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Static fluctuations of a thick one-dimensional interface in the 1 + 1 directed polymer formulation:
Numerical study
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We study numerically the geometrical and free-energy fluctuations of a static one-dimensional (1D) interface
with a short-range elasticity, submitted to a quenched random-bond Gaussian disorder of finite correlation length
ξ > 0 and at finite temperature T . Using the exact mapping from the static 1D interface to the 1 + 1 directed
polymer (DP) growing in a continuous space, we focus our analysis on the disorder free energy of the DP end
point, a quantity which is strictly zero in the absence of disorder and whose sample-to-sample fluctuations at a
fixed growing time t inherit the statistical translation invariance of the microscopic disorder explored by the DP.
Constructing a new numerical scheme for the integration of the Kardar-Parisi-Zhang evolution equation obeyed
by the free energy, we address numerically the time and temperature dependence of the disorder free-energy
fluctuations at fixed finite ξ . We examine, on one hand, the amplitude D̃t and effective correlation length ξ̃t of
the free-energy fluctuations and, on the other hand, the imprint of the specific microscopic disorder correlator
on the large-time shape of the free-energy two-point correlator. We observe numerically the crossover to a
low-temperature regime below a finite characteristic temperature Tc(ξ ), as previously predicted by Gaussian
variational method computations and scaling arguments and extensively investigated analytically in [Phys. Rev.
E 87, 042406 (2013)]. Finally, we address numerically the time and temperature dependence of the roughness
B(t), which quantifies the DP end point transverse fluctuations, and we show how the amplitude D̃∞(T ,ξ )
controls the different regimes experienced by B(t)—in agreement with the analytical predictions of a DP toy
model approach.
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I. INTRODUCTION

Consider a material constituted of a large number of
elements which interact locally. Long-range correlations are
known to arise in such systems close to the critical point
of a second-order phase transition, leading generically to
scale-invariant structures [1]. Another situation where the
collective behavior of the system constituents also induces
correlations at large length scales is given by the boundaries of
coexisting different phases, which define interfaces. Examples
of such systems range from growth interfaces [2,3] of crystals
adsorbing dissolved molecules to domain walls (DWs) in
ferromagnetic [4–6] or ferroelectric [7–9] thin films, interfaces
in turbulent liquid crystals [10–12], fronts of combustion in
burning paper [13,14], fractures in paper [15], or contact lines
in wetting experiments [16,17]. Such experimental interfaces
exhibit a self-similarity at large length scales, which is
characterized by a “roughness exponent,” ζ [1,3]. They can be
studied in the generic framework of disordered elastic systems
(DES) [18], in which a one-dimensional (1D) interface is
described as an elastic string fluctuating in a two-dimensional
disordered energy potential. The elasticity of the string tends
to minimize its distortions while the disorder (accounting
for inhomogeneities in the underlying medium), concurrent
with the thermal noise, induces ample geometrical fluctuations
and yields metastability and glassy properties [19]. Once the
dimensionality, the elasticity, and the type of disorder are
given, the corresponding Hamiltonian of the DES modeling
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fully determines the universality class and the value of
the roughness exponent ζ . However, an additional physical
ingredient that must be included in a realistic DES modeling
of experimental systems is the existence of a finite microscopic
width of the interface or, equivalently, a finite disorder
correlation length ξ > 0. The subtle interplay between this
finite width and thermal fluctuations at finite temperature T

raises challenging issues from an analytical point of view,
with relevant implications for experimental systems [18].

For 1D interfaces, two universality classes of geometrical
fluctuations have actually emerged from a theoretical point of
view: the Edwards-Wilkinson (EW) class [20] and the Kardar-
Parisi-Zhang (KPZ) class [21], with, respectively, ζEW = 1/2
and ζKPZ = 2/3. A fruitful approach to study the fluctuations
of a static 1D interface consists in adopting the 1 + 1 directed
polymer (DP) description, as illustrated in Fig. 1: In a fixed
disorder potential V (t,y), a segment of the interface of length
t1 is described as the path y(t) of a DP starting from a fixed
origin and growing along a time direction t up to a final time t1.
With the equivalence between the interface length scale and the
DP growing time, a central quantity to study is the free energy
FV (t,y) associated to the trajectories passing through y at
time t . Indeed, a complete characterization of the fluctuations
of the 1D interface then amounts to the determination of
the whole statistical distribution of this free energy as a
function of time. This distribution encodes in particular the
geometrical fluctuations of the interface as a function of
the length scale, which are directly measurable experimen-
tally and whose variance defines the roughness function
B(t) (see Fig. 1), following asymptotically the power law
B(t) ∼ t2ζ .
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FIG. 1. (Color online) The paths represent different realizations
of a static 1D interface of length t1 in the 1 + 1 DP representation:
One polymer extremity is attached at a fixed origin (0,0) while its end
point at time t1 is fluctuating. In a given disorder realization V (t,y),
the distribution of the end point y1 = y(t1) is denoted byPV (t1,y1) and
its mean variance at time t1 defines the DP “roughness” B(t1). The DP
description of the interface as growing along a “time” direction allows
us to use tools of stochastic processes and amounts, in the language
of the 1D interface, to study the effective statistics of the DP end point
at a fixed length scale t1, having integrated the fluctuations at shorter
length scales.

