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Atomic force microscopy of confined liquids using the thermal bending fluctuations of the cantilever
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We use atomic force microscopy to measure the distance-dependent solvation forces and the dissipation
across liquid films of octamethylcyclotetrasiloxane (OMCTS) confined between a silicon tip and a highly
oriented pyrolytic graphite substrate without active excitation of the cantilever. By analyzing the thermal bending
fluctuations, we minimize possible nonlinearities of the tip-substrate interaction due to finite excitation amplitudes
because these fluctuations are smaller than the typical 1 A, which is much smaller than the characteristic interaction
length. Moreover, we avoid the need to determine the phase lag between cantilever excitation and response, which
suffers from complications due to hydrodynamic coupling between cantilever and fluid. Consistent results, and
especially high-quality dissipation data, are obtained by analyzing the power spectrum and the time autocorrelation
of the force fluctuations. We validate our approach by determining the bulk viscosity of OMCTS using tips with
a radius of approximately 1 um at tip-substrate separations >5 nm. For sharp tips we consistently find an
exponentially decaying oscillatory tip-substrate interaction stiffness as well as a clearly nonmonotonic variation
of the dissipation for tip-substrate distances up to 8 and 6 nm, respectively. Both observations are in line with
the results of recent simulations which relate them to distance-dependent transitions of the molecular structure

in the liquid.
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I. INTRODUCTION

Understanding the properties of nano-confined liquids is of
great importance in numerous research fields, like biophysics
[1] and nanofluidics [2], and industrial applications, such
as friction, wear, and lubrication [3,4]. In particular, what
happens when we squeeze out a liquid between atomically flat
surfaces? At distances significantly larger than the molecule
size, the drainage process is described by the well-known
Reynolds approximation [5] of the Navier-Stokes equations.
However, for nano-confined liquids, where the film thickness
is comparable to the molecular size, continuum physics breaks
down and the liquid film is squeezed out layer by layer [6,7].
These discrete transitions and the layering configuration are
caused by the molecular self-assembly of the liquid close to
solid walls. On confinement this gives rise to the conservative
oscillatory solvation forces [8]. These solvation forces were
first measured in the 1980s [9] and are by now well established
[10-27]. However, how molecular self-assembly affects the
dynamics of the confined liquid is still heavily debated due to
contradicting experimental results.

In surface forces apparatus (SFA) experiments,
confinement-induced solidification was observed when
shearing the confined liquid [28,29]. Other studies [13]
reported a viscoelastic shear response akin to jamming.
Measurements of the rupture process of squeezing out the
liquid layer by layer could be described using a discretized
version of the Navier-Stokes equations with a more or less
bulklike viscosity down to the last two layers [14,20]. Recent
experiments [22] and theoretical studies [30] indicate that
some of these apparent inconsistencies can be traced down to

*f liu-1 @utwente.nl
tPresent address: Jiilich Supercomputing Centre, Wilhelm-Johnen-
Strasse, 52425 Jiilich, Germany.

1539-3755/2013/87(6)/062406(10)

062406-1

PACS number(s): 68.08.—p, 66.20.—d, 07.79.Lh, 62.10.4s

the strong structural anisotropy in the confined liquid, which
can lead to a highly anisotropic effective viscosity.

In more recent atomic force microscopy (AFM) experi-
ments with confined liquids similar discrepancies have been
observed. While some studies report a monotonic increase in
the viscous dissipation [10,19,26,27], others detect distance-
dependent features in the dissipation [11,12,17,18,21,23—
25,31,32]. All these measurements were performed using
various forms of dynamic AFM spectroscopy using actively
driven cantilevers. Several problems may contribute to the
discrepancies of the results reported in the literature. In liquid
the cantilever is subject to a strong mechanical coupling
with the fluid. As a consequence, the cantilever suffers from
viscous friction with the ambient fluid leading to a low overall
quality factor of order unity. The damping due to the confined
liquid is only a rather small addition to the overall damping.
Moreover, the coupling among the cantilever, the fluid, and the
surrounding liquid cell can give rise to additional resonances,
leading to the well-known problem of a “forest of peaks”, in
particular for acoustically driven cantilevers [26,33].

Optimizations of the cantilever holder [34,35], dynamic
models taking into account the base motion of the cantilever
[26,36], as well as other (e.g., magnetic) driving schemes
[37-39] help to reduce these problems, yet they do not
overcome the fundamental problem that the reconstruction of
the force is based on an inversion of the measured amplitude
and phase (or resonance frequency) and requires an accurate
model of the cantilever dynamics, including, in particular,
knowledge and calibration of the phase lag between driving
and response [40,41]. In addition, the finite drive amplitude
(e.g., in excess of the molecular diameter) may “smear out”
variations of interaction and dissipation forces on smaller
length scales [24].

