are 2.1%, 4.2%, and 18.2%,

respectively. Considering such differences, one might ask how
they impact the morphological point of view. This question is
addressed if we consider the snapshots in the right panel of
Fig. 10, where we can see that the interface’s morphologies
associated with instantaneous values of parameters Ai(τ ) are
almost identical for both approaches.

We are not attempting in this paper an exact determination
of the boundaries of the region where the set of equations
(29) and (30) reproduces the results obtained from a direct
integration of the Mullins equation for initial conditions of type
2CSGC. However, after performing such comparative work
sampling different points in parameter space, we have found
that, as a rule of thumb, for initial parameters satisfying |A1| �
1.5 and |A2| � 0.6 the agreement between both approaches is
very good, typically with relative errors in the range of 1%–5%.
As the linear equation for surface diffusion is reobtained
when (A1,A2) → (0,0), the performance of the approximated
equations in this limit is expected to be (and was corroborated
numerically) very close to the real evolution. Beyond this
region, errors are more significant, so an increase in the initial
parameter values causes a loss of accuracy in the theoretical
predictions for the kinetic evolution. To study such cases,
we must restrict our analysis to numerical integrations of the
Mullins equation.

To move a step forward in the comprehension of the
decaying process, we will analyze evolution trajectories in the
parameter space (A1,A2). As such trajectories are invariant
against scale changes (i.e., they are independent of λx), a point
on this space uniquely identifies a characteristic morphology
of 2CSGC. Figure 11 shows trajectories for various 2CSGC
(dashed lines) as initial conditions (initial points are indicated
by circles). It can be seen that parameter A2 decays faster than
A1, indicating that a 2CSGC becomes symmetric faster than
the time it takes to reduce its amplitude. The trajectory shown
in Figure 11 with a solid line corresponds to a rectangular
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FIG. 11. (Color online) Several trajectories in (A1,A2) space for
different 2CSGCs as initial conditions (initial values of the parameters
are indicated by circles). The trajectory indicated with a solid line
corresponds to a rectangular HAR grating as the initial condition.

HAR grating as the initial condition [23]. Such a trajectory
shows an initial loop associated with the transient stage, while
the remaining part has the same qualitative behavior as the
rest of trajectories in Fig. 11, consistent with the fact that after
the initial transient stage the grating evolves like a 2CSGC.
Let us consider an initial rectangular grating consisting of a
periodic arrangement (with a period λx) of columns of height
H and width T . Considering the behavior in parameter space
shown in Fig. 11, a natural question arises: Is it possible to find
two such gratings having columns with different dimensions
[e.g., (H1,T1) and (H2,T2)] whose associated trajectories in
parameter space become, after the transient stage, a single
trajectory? Figure 12 shows that the answer for such a question
is affirmative: In Fig. 12(a) we can see three trajectories labeled
I, II, and III, and clearly, trajectories II and III merge after
a first transient, while trajectory I follows a different path.
The initial conditions associated with trajectories I, II, and
III are shown in Fig. 12(b), where we have annotated the
aspect ratio ε (defined as the ratio Hi

Ti
) of the columns for
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FIG. 12. (Color online) (a) Trajectories on the parameter space
(A1,A2) for three initial conditions (labeled I, II, and III). (b) Initial
gratings. (c) and (d) Shapes adopted by interfaces I, II, and III when
the corresponding trajectories cross the dashed line in (a), i.e., when
A1 = 0.92.
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FIG. 13. Collapse of trajectories in parameter space for different
initial rectangular gratings, allowing the identification of three
particular morphological classes. Specific parameters of the initial
conditions are given in Table I.

each grating, showing that, despite the coalescence between
its respective trajectories, gratings II and III have very different
HAR features from a quantitative point of view. Moreover, if
we plot snapshots corresponding to the same value of A1,
for instance, that shown with a dotted line in Fig. 12(a), we
obtain nearly the same interface from trajectories II and III
[Figure 12(c)], while a very different, much more symmetrical
interface is obtained from trajectory I [Fig. 12(d)].