We focus on the case of a 1D interface with a short-range
elasticity and a quenched random-bond Gaussian disorder,
which yields a generic continuous model belonging to the
KPZ universality class [3,21–23]. A large variety of problems
actually belong to this class, such as random matrix models
[22,24], the noisy Burgers equation in hydrodynamics [25,26],
population dynamics in random environments [27], one-
dimensional growth phenomena [2], last-passage percolation
[28], dynamics of cold atoms [29], or vicious walkers [30–32].
There has been a recent increase of interest in this class of
problems in both physics [30,33,34] and mathematics [35,36]:
It indeed has been shown in those references that, for an
uncorrelated disorder (ξ = 0), the complete scaling of the
free-energy fluctuations at all times has been elucidated,
in the sense that the free energy not only presents the
universal roughness exponent ζKPZ = 2/3 [24,37–39] but also,
once properly rescaled, follows a universal distribution at
asymptotically large time. The case of a disordered potential
correlated at short length scales (ξ > 0), however, challenges
possible universality features and proves more difficult to
tackle, thus, fewer results are available. Such correlations are,
nevertheless, particularly relevant to understand experimental
results: The ξ = 0 limit is indeed only an ideal limit since
disordered materials always present correlations at a short
scale ξ > 0; besides, one can show that thick interfaces (e.g.,
ferromagnetic DWs) are equivalent to pointlike interfaces with
finite ξ , in the DES description [40]. In Refs. [18,40] we
have shown, with scaling arguments and Gaussian variational
method (GVM) computations, that a characteristic temperature
Tc(ξ ) separates two regimes for the roughness. At high
temperatures well above Tc, the microscopic correlation length

ξ plays no role and the disorder can as well be assumed to be
uncorrelated, whereas at low temperatures below Tc it plays
a role at all length scales, even macroscopically. The central
quantity that controls this temperature crossover turns out to
be the asymptotic free-energy amplitude D̃∞, which also rules
the roughness amplitude and characteristic crossover length
scales. Actually, the existence of such a temperature-dependent
parameter was already hinted at numerically in Ref. [41], for
both a continuous and a discrete DP, as a fitting parameter
in order to test a scaling relation between the free-energy
global scaling properties and the DP geometrical fluctuations.
In Ref. [42] we have investigated analytically the time and
temperature dependence of the free-energy and geometrical
fluctuations at finite ξ , providing a proper justification to a
previous DP toy model for the free-energy fluctuations and,
thus, of its corresponding GVM roughness predictions [40];
we have in particular obtained an analytical prediction for the
full temperature-induced crossover of D̃∞(T ,ξ ). However, a
numerical counterpart to this investigation was needed in order
to complete and test these analytical results and is, thus, the
object of the present study.

In this paper, we propose a novel numerical scheme to
integrate the KPZ equation with colored noise which governs
the evolution of the free energy FV (t,y), with the so-called
“sharp-wedge” initial conditions. Usual procedures are either
afflicted with discretization issues [28] and/or by the predom-
inance at short times of thermal fluctuations, which obfuscate
the genuine effects of disorder. The numerical evaluation that
we have designed works directly in the continuum and uses a
symmetry that allows us to focus on the sole disorder contribu-
tion to the free energy. It allows us to sample this “disorder free
energy” F̄V (t,y) on a wide range of times and temperatures
at fixed ξ . We perform an extensive test of the assumptions
made in the analytical approach put forward in our companion
paper [42], assessing primarily the validity of our DP toy
model with respect to the full free-energy fluctuations and the
qualitative agreement of its GVM predictions for the roughness
function. We observe in particular the predicted monotonous
crossover to the low-temperature regime for the amplitude
D̃∞(T ,ξ ). Our numerical approach also probes success-
fully the KPZ-specific nonlinearities together with hallmarks
of the non-Gaussianity of the free-energy distribution. We
emphasize that our proposed procedure is of general purpose,
given the richness of the KPZ universality class, even if we
apply it here to tackle specifically issues of the finite width of
a 1D interface at finite temperature.

The plan of the paper is as follows. In Sec. II we detail
the 1 + 1 directed-polymer model, making the link with the
static 1D interface and presenting the open questions at ξ > 0
that we examine. In Sec. III we discuss the specific difficulties
of simulating the KPZ equation and we expose the numerical
procedure that we have used in this paper before moving to the
three parts of our numerical results. First, we study, in Sec. IV,
the time evolution of the disorder free-energy fluctuations
at fixed temperature via the two-point correlator of interest
denoted R̄(t,y). In order to test our DP toy model, we measure
its amplitude D̃t and correlation length ξ̃t assuming different
shapes of the correlator. Second, we focus in Sec. V on the
large-time saturation of this effective disorder correlator and
its temperature dependence, measuring in particular the full

062405-2



STATIC FLUCTUATIONS OF A THICK ONE- . . . PHYSICAL REVIEW E 87, 062405 (2013)

temperature-induced crossover of the amplitude D̃∞(T ,ξ ).
Third and last, we investigate, in Sec. VI, the temperature
dependence of the roughness function B(t) and its effective
scale-dependent exponent ζ (t). We present our conclusions in
Sec. VII. Appendices gather part of the technical details and
thorough numerical analyses.