To avoid these difficulties, we revisit the analysis of the
thermal noise signal to study the conservative and dissipative
properties of confined liquids [15,42—47]. This method, which
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has by now become a standard tool to determine the cantilever
spring constant [42], minimizes the external perturbation of the
system and it eliminates the need of a phase measurement. We
investigate the influence of the tip-substrate interaction on the
thermal noise signal to determine both the distance-dependent
interaction stiffness due to conservative (oscillatory) tip-
substrate interactions [15,43,44] and the interaction damping
due to the local energy dissipation near the substrate. Our
approach extends earlier studies of viscoelastic properties
of polymeric systems [45-47] and shear forces in confined
liquids [48]. We record time series of the noise signal
using high-speed and broadband data capture and analyze
both their power spectral density (PSD) as well as the
time autocorrelation function (ACF) [49]. Notwithstanding
earlier reports of differences regarding the effect of electronic
noise [50], we find that both approaches yield consistent
results, as expected based on the Wiener-Khinchin theorem
[51,52].

The conservative force and dissipation in the confined liquid
are determined alternatively by fitting the obtained power
spectra and autocorrelation of the fluctuating tip displacement
to a simple harmonic oscillator (SHO) model of the cantilever.
The amplitude of the cantilever motion, typically 50 pm at
room temperature, is significantly smaller than that in dynamic
AFM, thereby minimizing sample perturbation and ensuring
the applicability of linear response. To validate the thermal
noise method we first determine the bulk viscosity of the liquid
by measuring the hydrodynamic dissipation using relatively
large cantilever tips, with a radius of about 1 um. This verifi-
cation is referred to as the Reynolds damping measurement in
the paper. Next, we study the distance-dependent interaction
forces and dissipation, using smaller tips with a radius of
about 50 nm. Both the observed stiffness and damping oscillate
as a function of the tip-substrate distance at distances below
6 nm as a consequence of the layering effects, in agreement
with statistical physics [53] and molecular dynamics (MD)
simulations [54].

II. METHODS

A. Materials

The experimental AFM setup to obtain the thermal fluc-
tuations as a function of tip-substrate distance is shown in
Fig. 1(a). While ramping up and down the substrate close to
the tip as slow as possible, we monitor the fluctuations of the

I \ / fluid cell |
\'A

piezo stage

@

FIG. 1. (Color online) (a) Schematic representation of the exper-
imental setup. (b) Friction microscopy image of HOPG (2 x 2 nm)
after Fourier filtering.
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deflection signal. As a substrate we use freshly cleaved and
atomic flat highly oriented pyrolytic graphite (HOPG) with
an in-plane lattice constant of 0.25 nm (Mikromasch grade
ZYB). For the liquid we chose octamethyl-cyclotetrasiloxane
(OMCTS, as received from Fluka, purum > 99.0%) because its
molecules have a relatively large diameter of 0.8 ~ 0.9 nm. The
AFM device itself is a Veeco Multimode 8 with a Nanoscope
V controller and Veeco EV scanner. The AFM is housed in an
acoustic isolation box and operated at a constant temperature
of 300 K. For the nanoconfinement measurements, cantilevers
with a sharp tip were used, from Mikromasch, which were
NSC36 aluminum coated on the back side. They have a spring
constant of k. = 1 ~ 4 N/m, as determined in air using the
thermal calibration method [42], and a resonance frequency f;
in liquid between 45 and 80 kHz, as determined 8 nm away
from the substrate. For the Reynolds damping measurements,
cantilevers with a relatively blunt silicon tip were used, from
Team nanotech, which were LRCH coated with aluminum on
the back side. These have a k. of ~2 N/m and a f; in liquid
of ~25 kHz. Prior to the experiments cantilevers and fluid
cell are rinsed in isopropanol and ethanol, after which the
cantilevers are treated for 1 min in a plasma cleaner (Harrick
Plasma). After the measurements the tips are characterized by
high-resolution scanning electron microscopy (HR-SEM Zeiss
LEO 1550) to estimate the tip radius and to make sure that the
cantilevers were clean [55]. The sharp tips turned out to have
radii of 30 ~ 70 nm and the blunt tips ~900 nm.

B. Experimental procedures

As stated above, two kinds of experiments are conducted:
one is done with blunt tips to validate the thermal noise
approach by measuring the Reynolds damping and the other is
done with sharp tips to probe the dynamics in the layered
liquid. The experimental procedures are identical, but the
experimental parameters differ slightly.

The AFM is operated in force-distance mode. While the
distance between cantilever tip and substrate is varied period-
ically at low speed, the deflection signal z(¢) is monitored at
a sampling rate of 500 kHz (i.e., over 6 times the cantilever’s
fundamental eigenfrequency) using a low-pass filter with a
bandwidth of 200 kHz to prevent aliasing. To correct for the
drift of the piezo stage, due to thermal expansion or creep, we
use a fixed (2 ~ 4 nm) maximum deflection of the cantilever as
set point for the highest position of the stage, i.e., as retraction
threshold, after which the stage is retracted backwards over
a fixed distance before the next approach is started. From
the variations in the approach distances we estimate that the
drift during the measurements is always less than 160 pm/s.
Therefore, we choose an approach speed of 1 nm/s and a ramp
size of 10 nm for the measurements with the sharp tips. During
measurements with blunt tips, i.e., the Reynolds damping
measurements, the retraction speed, distance, and threshold
are 8§ nm/s, 25 nm, and 4 nm, respectively. In both cases, these
parameters guarantee data acquisition time at acceptable drift.