Extending this result to the case of more than two curves,
the existence of classes or families of rectangular gratings
that, after the transient stage has elapsed, share the same
trajectory on the (A1,A2) parameter space becomes evident.
We shall call these classes morphological classes. Thus,
starting from an arbitrary curve in the (A1,A2) parameter
space, we numerically found a considerable set of different
rectangular initial gratings, whose trajectories in this space
quickly collapse (see Fig. 13 and Table I). This implies that
any pair of these curves with different initial shapes will pass
through the same morphologies (for different times each, of
course) after the first transient stage has elapsed. Roughly
speaking, we can say that, after a given time (which is
different for each grating), two gratings belonging to the same
morphological class “show the same movie.”

To get a deeper understanding of the nature of these
classes, we will study the asymptotic behavior of trajectories
in (A1,A2) space when (A1,A2) → (0,0), considering the
corresponding limit form of the analytical coupled equations

TABLE I. Values for heights H and widths T of the columns
of the rectangular gratings (in nm) used as initial conditions for the
trajectories shown in Fig. 13. λx = 1000 nm in all cases.

Class I Class II Class III

T H T H T H

(a) 200 1350 100 1000 100 657
(b) 350 797 150 730 150 490
(c) 389 717 320 430 300 302
(d) 450 590 395 370 400 250
(e) 475 520 450 330 450 227
(f) 490 450 485 290 490 97
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FIG. 14. (Color online) Several trajectories in (A1,A2) space
(on a double-logarithmic scale) for different 2CSGCs as initial
conditions (initial values of the parameters are indicated for each
trajectory).

[(29) and (30)] discussed in the previous section. In fact,
computing the quotient between equations [(29) and (30)],
we can eliminate the explicit dependence on the time vari-
able and thus obtain the following differential equation to
describe (in an approximated sense) the trajectories in (A1,A2)
space:

dA1

dA2
= OQ − 4T A2 − C1(A2)

T A1 − PO − C2(A1)
. (31)

Expanding both the numerator and denominator on the right
side of Eq. (31) in powers of A1 and A2 and by keeping only
the leading terms, we obtain

dA1

dA2
� 1

16

A1

A2
. (32)

The simplified differential equation (32) captures the behavior
of the trajectories in parameter space in the asymptotic limit
(A1,A2) → (0,0). Moreover, Eq. (32) can easily be integrated,
having the following general solution:

A1 = C|A2| 1
16 . (33)

Thus, in this limit, trajectories in (A1,A2) space can be labeled
by the continuous coefficient C. Since Eq. (33) is derived from
an approximation, we compared its predictions with numerical
simulations, starting from different points in (A1,A2) space;
the results of such a comparison are given in Fig. 14. The
scaling properties for all numeric trajectories shown in Fig. 14
on a log-log scale are fully consistent with the approximated
dependence established by Eq. (33).

Concerning the decay of rectangular gratings, a given
grating with parameters (H,T ) can be associated with a certain
asymptotic trajectory labeled by C, but this grating is not
the only one associated with such a trajectory: there is an
infinite set of gratings (H ′,T ′), (H ′′,T ′′), etc., that have the
same asymptotic trajectory. All of them belong to the same
morphological class. On the other hand, there are an infinite
number of morphological classes, a different one for each value
of the continuous coefficient C.

From a practical point of view, it would be desirable to
know, at least approximately, to which of these morphological
classes a given rectangular HAR grating with period λx

and columns with height and width H and T , respectively,
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TN
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0.4

0.6

0.8

1
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N

FIG. 15. (Color online) Rectangular HAR gratings with normal-
ized parameters Hn and Tn lying on the same curve belong to the
same morphological class. Data indicated with circles were obtained
numerically, and dashed lines were drawn by joining points associated
with the same class.