II. 1 + 1 DIRECTED-POLYMER FORMULATION OF THE
STATIC 1D INTERFACE

In this section, we define the continuous 1 + 1 DP formula-
tion of the 1D interface model that we study, together with our
observables of interest at a fixed length scale or DP growing
time, as first set in Fig. 1. After recalling its known analytical
properties, we present the DP toy model discussed in Ref. [42]
and ultimately aimed at grasping the temperature dependence
of the 1D interface geometrical fluctuations.

A. Model

From the point of view of the interface, the energy
associated to a segment of length (or “time”) t1 is the sum
of a short-range quadratic elastic cost and of the total potential
energy accumulated along the line in a fixed disorder landscape
V (t,y).

Let us, first, precisely define the unnormalized Boltzmann
weight WV (t1,y1) of trajectories starting at the fixed origin
(0,0) and ending at (t1,y1) as follows:

WV (t1,y1) =
∫ y(t1)=y1

y(0)=0
Dy(t) e−H[y,V ;t1]/T , (1)

where the DES energy of the line is the sum of the integrated
elastic and disorder contributions,

H [y,V ; t1] =
∫ t1

0
dt

[
c

2
(∂ty(t))2 + V (t,y(t))

]
, (2)

with c the elastic constant. The Boltzmann constant is
conveniently set to kB = 1 such that the temperature has the
unit of an energy.

Importantly, the disorder potential V (t,y) is assumed to
have a Gaussian distribution of zero mean and of finite
transverse correlations described by a “colored noise” fully
characterized by its two-point correlator as follows:

V (t,y)V (t ′,y ′) = D δ(t − t ′) Rξ (y − y ′), (3)

where the statistical average with respect to disorder is
denoted by an overline, D is the disorder strength, and ξ its
typical correlation length. We study the case of a short-range
“random-bond” disorder potential, i.e., characterized by a
correlation function Rξ (y) decaying fast enough at large y

(faster than any power law). The disorder strength D is defined
by fixing the normalization of Rξ (y) with

∫
R dy Rξ (y) = 1.

The parameter ξ is assumed to fully control the scaling of
the correlator by the relation Rξ (y) = 1

ξ
R1(y/ξ ) and to fix the

characteristic temperature Tc(ξ ) = (ξcD)1/3 [18,40].
The “partition function” ZV (t,y) of the DP trajectories is

written as

ZV (t,y) = WV (t,y)

W̄V ≡0(t)
, (4)

where W̄V ≡0(t) = ∫
R dy WV ≡0(t,y) fixes the normalization of

the path integral (1). We refer the reader to Ref. [43] or Ref. [35]
for mathematical constructions in different contexts and to
Ref. [42] for a time-discrete à la Feynman approach. The
fixed origin translates into the initial condition ZV (0,y) = δ(y)
and the time evolution is given by a stochastic heat equation
[38,43–45],

∂tZV (t,y) =
[

T

2c
∂2
y − 1

T
V (t,y)

]
ZV (t,y), (5)

that can be seen as a Langevin equation with multiplicative
spatiotemporal “noise,” V (t,y), and may be understood as a
“Feynman-Kac” formula [42,46–48]. In absence of disorder,
ZV ≡0(t,y) is a normalized Gaussian of variance Bth(t) = T t

c
.

Note that the normalization W̄V ≡0(t) in (4) is essential to obtain
the stochastic heat equation (5) and is usually hidden in the
definition of the path integral (1).

With the disorder-dependent normalization at fixed time t ,

W̄V (t) ≡
∫ ∞

−∞
dy WV (t,y), (6)

we can define the probability distribution function (PDF) of
the DP end point, respectively, at fixed disorder V and after
the disorder average,

PV (t,y) ≡ WV (t,y)

W̄V (t)
, P(t,y) = PV (t,y). (7)

We emphasize that, due to different normalizations, the
probability distribution PV (t,y) is not the same as the DP
partition function ZV (t,y) (4): Only the latter evolves with the
stochastic heat equation (5) but they coincide in absence of
disorder: PV ≡0(t,y) = ZV ≡0(t,y).