In the case of sharp tips, the retraction threshold of 2 nm
ensures hard contact between the tip and the sample, i.e., all
OMCTS will be squeezed out. This is concluded from friction
force images recorded at the same deflection set point, which
corresponds to a load of ~5 nN. As shown in Fig. 1(b), these
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data reveal a hexagonal lattice (lattice constant of 0.25 nm)
characteristic for HOPG.

C. Model

Although the SHO model is not fully appropriate to describe
the cantilever dynamics over a wide frequency range, see
Sec. V, and the Appendix for discussion of this issue, the
deviation from the full solution is only a few percentages
within our fitting range, so this approach is more than
sufficient. The SHO is driven by the Brownian force along
with tip-substrate interactions,

m*Z+VcZ+ka:Fts+FB(t)v (l)

where z is the tip position, m* the total effective mass
(including the added mass originating from the motion of
the surrounding liquid), y. the viscous damping around the
cantilever, k. the intrinsic cantilever stiffness, Fi the distance-
dependent tip-substrate interaction, and Fp the random force
due to Brownian motion, characterized by (Fp) =0 and
(Fp(s)Fp(s +1)) = 2ykpgT(t), where kgT is the thermal
energy and §(¢) the Dirac § function. According to the equipar-
tition theorem, the average potential energy of the cantilever,
%k(zz), is equal to %kg T, so for a cantilever stiffness of 2 N/m
the root-mean-square displacement of the unperturbed thermal
motion is around 46 pm at room temperature. This amplitude is
much smaller than characteristic length scale of the variations
in the tip-substrate interaction, which for OMCTS is about
0.9 nm. Therefore, linearization of the tip-substrate force
around the average tip displacement is justified, i.e., Fiy =
Fy — kiniz — Yintz, Where ki is the interaction stiffness and
Yint 18 the interaction damping, and Eq. (1) can be rewritten as

m*; +yz +kz = Fp(t), )

where z is now the tip displacement with respect to its average
position at distance d, y = y, + yint 1S the total damping
coefficient, and k = k. + kiy the total stiffness. Solving Eq. (2)
in the frequency domain, we get

Zlw] = (k —m*? + jyw) ' Fplwl,

where j = +/—1 is the imaginary unit. The PSD of the
displacement z is defined as

where #; is the sampling time. According to the Wiener-
Khinchin theorem [51,52], the PSD of the Brownian force
Fp is related to its ACF as Prr(w) = 2ykpT. Hence, P,,(w)
can be rewritten as

P,

212 w \2’
(-1 +E%)
where P, accounts for the instrumental (white) noise, w, is
the resonance frequency, Q the quality factor, and P, a scaling
factor. Both Q and w, depend on tip-substrate distance and are
related to ki and yjn by

k = kine + ke = m*w,?, (5a)
Y=Yt Ve=m'w,/Q. (5b)

P (w) = P, +

“4)
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The effective mass m* is estimated by substituting the intrinsic
cantilever stiffness k. and the resonance frequency w,, as
measured in liquid away from the substrate, where the tip-
substrate interaction can be neglected, into Eq. (2). As stated
before, the stiffness k. itself is obtained from the thermal
calibration procedure in air.

Another way to determine the interaction parameters is to
measure the ACF of the displacement signal z(z), defined as

R..(t) = } / 2(5)2(s + )ds. ©)
s JO

Since R, (t) is equal to the inverse Fourier transform of the
PSD, for Q > 0.5 one can show that [56]

sinw; t
:| + ROa

R.(t)= kT exp (—a),t) |:c0s o+ — —
m*w,? 20 202 —1
@)

where w, = /k/m*, w; = w,+/(1 — (20Q)72), and Ry a con-
stant to compensate for a possible background. By fitting
Eq. (7) to the measured ACF one again obtains values for

0 and w,.

III. DATA ANALYSIS

After we have recorded the tip displacement as a function of
time during ramping, this time sequence z(#,) is split into small
time intervals, each of which contains 2!¢ data points. From
the displacement versus time sequence in each interval the
background, i.e., best-fitting straight line, is subtracted before
the time sequence is transformed into a power spectral density,
Eq. (3), using a standard fast-Fourier-transform algorithm
to calculate z[w]. Next, our model [Eq. (4)] is fitted to the
obtained P,,(w), revealing values for ki, (d) and yi(d), where
d is the average tip-substrate distance during the considered
time interval. Alternatively, the ACF of the time sequence is
calculated with Eq. (6) and our model function [Eq. (7)] is
fitted to this correlation, again resulting in best-fit values for
kini(d) and Yini(d).