belongs. It will be convenient to introduce the normalized

height HN = H/λx and width TN = T − λx
2

λx
, with 0 � T � λx

(the term λx

2 makes TN = 0 for a grating with peak-valley
symmetry). In this sense, we have performed extensive nu-
merical simulations to identify gratings belonging to the same
class, complementing the results shown in Fig. 13. So curves
in Fig. 15 represent, in terms of the normalized parameters
HN and TN , the dimensions of initial rectangular gratings
that belong to the same class. As gratings with normalized
parameters (HN,−TN ) are related to those with parameters
(HN,TN ) through a reflection in the y axis plus a suitable
translation, it is enough to consider only positive values of the
normalized width TN , and data in Fig. 15 can be extended to
negative values of TN as an even function, i.e., symmetrically
with respect to the HN axis. Considering a specific situation,
if we have an initial rectangular grating with parameters λx ,
H , and T , we can compute the normalized parameters HN and
TN ; then using Fig. 15, we will be able to estimate the class to
which our system belongs. Knowing the morphological class
to which a system belongs give us a priori information (i.e.,
before performing the thermal treatment) on which kinds of
morphologies can and cannot be obtained during a thermal
treatment on such a sample.

V. SUMMARY AND CONCLUDING REMARKS

In this paper we have shown how the morphologies obtained
from the surface diffusion decay of a broad class of HAR
gratings can be expressed after a short transient time as
two-component sine-generated curves with time-dependent
parameters. By means of an analytical study and making a
few approximations, we have arrived at a set of evolution
equations for such parameters. After an extensive comparison
with numerical results, we have verified that this set of
evolution equations (29) and (30) provides a very accurate
description of the kinetic evolution for a broad class of HAR
gratings, in situations very far from the conditions in which the
linear theory of surface diffusion (the so-called small-slopes
approximation) is applicable. By means of this set of evolution
equations, we have switched from a system that ordinarily
requires a few hundred degrees of freedom (through the
discretization of the interface for its numerical integration)
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to a system with only two degrees of freedom (parameters
A1 and A2). Although such a set of coupled equations is too
involved to be amenable to a complete analytical solution, by
analyzing its limit form when A1 and A2 are small enough, we
have been able to obtain the asymptotic dependence of curves
describing the surface-diffusion-driven decay process in the
parameter space (A1,A2).

While in some related previous papers [24–27] we em-
ployed a parametric explicit description of the interfaces, in
this paper we based our analysis on the use of generalized
sine-generated functions in conjunction with a description of
the interfaces by means of the associated Whewell equation.
Such a procedure becomes more natural and gives a much
more accurate description of kinetic properties compared with
the earlier approach, as was already discussed in Ref. [28]. On
the other hand, while Ref. [28] considered only a restricted
class of interfaces (i.e., those with peak-valley symmetry), in
this paper we considered a broader class of interfaces without
such symmetry being prerequisite. In fact, many of the results
published in Ref. [28] can be considered as a particular case
of the results presented in this paper, taking A2 = 0. However,
it is worth noticing that the passage from the one-dimensional
parameter space (A1) to the two-dimensional space (A1,A2) is
not a trivial one: while in a one-dimensional space there is a
single trajectory going from a given point A1 	= 0 to A1 = 0,
in the two-dimensional space there is a rich variety of possible
trajectories, and the available routes towards the equilibrium
state (A1 = 0,A2 = 0) are far from trivial.

By means of a systematic study of the behavior of
trajectories in parameter space, we have shown the existence of
rectangular HAR gratings with different geometrical dimen-
sions whose trajectories merge after an initial transient stage
has elapsed. This fact let us define classes of morphologically
related gratings in the sense that two gratings belonging to
the same class will have, after a certain time, nearly the same
shape. Conversely, a given pattern with a shape described by
a two-component sine-generated curve can be obtained by
performing a thermal treatment over a rich variety of initial
rectangular gratings that belong to the same morphological
class.

The grouping of HAR rectangular gratings into morpho-
logically related classes can be useful in applications of
high-temperature annealing techniques over HAR gratings and
can be helpful in the design and optimization of experiments
in this field since it provides a priori knowledge on which
types of morphologies can and cannot be obtained during the
surface diffusion decay process starting from a given sample.
We expect this work to promote further experimental research
on this topic.
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