The corresponding free energy, defined by
FV (t,y) ≡ −T log ZV (t,y), obeys the KPZ equation [21,38]:

∂tFV (t,y) = T

2c
∂2
yFV (t,y) − 1

2c
[∂yFV (t,y)]2 + V (t,y), (8)

whose specificities arise from the nonlinear term
[
∂yFV (t,y)

]2
;

in the absence of this nonlinearity (8) becomes the EW
equation [20]. The pure thermal contribution FV ≡0(t,y) can be
derived from the (diffusive) solution of the problem without
disorder and reads:

ZV ≡0(t,y) = e−y2/(2Bth(t))/√
2πBth(t), (9)

FV ≡0(t,y) = Fth(t,y) + T

2
log

2πT t

c
, (10)

Fth(t,y) = cy2

2t
, Bth(t) = T t

c
, (11)

and once removed from the total free energy, it allows us to
focus on the sole disorder contribution, which presents helpful
statistical properties. Indeed, the disorder free energy defined
by

F̄V (t,y) ≡ FV (t,y) − FV ≡0(t,y) (12)

obeys the statistical tilt symmetry (STS), which states that,
at fixed time t , the distribution of F̄V (t,y) is invariant by
translation along the transverse direction y,

P̄[F̄V (t,y + Y )] = P̄[F̄V (t,y)]. (13)
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We refer the reader to Refs. [19,35,49–51] for previous
discussions of the STS and to Ref. [42] for a derivation at
finite ξ . Moreover, this definition of the disorder free energy
implies that F̄V (t,y) evolves with a “tilted” KPZ equation at
t > 0 as follows:

∂t F̄V (t,y) = T

2c
∂2
y F̄V (t,y) − 1

2c
[∂yF̄V (t,y)]2

− y

t
∂yF̄V (t,y) + V (t,y). (14)

Note that neglecting the nonlinearity in this evolution does
not yield the EW equation, since the linear tilt y

t
∂yF̄V (t,y)

itself stems from the KPZ nonlinearity in (8). The initial
condition ZV (0,y) = δ(y), which is difficult to express for
the free energy FV (t,y) (this is the “sharp-wedge” initial
condition [52]), translates simply for the disorder free energy
into F̄V (0,y) ≡ 0, since the Dirac δ function is absorbed by
the thermal ZV ≡0(0,y) = δ(y).

B. Disorder free-energy fluctuations and DP toy model

We may assume that the scaling of the distribution P̄[F̄ ,t]
is in large part controlled by the translation-invariant two-point
disorder correlators defined by

C̄(t,y2 − y1) ≡ [F̄V (t,y1) − F̄V (t,y2)]2, (15)

R̄(t,y2 − y1) ≡ ∂yF̄V (t,y1)∂yF̄V (t,y2), (16)

where the functions R̄(t,y) and C̄(t,y) are even functions
of y and are related through ∂2

y C̄(t,y) = 2R̄(t,y) [42]. Note
that although the study of C̄(t,y) is a natural choice as it
characterizes the second moment of F̄V , we have argued in
Ref. [42] that the study of R̄(t,y) yields a clearer physical
picture. In particular, its value at y = 0 characterizes the fluc-
tuations of the KPZ nonlinearity in the evolution equation (14)
as R̄(t,0) = [∂yF̄V (t,y)]2.

For an uncorrelated disorder, i.e., for Rξ (y) = δ(y) in (3)
or, equivalently, ξ = 0, it has been shown that the features
shared in the KPZ universality class consist not only of the
value of roughness scaling exponent ζKPZ = 2/3 but also of
the asymptotic distribution of the free energy. More precisely,
the disorder free energy F̄V (t,y) scales in distribution at large
times according to

F̄V (t,y)
d=

(
D̃2

∞
c

t

) 1
3

A2(y/
√

BRM(t)) as t → ∞, (17)

BRM(t) ∼
(

D̃∞
c2

) 2
3

t
4
3 , D̃∞ = cD

T
, (18)

whereA2(ȳ) is the so-called Airy2 process [53], independently
of the system DES parameters {c,D,T }, and BRM(t) is the
roughness in the asymptotic “random manifold” (RM) regime.
As stated in the introduction, the parameter D̃∞ is central
in our analysis, being common to the free-energy scaling in
distribution (17) and to the scaling of the large-time roughness
amplitude (18). The scaling relations (17) and (18) express the
fact that in addition to the universality of the exponents, the
amplitudes and the free-energy distribution are also universal
in the ξ = 0 KPZ class.

At ξ = 0 the mere relation D̃∞ = cD
T

holds exactly.
However, the crucial point for the short-range correlated case
ξ > 0 is that it must be generalized to

D̃∞(T ,ξ ) ≡ f (T ,ξ )
cD

T
, (19)

where f (T ,ξ ) is an interpolating parameter such that the
correct uncorrelated limit D̃∞(T ,0) = cD

T
is recovered, with

f (T ,0) ≡ 1. In Ref. [42] we have predicted a monotonous
behavior of D̃∞ as a function of temperature T , de-
scribed by f (T ,ξ ) being the solution of the equation
f γ ∝ [ T

Tc(ξ ) ]
γ (1 − f ). Note that the exponent γ takes differ-

ent values γ > 0 depending on the approximation scheme
considered but always predicts a saturation of the amplitude
at zero temperature: D̃∞(0,ξ ) ∼ cD

Tc
.