Although this analysis is straightforward, one has to keep
in mind two aspects. First, the accuracy of the obtained
values for Q and w, depends strongly on Q and the number
of data points N in the time sequence. For N = 2!¢ and
0 > 1.5weobtain AQ/Q < 0.1 and Aw, /w, < 0.01 during
fitting. The accuracy is further improved by averaging over
several, typically 50, approach curves. For Q < 1 the system
is overdamped and the uncertainty in both Q and w, strongly
increases with decreasing Q value. In the case of sharp
tips in our experiments, this occurs at d < 1.5 nm. Hence,
the method gives reliable results for distances larger than
1.5 nm. Second, during the sampling of a time sequence the
substrate is not stationary but travels 0.13 nm; the tip-substrate
distance changes between 0.07 and 0.24 nm depending on
the tip-substrate interaction at that distance. In all cases, this
variation is sufficiently small compared to the diameter of
the OMCTS molecules, i.e., the length scale on which the
tip-substrate interaction is expected to vary.
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FIG. 2. (Color online) (a) Damping coefficient versus tip-
substrate distance extracted from 25 approaches. Black line: averaged
data, using a 25-point moving average. Red curve: best fit [Eq. (8)]
to the data for damping coefficient. The inset shows the measured
(smoothed) PSD (symbols) at three different distances denoted by the
arrows in the main graph (solid lines are fits to our model function).
(b) Inverse of Reynolds damping coefficient as a function of
tip-substrate distance. Black line: averaged data, using a 25-point
moving average. Red line: linear fit curve. The inset shows the
SEM image of the tip used in the experiments (R =900 nm,
red circle). Parameter values of cantilever: k. = 1.91 £ 0.06 N/m;
fr =w,/2r =252+ 0.3kHzinliquid atd ~ 21 nm (m* = 7.61 x
107! kg).

IV. RESULTS

We first discuss the validation of our method using the
Reynolds damping measurements with blunt tips of radius
Riip ~ 900 nm. The inset of Fig. 2(a) gives three exemplary
power spectra with best-fit curves at various distances in-
dicated by the (color matched) arrows in the main panel.
The spectra are extracted from 25 approach curves, measured
consecutively with the same tip. As the distance decreases, the
peaks in the power spectra become broader, i.e., the fitted Q
values become smaller, and the resonance shifts towards lower
frequencies. From the fitted Q values we calculate the damping
coefficient using Eq. (5b). The total damping increases mono-
tonically with decreasing tip-substrate distance. The expected
hydrodynamic Reynolds damping due to the confined liquid
under the tip is given by

d 6 Riy 8

y(d) = ye +6mn——2, (8)

where y, is the damping experienced by the cantilever beam

and A is an offset to compensate for the error in zero
separation. 7 is the viscosity of the liquid.

To ensure bulk behavior, we exclude data at distances less
than 5 nm from the fit. This lower limit is obtained from the
results of measurements with a sharp tip (see below). Fitting
Eq. (8) to our data, we find a viscosity n = 2.7 & 0.2 mPas,
in agreement with literature data: 2.2 ~ 2.5 mPa s [24,57].
For A we obtain a value of about 0.8 nm, which indicates
that an equivalent of one molecular layer remains rigidly stuck
to one of the two the solid surfaces in qualitative agreement
with earlier SFA measurements [6,14]. To examine the quality
of the fit, the inverse of the Reynolds damping has been
plotted versus the tip-substrate distance in Fig. 2(b). The
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inverse damping indeed shows a linear behavior, down to the
smallest tip-substrate distances [58]. From this observation we
conclude that the choice of the lower bound of 5 nm in our
analysis is not critical and that slip is absent in our system (as
expected for a complete wetting system).

We also validated the conservative tip-substrate forces by
extracting the force gradient from the distance-dependent
resonance frequency. For separations larger than 9 nm, we find
a monotonically increasing attraction that can be described
by van der Waals interaction between the tip and graphite
substrate across the liquid film (see Fig. S1 in the Supplemental
Material [59]). Atd < 6 nm, the attraction becomes repulsive,
with a weak oscillatory component superimposed. While
the oscillation has the expected periodicity corresponding to
molecular diameter, the features are not very pronounced,
presumably due to the poorly defined geometry of the large
tips on small scales.

Overall, these validation measurements demonstrate that
our method does indeed yield quantitatively correct values for
the forces, including in particular dissipative forces down to
a few nanometers of tip-substrate separation. They provide
a crucial link between well-established continuum physics
and the nanoscale behavior to be described below, which has
proven difficult to achieve in many earlier studies of confined
liquids.

In Figs. 3-5 we present the tip-substrate interactions
measured with a sharp tip close to the substrate. The main
panel of Fig. 3 shows the average deflection of the cantilever
during approach up to the retraction threshold of 2 nm. The
insets show the measured PSDs (right) and ACFs (left) at three
different distances indicated by the (color-matched) arrows
in the main graph. The solid lines represent our model fits
[Egs. (4) and (7)] from which we extract the values of w,
and Q. At distances corresponding to positive (negative) force
gradients, as denoted by an olive (blue) arrow, the resonance
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FIG. 3. (Color online) Measured cantilever deflection (gray) upon
approach of the tip towards the surface at 1 nm/s (black line, averaged
data, using a 2'%-point moving average). The inset shows the measured
autocorrelations R,, and measured (smoothed) power spectrum
density PSDs (symbols) at three different distances denoted by the
arrows in the main graph (solid lines are fits to our model function).
Data at d < 1.5 nm are shadowed, because they are not taken into
account in further analysis; see Figs. 4 and 5. Cantilever parameters:
Rijp =45 nm, k. =2.71£0.08 N/m; f, =67.5+£0.2 kHz, and
0 =2.82+008atd = 8nm (m* = 1.51 x 107" kg).
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FIG. 4. (Color online) Fitted resonance frequency (a) and quality
factor (b) versus tip-substrate distance extracted from 97 approaches;
blue squares denote the PSD analysis and red dots denote the ACF
analysis. (a) The inset shows the resonance frequency shifts and also
the averaged one extracted by PSD analysis. (b) The inset shows the
fitted quality factor and the averaged one by PSD analysis.

frequency is shifted towards larger (smaller) frequencies. Cor-
respondingly, the magnitude of the autocorrelation function is
reduced (increased) and the position of the first zero crossing
is shifted towards shorter (larger) times, in agreement with our
expectations. For values of d < 1.5 nm, the cantilever motion
becomes overdamped and the fits to both the PSD and ACF no
longer yield reliable values.

We note here that the PSDs shown in Fig. 2(a) and Fig. 3
display a small excess power at low frequencies compared
to the SHO fit. At the same time, we slightly shift the ACFs
vertically to make them decay to zero for long times. We will
explain the origin of these effects in the discussion section.
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FIG. 5. (Color online) Interaction stiffness (a) and damping
(b) versus distance. Blue lines: results from the PSD analysis; red
lines: results from the ACF analysis. Both are smoothed using a
97-point moving average. (a) Solid black line: best fit of the oscillatory
decaying stiffness profile. The inset shows an SEM image of the
tip. (b) Solid black line: calculated Reynolds damping, using the
reference bulk viscosity and the tip radius obtained from the SEM
image. Dashed black line: obtained by shifting the black solid line
2 nm to the right. Both calculated lines are offset vertically so they
are aligned to experimetnal data at 8 nm. The inset shows a close-up
of the average damping coefficient obtained from the PSD analysis.
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In Fig. 4, we plot the values for (the shift in) the resonance
frequency w, and the quality factor QO obtained from the
analysis the PSD and the ACF as a function of d. The data
represent an average of 97 approach curves. The individual
curves were aligned by shifting the two peak positions at
~2.4 nm and ~3.3 nm in the resonance frequency profile (see
Fig. 4) on top of each other to compensate for residual drift.
The offset per curve is typically smaller than 0.1 nm (see Fig.
S2 in the Supplemental Material [59]). Figure 4 clearly shows
that the results from the ACF and PSD analyses are in perfect
agreement. Both methods are, thus, equally viable and allow
for detecting oscillatory solvation forces up to distances of at
least 8 nm, as the variation of the resonance frequency shows.
The inset of Fig. 4(a) suggests that we can detect variations of
the resonance frequency down to values of Af =~ 50 Hz.

In Fig. 5, we show the interaction stiffness ki (d) and the
interaction damping yin(d) as extracted from data in Fig. 4
using Eq. (5) (assuming yj, = 0 at d = 8 nm). The shape of
the conservative solvation force gradient is well described by
Refs. [8] and [10] as follows:

—d Jer Ad) [2n(d + Ad)]‘ o)

(o2

kin(d) = Kint €xXp

Here o = 0.88 nm is the periodicity determined directly from
the oscillatory profile; the scaling factor Kjy, the decay length
€, and the offset Ad are obtained from the best fit. Data at
a distance less than 2 nm are excluded from the procedure,
because the uncertainty in f, and Q is too large. The black
curve in Fig. 5(a) is the best-fit profile with Kj = 3.6 +
0.1 N/m, ¢ = 1.39 £ 0.02 nm, and Ad = 0.194 £ 0.001 nm.
To convert the measured interaction stiffness ki, to a normal-
ized interaction force F/R we integrate the local oscillatory
pressure p(x) = —po cos(2wx /o) exp(—x/€) using the Der-
jaguin approximation [10] to obtain F(d) = 27 R [ doo p(x)dx,
where x(r) = d + r?/(2R). From this calculation we obtain
an amplitude F/R = 9 + 3 mN/m, where the tip radius R is
characterized by SEM imaging [see SEM image of the tip after
use in Fig. 5(a)]. The periodicity o, the decay length €, and
the normalized interaction force F'/R are in good agreement
with earlier measurements using SFA or AFM [8,24].

The interaction damping features clear oscillations super-
imposed onto an overall increasing background, as shown in
Fig. 5(b). Local maxima and minima in the dissipation can
be clearly distinguished between d = 2 nm and 6 nm, i.e.,
over a much larger range than reported previously [24]. The
location of the local maxima coincides with the maxima in the
interaction stiffness in Fig. 5(a).