In Ref. [41], we have shown numerically with other
coauthors that the scaling relation (17) can be extended to the
correlated case ξ > 0 with a modified Airy2 process (still to be
characterized) and by replacing the asymptotic BRM(t) in (18)
by the actual roughness B(t). However, the characterization
of this modified Airy2 process will require the understanding
of a scaling relation valid on the full transverse range y, and
this generalized scaling relation has actually been tested by
the numerical collapse of the full correlator C̄(t,y) (15) at
different times and temperatures. In addition, in the companion
paper [42], we have centered our analytical study on the local
scaling properties of the correlator R̄(t,y) (16), which actually
characterizes the fluctuations of the KPZ nonlinearity in (14).
We have showed that this a priori perplexing observable
captures in fact the entire crossover from the low- to the
high-temperature regime through its small-y behavior. In a
DP toy model approach, we have thus advocated that, at least
for |y| � ξ and sufficiently large times, the correlator R̄(t,y)
takes the form

R̄(t,y) ≈ D̃t Rξ̃t
(y),

∫
R

dy Rξ̃t
(y) ≡ 1, (20)

where the normalized function Rξ̃t
(y) is assumed to take

a stabilized form closely related to the disorder correlator
Rξ (y) defined by (3), in the sense that these correlators share
the same scaling in ξ̃t ∝ ξ . All possible time dependence
is then hidden in two effective parameters, D̃t and ξ̃t , and
at asymptotically large times a steady state is reached with
R̄(∞,y) ≡ D̃∞ Rξ̃∞ (y) and in particular R̄(∞,0) ∼ D̃∞/ξ̃∞.
This behavior suggests the definition of a saturation time tsat

above which

R̄(t,|y| � ξ ) ≈ D̃∞ Rξ̃∞ (y) ≡ R̄sat(y). (21)

The crossover of D̃∞(T ,ξ ) announced in (19) stems from the
subtle interplay of the KPZ nonlinearity feedback with the
disorder V (t,y) for short times t � tsat.

The ansatz (20) has been inspired by the infinite-time
limit of the free-energy fluctuations, respectively, for the
uncorrelated case [38] and for the linearized version of the
tilted KPZ equation (14) presented in Ref. [42] (whose solution
is denoted thereafter by a subscript “lin”). In both cases the
fluctuations are Gaussian and, thus, fully characterized by their
two-point correlators,

R̄(∞,y)
(ξ=0)= cD

T
Rξ=0(y), Rξ=0(y) = δ(y), (22)
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FIG. 2. (Color online) The finite-time correlator R̄lin(t,y) (thin
purple lines) for the CubicS disorder correlator Rξ (y) = RCubicS

ξ (y)
defined in (A2) and (A3) and plotted as a function of y for different
times and compared to its infinite-time limit Rξ (y) (thick red line).
The central peak develops with increasing times from the flat initial
condition R̄(0,y) ≡ 0. Parameters are ξ = 2, c = 1, D = 1, and
T = 1. Left inset: Same behavior for C̄ lin(t,y). Right inset: Same
behavior for 1

2 C̄ lin(t,y) = ∫ y

0 dy ′ R̄lin(t,y ′).

R̄lin(∞,y) = D̃∞ Rξ (y), D̃∞ = cD

T
. (23)

As discussed in Ref. [42], the linearized case—which is
not equivalent to a standard EW evolution for ∂tFV (t,y)
[20]—has been solved exactly at all times, predicting Gaussian
fluctuations and yielding the following decomposition:

R̄lin(t,y) = cD

T
[Rξ (y) − blin(t,y)], (24)

with limt→∞ blin(t,y) = 0. This behavior is depicted in Fig. 2
for the specific disorder correlator that will be used in
our numerical simulations RCubicS

ξ (y), defined in (A2) and
(A3). Note that the disorder free-energy fluctuations are
non-Gaussian in the full nonlinearized case, except in the
very specific limit of infinite time and uncorrelated disorder
ξ = 0, requiring, thus, the complete set of n-point correlator
to characterize them. Nevertheless, the solution (24) suggests
a similar decomposition for the exact two-point correlator
R̄(t,y), separating its asymptotic amplitude D̃∞ and shape
Rξ (y) from a finite-time contribution b(t,y) under the exact
constraint that

∫
R dy R̄(t,y) = 0 at t < ∞ [42],

R̄(t,y) = D̃∞ [Rξ (y) − b(t,y)], (25)∫
R dy Rξ (y) ≡ 1 ⇒ ∫

R dy b(t,y) = 1 ∀t, (26)

limt→∞ b(t,y) = 0. (27)

The scaling of b(t,y) corresponds to the “wings” of the
alternative correlator C̄(t,y) (15), which rescales with the
roughness B(t) as studied extensively in Ref. [41].

It is striking that the ξ = 0 result (22) holds in the same
form in the linearized and nonlinearized evolutions of the
disorder free energy, with the imprint of the microscopic
disorder correlator at large times such that Rξ̃∞ (y) = Rξ=0(y).

This implies that any modification of both the amplitude D̃∞
and the shape R(y), along with the non-Gaussianity of the
free-energy fluctuations, must stem from the KPZ nonlinearity
in (14).

From an analytical point of view, the validity of the ansatz
(20) must still be asserted. The exact contribution b(t,y)
and the asymptotic temperature-dependent shape R(y) remain
unknown for the time being, and, hence, the present numerical
study is a first step in the characterization of the modified
Airy2 process at ξ > 0 in (17). In this paper we examine
specifically the validity of the DP toy model centered on (20)
by measuring numerically the time evolution of the correlator
R̄(t,y) and characterizing its small-y features with respect
to the microscopic disorder correlator Rξ (y) (see Secs. IV
and V). We discuss, moreover, the existence of the saturation
time tsat and the consequent characterization of R̄sat(y) with
{D̃∞,ξ̃∞,R} following the definition (21).

C. Geometrical fluctuations and roughness

The geometrical fluctuations of the polymer end point at
time t , or, equivalently, of the interface at a given length scale t ,
are of high relevance because they are directly accessible, both
numerically and experimentally. Their PDF P(t,y) (7) can be
characterized mainly by its variance, namely the roughness
function B(t), and by an effective roughness exponent ζ (t),
respectively defined as

B(t) ≡ 〈y(t)2〉 =
∫
R

dy y2 P(t,y), (28)

ζ (t) ≡ 1

2

∂ log B(t)

∂ log t
, (29)

where the brackets 〈O〉 denote the statistical average over
thermal fluctuations for an observable O. It is known that the
roughness is characterized at small t by the EW exponent
ζEW = 1/2 and at asymptotically large t by the KPZ exponent
ζRM = ζKPZ = 2/3 in the RM regime. Beyond these exponents,
the amplitudes of the corresponding power laws are in fact of
interest and their scalings read

B(t) =
{

Bth(t) = T
c
t2ζEW for t → 0

BRM(t) ∼ (
D̃∞
c2

) 2
3 t2ζKPZ for t → ∞

, (30)

as already defined respectively in (11) and (18). The large-
time result is known to hold exactly with D̃∞ = cD

T
for an

uncorrelated disorder (ξ = 0). In a GVM approach based on
our DP toy model [18,40,41], we have, moreover, showed that
it should also hold for a correlated disorder (ξ > 0) for all
temperatures, with D̃∞(T ,ξ ) characterizing the amplitude of
the free-energy fluctuations, as stated in (17)–(19).

An important crossover length scale is the Larkin length
Lc [54] which marks the beginning of the RM regime and
is closely related to D̃∞(T ,ξ ) [42]. Note that by consistency
the Larkin length should be larger than the saturation time for
the free-energy fluctuations [defined by (21)], so we expect
tsat � Lc.

One aim of this paper is to provide a numerical check
of these GVM predictions (see Sec. VI), especially in order
to probe intermediate regimes and length scales between the
two opposite asymptotic regimes of the roughness (30). This
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numerical study of the roughness at ξ > 0 provides, moreover,
an indirect test of the validity of our DP toy model, on which
these GVM predictions are based.

III. NUMERICAL RECIPE

In this section we discuss the possible numerical approaches
to these problems and we expose our numerical procedure. All
the numerical parameters are gathered in Appendix B.

In the next three sections, we present the different numerical
results obtained, which are as follows: in Sec. IV, the time
evolution of the correlator at fixed temperature R̄(t,y) (16)
and its parameters {ξ̃t ,D̃t } (20); in Sec. V, the temperature
dependence of the asymptotic effective correlator R̄sat(y)
and {D̃∞,ξ̃∞,R} according to (21); and, in Sec. VI, the
temperature dependence of the roughness B(t) (28) and its
logarithmic slope ζ (t) (29). In addition, Appendix C gathers
the details of a quantitative test of the DP toy model by
comparing three fitting functions for R(y) and Appendix D
presents a self-consistency check of our numerical procedure
by analyzing the time and temperature dependencies of the
mean value F̄V (t,y) = − 1

2c

∫ t

0 dt ′ R̄(t ′,0).

A. Possible numerical approaches

The Feynman-Kac evolution equation (14) for the disorder
free energy ∂t F̄V (t,y) provides the starting point for a numeri-
cal study of the geometrical and free-energy fluctuations of the
1 + 1 DP and, consequently, of the static 1D interface, directly
in their continuum formulation. This approach uses an exact
property of the model—the STS (13)—to focus on the effects
of the disorder, dissociated from the pure thermal ones.