The absolute value of the dissipation is approximately
10 times higher than the expectation based on the predic-
tion of Reynolds theory, i.e., continuum hydrodynamics in
combination with the bulk viscosity and A =0 in Eq. (8),
which is shown as a solid line in Fig. 5(b). If we follow
earlier suggestions [9,14] to include a stagnant layer of finite
thickness, the thus-corrected continuum model comes closer
to the experimental data, as exemplified by the dashed line
in Fig. 5, which corresponds to A =2 nm. Therefore, it is
worth noting that for comparing the experimental data to
the continuum model, it is critical to take into account the
(non-)existence of stagnant layers.
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V. DISCUSSION

Before we discuss our results, also in relation to earlier
studies, we first consider the advantages and disadvantages of
the thermal noise approach in more detail.

A. Approximating the cantilever as an SHO

Although in the SHO approach the cantilever is modeled
as a point mass attached to a massless spring, it is rather
accurate in describing the lowest vibrational mode of a
cantilever [60] because, in the lowest oscillation mode, all
parts of the cantilever oscillate perfectly in phase with the
tip. Hence, effective values for the mass m*, damping y., and
stiffness k. of the cantilever, which can all be determined
by calibration measurements, are sufficient to describe the
cantilever dynamics. However, the cantilever bending depends
also weakly on the external load on the tip. This causes a small
systematic error. Yet, a decomposition of the cantilever into
small segments for typical parameter values (Q ~ 3) shows
that the relative error in the interaction parameters ki, and
Vint With respect to k. and y, is never larger than typically 3%
for |kine/ kc| < 0.9 and |yine/ye| < 0.8 (see also the Appendix).
The experimental error in the interaction stiffness and damping
coefficient, after averaging over typically 50 approach curves,
is less than 1% and smaller than the systematic error but of the
same order of magnitude. If needed, the deviations presented
in the Appendix can be used as correction factors.

B. Influence of noise and approach speed

The cantilever displacement recorded as a function time has
been analyzed using both its PSD (in the frequency domain)
and its ACF (in the time), leading to identical results within
experimental error. The obtained PSDs (see Figs. 2 and 3)
show indeed no spurious resonance peaks as observed in the
case of actively driven cantilevers. However, a small white
noise background is observed, as well as an excess power
at low frequencies (<10 kHz). This low-frequency excess
noise power is distance dependent and, hence, originates only
partially from the electronic 1/f noise. A second contribution
can be attributed to the finite sampling time in combination
with the approach speed of the substrate. During the sampling
time for each data block (2'6 points), the substrate is displaced
over 0.13 nm. This displacement leads to a variation of the
tip-substrate interaction and, hence, to a variation of the
average tip position of at most 0.1 nm per acquisition, which
affects the calculation of the PSD. This effect can be reduced
by reducing the sampling time. Experimental tests show indeed
a strong reduction of this low-frequency excess noise power.
However, at the same time, the accuracy decreases. These
findings were confirmed by numerical simulations. In the
time domain the white noise contribution to the signal is
only detected at zero time lag while the power excess at low
frequencies manifests itself by an offset in the ACF. These
findings were also confirmed by numerical simulation. In both
approaches, the effects can be fully taken into account, without
introducing any systematic error into the analysis.

C. Comparison with acoustic or magnetic driving

As mentioned above, we observe no spurious resonance in
our PSDs, which can hardly be prevented in acoustic actuation
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[26,33]. Moreover, because the thermal noise covers a broad
frequency range, it is sufficient to determine the PSD or ACF,
circumventing the tedious phase determination as necessary
in acoustic or magnetic driving. These spurious resonances
and possible errors in the phase determination give rise to
an erroneous coupling of the conservative and dissipative
contributions in the analysis of the tip-substrate interactions.

Overall, we can state that the thermal noise method is
more sensitive than methods proposed so far as long as the
quality factor is greater than 1. The detection threshold for
the resonance frequency shift is 50 Hz at 70 kHz, while
variations in Q of 0.5% are detectable after averaging over
typically 50 approach curves (see Fig. 4). For O < 1, i.e.,
for small tip-substrate distances, the method cannot be used.
However, by optimizing the cantilever geometry [61], the
Q =1 condition is reached for smaller distances.

D. Reynolds damping measurements

Measuring the Reynolds damping in the distance range
from 5 to 20 nm, we were able to validate the method as can be
concluded from Fig. 2. Indeed, the expected d~! dependence
was found as well as the right bulk viscosity of OMCTS at
room temperature if we allow for a small offset in the apparent
tip-substrate distance of 0.8 nm. We attribute this offset to a
combination of possible local irregularities on the tip surface
[62,63] and an uncertainty in our exact “zero” tip-substrate
distance (in contrast to the measurements with the sharp tip, we
were unable to image the graphite lattice with these blunt tips).
Thus, within the experimental accuracy, no slip of the OMCTS
on the HOPG substrate is observed, in line with complete
wetting of OMCTS on HOPG. Alternatively, the offset can
be attributed to the existence of an immobile layer on the
substrate causing a negative slip length (the zero-velocity plane
is shifted inwards). Negative slip lengths have been reported
in SFA studies on OMCTS confined between two mica sheets
[9,14] and can, in general, be caused by commensurability
between the solid and the liquid [64]. Globally, OMCTS and
graphite are incommensurate. Yet it was recently shown in
MD simulations that specific chemical interactions [65] or an
interaction-induced geometric adjustment of the atoms in the
liquid-molecule to the surface [66] can also result in a negative
slip length. However, there has been no direct evidence of these
effects occurring between OMCTS and graphite [67].