Among the numerical procedures previously used to tackle
this problem, we can mention, first, the DP under the solid-on-
solid (SOS) constraint [41,55,56], where the polymer lives on
a discretized lattice; second, the semicontinuous 1D interface,
discretized along its internal dimension but with each point
living in a continuous 1D splined random potential [57]; and,
third, the continuous DP that we present thereafter. Those
approaches are, of course, complementary, especially for the
investigation of the large versus small length scales and high-
versus low-temperature properties, if a suitable translation
from the specific numerical parameters to the physical ones
{c,D,T ,ξ} is provided [41,45]. The SOS model numerical
approach consists in solving the discrete equivalent of the
stochastic heat equation (5) onto a partition function defined
on a lattice. This approach, however, proves difficult to control
numerically in the low-temperature regime, since the DP
end point is exponentially concentrated in favorable regions
of the potential. An alternative approach thus consists in
focusing on a discrete analog of the KPZ equation (8). In
fact, the discretization of the nonlinear term proves to be a
highly nontrivial problem even without disorder, as Kruskal
and Zabusky [58] realized a long time ago in the related
problem of simulating soliton solutions of the Korteweg-de
Vries equation. A well-behaved lattice discretization which
leads to the correct continuum limit is exposed in Ref. [28];
we refer the reader to Ref. [59] for a detailed discussion.

Our procedure is actually based on the continuous analog
of the transfer-matrix method of a DP on a lattice with

the SOS constraint in the sense that it is performed after
integration over thermal fluctuations since it follows the
evolution of the partition function ZV (t,y) with the length scale
[namely the Feynman-Kac equation (14)] for many individual
disorder configurations. The continuous-limit formulation has
two advantages: First, the discretization issue in numerics is
pushed back to a problem of numerical integration of partial
differential equations, so even “small” length scales can be
studied without discretization artifacts, and, second, in the
continuous limit the numerical parameters are directly the
physical ones of the analytical model. We refer the reader
to Ref. [60] for mathematical results on the convergence of
discretization schemes of the KPZ equation to the solution of
the continuous equation in the situation where the disorder is
spatially correlated.

B. Detailed procedure

Computing F̄V (t,y) for individual disorder configurations
V (t,y) up to a maximal time tm, we can measure directly the
geometrical and free-energy fluctuations stemming at thermo-
dynamic equilibrium from thermal fluctuations exploring a
given random potential. Then, averaging these fluctuations
over many disorder configurations, we have access to the
quantities of interest defined in Sec. II.

1. Finite box and microscopic discretized grid

The Feynman-Kac evolution equation (14) is defined in a
continuous limit with t > 0 and y ∈ R. In numerics we work
necessarily on a microscopic discretized grid in both (t,y)
variables and in a finite box (t,y) ∈ [0,tm] × [−ym,ym] with-
out periodic boundary conditions. However, in experimental
realizations of 1D interfaces we also have some microscopic
cutoff in length scales, ultimately the crystal parameter, and
a macroscopic cutoff due to scarcer statistics at larger length
scales.

2. Generation of an individual disorder configuration

In order to generate individual disorder configurations for a
given set of DES parameters, we first define a two-dimensional
grid of spacing {ξ grid

t ,ξ
grid
y } = {tm/Lt ,ym/Ly} (cf. Fig. 3). On

each point of the grid we pick a set of random numbers
according to a normal distribution of variance Dgrid (the
strength of disorder) and the smooth random potential V (t,y)
is obtained by interpolating between the grid points with a
2D cubic spline as illustrated in Fig. 10 (top). As detailed in
Appendix A, its corresponding two-point correlator at fixed
time is given by the translation invariant:

V (t,y)V (t,0) = Deff RCubicS
ξy

(y), (31)

Deff = D RCubicS
ξt

(0) = Dgridξ
grid
y , (32)

with the function RCubicS
ξ made explicit in (A2) and (A3).

The values of those parameters are fixed for all our numerical
computations to

ξ
grid
t = 1, ξ grid

y = 2, Dgrid = 4 ⇒ D = Deff = 8. (33)
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y

tm

−ym ym(0, 0)

PV (t2, y)

PV (t1, y)

y

y

ξgrid
t

ξgrid
y

PV ≡0(t0, y)

FIG. 3. (Color online) Illustration of the numerical procedure
for the 1 + 1 continuous DP in the finite box [0,tm] × [−ym,ym]
with the initial condition at t0 = 0.1 taken as purely thermal
P(t0,y) = ZV ≡0(t0,y) (9) (red curve). There are three levels of dis-
cretization grids by decreasing scale: the grid for the random potential
ξ

grid
t = 1 and ξ

grid
y = 2 (the gray box on the left side), the linear

grids for the recording of data �t lin = tm/80 and �y lin = 2ym/100,
and the logarithmic grid t

log
j = t0 (tm/t0)j/80 with j = 0 · · · 80. The

microscopic grid for the numerical integration is adapted in both the
(t,y) directions by use of MATHEMATICA. At a given configuration of
disorder V (t,y) as illustrated in Fig. 10, the PDFPV (t,y) is computed
at increasing time following (14), with the boundary condition
∂yF̄V (t,±ym) = 0 and the ad hoc normalization (34), as illustrated at
t0 < t1 < t2 (blue curves). See Fig. 1 for the interpretation in terms
of DP trajectories.