E. Solvation force and distance-dependent dissipation

The results obtained with sharp tips for tip-substrate
distances ranging from 2 to 8 nm show clearly the decaying
oscillatory behavior of the stiffness due to the conservative
solvation force versus distance. The thermal noise method
is significantly more sensitive than earlier measurements
using acoustically driven cantilevers [24]. While those earlier
measurements revealed excess dissipation only on squeezing
out the last three layers of OMCTS up to a maximum tip-
substrate separation of approximately d = 2.4 nm, the current
measurements reveal an oscillatory structure in the dissipation
up to d = 6 nm with a total of five local maxima. Yet, the ther-
mal noise method cannot probe the liquid layers in immediate
contact with the solid surface due to excessive damping for
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d < 1.5 nm. According to Fig. 3, this implies that the local
maxima in the dissipation shown in Fig. 5(b) correspond to
film thicknesses of three to seven molecular layers. The local
maximum at the smallest tip-substrate separation shown in
Fig. 5(b) (at d &~ 2.2 nm) thus corresponds to the peak at the
largest tip-substrate separation in Refs. [24,54] at d ~ 2.4 nm.
(The absolute zero of the tip-substrate separation in Ref. [24] is
off by approximately 0.6 nm.) This assignment is corroborated
by the absolute value of y;,., which is approximately 10~¢ Ns/m
in both experiments. Comparing the sensitivity of the two
experiments reveals a gain of approximately one order of
magnitude in the present experiments.

The MD simulations reported in Ref. [54] suggest that
the sharp excess dissipation on squeezing out the layers
in immediate contact with the solid walls is related to
confinement-induced transitions between very well ordered
(solidlike) films for film thicknesses of one, two, and perhaps
three molecular layers and rather disordered configurations
for intermediate half-integer numbers of molecular layers.
Whether that scenario also extends to the much larger tip-
substrate separations studied here is not clear. At larger
separations, thermal fluctuations as well as the tip geometry
on a larger scale may lead to increased disorder [68—70] and,
thus, prevent the crystalline arrangement found at smaller
separations.

VI. CONCLUSION

In summary, we measured the distance-dependent solvation
forces and the dissipation of OMCTS in the confinement
between a silicon tip and an HOPG substrate using atomic
force microscopy. To obtain reliable results for the distance-
dependent dissipation in the confinement, we employ the
thermal noise approach, which provides a resolution of
approximately 50 Hz in frequency shift and 10 nNs/m in
damping coefficient as long as the quality factor is larger than
unity, which is the case for tip-substrate distances larger than
2 nm in the present experiments. To validate the method the
distance-dependent Reynolds damping and bulk viscosity of
OMCTS were successfully measured. Close to the substrate
we were able to measure the interaction stiffness due to the
solvation forces in agreement with earlier findings, while
the damping also showed pronounced oscillations instead of
monotonic behavior as a function of tip-substrate distance.
From a technical perspective, we presented a method to
perform small amplitude force microscopy without relying
on a perfect spectral response, in both amplitude and phase, to
the external actuation of the cantilever, just by analyzing the
thermal noise of the cantilever, which also guarantees small
amplitudes of typically 50 pm. Moreover, it was shown that
the thermal noise can be evaluated equally well with the power
spectral density as with the autocorrelation function.
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n-1 n n+l

FIG. 6. (Color online) Sketch of the configuration considered.

APPENDIX: THERMAL VIBRATIONS OF A CANTILEVER
BEAM WITH TIP-SUBSTRATE INTERACTION

As stated in Sec. II C, we model the cantilever dynamics as
a SHO with only one resonance frequency. However, due to its
distributed mass and friction, the cantilever will show several
vibrational bending modes, each with its own resonance
frequency. In our experimental approach we consider only the
frequency response around the lowest (and most prominent)
resonance frequency. In this Appendix we will show that
in this frequency regime the cantilever behavior deviates
only slightly from SHO behavior also in the presence of an
interaction force at the tip of the cantilever. Moreover, we will
quantify these deviations in terms of the interaction stiffness
and interaction damping as defined in Sec. II C by comparing
the full frequency response with that of a best-fitting SHO
response.

We consider the cantilever as a chain of N-distributed
masses connected by massless cantilever segments as depicted
inFig. 6. Bead n with mass m exerts a force B, on the cantilever
which is equal to

B, = fn — mii, — ;’;‘na (Al)
where f, is the external (in this case Brownian) force on
bead n, u, its displacement, and ¢ its friction coefficient.
If the tip interacts with the substrate we replace fy by
Iv — Kincty + Vine + ;tip)uN + mtip’:iN)-

Assuming N beads on the cantilever, with spacing a, we
consider a single segment n situated between m,_; and m,,.
Both the total force F and torque S should be zero on this
segment:

F" — F" =o, (A2)

S 4 qFM — s =0, (A3)

where r stands for right and / for left.
Since F/"l = B, + F""' and 51" = 5]"*"! we define

F, = Fr[n] and S, = S,["] (A4)
and Eq. (A3) reduces to
Sp+aF, = S,_1. (AS)

The force F), is equal to the sum of all external forces B,
acting on the right of segment n,

N
Fy :ZBmv

m=n

(A6)
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while the torque S, is equal to the sum of all external moments
(m — n)aB,, acting on the right of segment n,

N

S, =a Z(m —n)By,. (A7)

Solving the force and torque balance on segment n, one

obtains relations for the displacement u and the slope a du /dx
of mass n and n — 1 as follows:

oy Sq/a n F, (A%)
Up_] = U, — U, —,
! 2k 6k
, , Su/a F,
Uy 1 =Uy— —— — 5 (A9)
K 2k
Sn—l = Sn + Can, (AIO)
anl = Fn + anl» (All)

where k = EI/a® and B, = f, — qu, with g(w) = —mw® +
Jjtw. With Egs. (A8)-(All) we can calculate all u,, and u),
values in the frequency domain starting from a guess for
uy and u), and we will end up with the following linear
relations:

N
Up = AO Un +A1 u;\/ +Zanfn7

n=1

(A12)

N
uy = Ay uy + Az uly +Z/3nfn-

n=1

(A13)

By inversion of the last two equations we can express uy and
u'y in ug, u;y and the forces f, accordingly:

N
Aj A, BnA1 — ay, Az
UN=—=U)— —= Uy + G fu, Gp=——"—7,
VYR VY ; [A]
(Al14)
N
Ag Ay oAz — BnAo
Uy =—=ug——~uo+ ) Hyfp, Hi=—"—",
YA (A ; U [A]
(A15)

with[A] = AgA3; — A1 A,. The coefficients «,,, 8,, and A, can
be calculated by evaluating Eqgs. (A8)—(A11) while setting one
of the values (uy,u'y, fi, f2, . . ., fv) equal to 1 and keeping all
the other values 0. Since we consider the noise response, we
set both 1o and u;, to zero for all frequencies. Because the PSD
of the Brownian forces is constant, i.e., Py(w) = 2¢kpT, the
power spectral density Ps(w) of the signal uy(w)/a is given
by (no interaction on the tip)

1 N
Pi@) = — 3 IHy(@)* Py, ()
n=1

 2ksT

N
=5 V) G lH@P. (A6
n=1

Taking into account the interaction force (and additional
tip mass) on the tip in the expression for fy, we replace it
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FIG. 7. (Color online) Akiy vs (kin, Vine) for N = 32 and @ = 1.0.
Note the vertical scale is blown up by a factor of 100. k;, is taken
relative to k. = 3EI/L>. The systematic error in ki, is in all cases
less than 4% of k..

by fy — (king + j®Vint — Maggeaw?) uy . Hence, we obtain, for
our signal u/y,

Y N
Uy = Z H, fu — Hy (king + joYin) uy = Z Hln
n=l1 p—

(A17)
with

Hy (kint + j@Vind)
1+ Gy (kint + joyin)

Because the interaction damping also modifies the random
force on the tip, Py, (w) = 2kpT ({n + Vine), the power spectral
density of our signal becomes

H™ = g, — G,. (A18)

2kpT [int] 2 . [int] 2
Py(@) === | Gv+ym) HY @)+ D [HM @) ).

n=I1

(A19)

~

L
Ctot 0.8 0.9

Yint

FIG. 8. (Color online) Ayiy Vs (Kint, Yine) for N = 32 and @ = 1.0.
Note the vertical scale is blown up by a factor of 100. yi, is taken
relative to ¢y,. The systematic error in yi, is in all cases less than 3%

of ior-
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To evaluate Eq. (A18) and (A19) numerically, we de-
fine a reference frequency ws = +/k./my, Where k.=
3E1 /L3. We then get, with v = w/ws, for the relevant
variables,

q = —mwpv® + jLoy, (A20)
m=anmyg/N, (A21)

my = — o+ a/N)myy, (A22)
¢ =abo/N. (A23)

tv =1 —a+a/N)o (A24)

where (1 — a)myy is the mass of the tip. With Q7! =

Ciot/ v/ Motk We arrive at

Olkc( 2 .

q= (A25)

PHYSICAL REVIEW E 87, 062406 (2013)

gy = <% +1-— oz)kc(—v2 + jv/0), (A26)

and

2%kyT al 2
B in
P(v) = =3 N{aamZ!H,i I+ (1 = NG

n=1

+yim>|H5“”|2}, (A27)
where H!™ is a function of the complex quantity [kin +
JO (ke /Cior) Vine V]; seC Eq. (A18). We evaluated Eq. (A27)
numerically, varying kin/k. and yin/Cwor, and fitted the ob-
tained P;(v) curves to the SHO model. This resulted in good
fits with a low x 2 per data point. From these fits the values for
kint/ k. and yin/ {0t Were recalculated and compared with their
original values. The systematic errors Akj, = kiﬁn‘t — kine and
AVint = yiE{ — vint have been plotted in Figs. 7 and 8, where
kine has been scaled on k. and iy on ot
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