Note that the physical parameter used in analytical arguments
is D (3) and not Deff, but they coincide with this particular
choice of ξ

grid
t .

3. Numerical integration at fixed disorder

We have chosen to follow the evolution of the dis-
order free energy F̄V (t,y) (14) because among its coun-
terparts (i) ∂yFV (t,y) is too noisy, (ii) FV (t,y) includes

Fth(t,y) = cy2

2t
(11) that hides the disorder-induced fluctuations

of F̄V (t,y) except at large times, and (iii) the exponential
in WV (t,y) ∝ e−FV (t,y)/T reduces the numerical resolution.
Moreover, by subtracting the exact Fth(t,y) for y ∈ R directly
in the evolution equation, we get rid of the finite-box artifacts
that would have arisen already in the absence of disorder due to
the pure elastic contribution. The numerical integration of the
differential equation (14) was performed using a numerical
algorithm included in MATHEMATICA [61], which adapts the
numerical discretization in y at each time step in order to
minimize the numerical errors. As emphasized in Ref. [62],
pseudospectral spatial derivatives are more stable than finite
differences for simulating the KPZ equation. We enforced
this choice through the “DifferenceOrder”->“Pseudospectral”
option to the NDSolve integrator. The main limitation was that
the larger the maximum time tm, the longer the computation
time. Moreover, the lower the temperature, the more the
numerical solution of the Feynman-Kac equation (14) is
sensitive to the spatial variations of the random potential, thus

dictating a smaller grid discretization in order to minimize the
numerical error and increasing considerably the computation
time. The number of disorder configurations that have been
considered for a given set of DES parameters is, thus, a com-
promise between the convergence of the disorder average and a
reasonable computation time (as summarized in Appendix B).

4. Initial condition

If, as discussed in Sec. II A, the disorder free energy
F̄V (0,y) is uniformly 0 at initial time t = 0, the equation evo-
lution (14) for F̄V (t,y) is, however, singular at t = 0. We thus
slightly shift the initial condition to time t0 = 0.1, assuming
that this procedure is stable as t0 → 0. This choice corresponds
to taking F̄V (t0,y) ≡ 0, or, in terms of the partition function,
ZV (t0,y) ≈ ZV ≡0(t0,y) as defined by (9). For the uncorrelated

case ξ = 0, this asymptotics ZV (t0,y)
t0→0∼ ZV ≡0(t0,y) has

indeed been shown to be correct [63], and we assume that this
result also holds in the less singular case, ξ > 0. We assume
that at large times the DP has completely forgotten this initial
condition, and we have checked numerically that this is the
case for our particular choice for t0. However, at short times
above t0, the DP behavior should carry some artifact for the
disorder-induced quantities F̄V and ∂yF̄V .

5. Boundary conditions

We impose at each time that ∂yF̄V (t,±ym) = 0. This is
equivalent to the statement that we have WV (t,y) ≈ WV ≡0(t,y)
for |y| � ym and, thus, the normalized DP end point probability
can be approximated as PV (t,y) ≈ ZV ≡0(t,y) ≈ 0 (9). This
boundary condition can be physically correct only for times
such that

√
B(t) < ym or the DP “senses” inevitably the

boundaries of the finite box. This choice of boundary condition
implies for the normalization W̄V (t) (6) that the contribution
for displacement y outside the box [−ym,ym] is exactly known
analytically,

1

2
W̄ num

V (t) =
∫ ym

0
dy e−(Fth(t,y)+F̄V (t,y))/T + cte(t,ym),

(34)

cte(t,ym) =
∫ ∞

ym

dy e−Fth(t,y)/T , Fth(t,y) = cy2

2t
.

These definitions yield back the normalized distribution
PV (t,y) as defined by (7) (cf. Fig. 3).

6. Recorded data

We have actually recorded, on a microscopic grid linear
in y, the following quantities defined throughout Sec. II: on
one hand, the disorder free energy F̄V (t,y) and its derivative
∂yF̄V (t,y), with their mean values F̄V (t,0) and ∂yF̄V (t,0) and
their respective two-point correlators C̄(t,y) and R̄(t,y) [(16)
and (15)] and, on the other hand, the PDFsPV (t,y) andP(t,y),
their first corresponding moments 〈y(t)k〉 and, in particular,
the roughness B(t) ≡ 〈y(t)2〉 with the roughness exponent
ζ (t). We have recorded those quantities using a microscopic
grid linear in t , and, in parallel for the roughness-related
quantities, we have used a microscopic grid logarithmic in
t in anticipation of power-law determination. Note that the
even parity of the correlators has been explicitly used to
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increase their statistics, so the measured C̄(t,y) and R̄(t,y)
are symmetric by construction,

R̄(t,y) = 1
2 [∂yF̄ (t,y) ∂yF̄ (t,0) + ∂yF̄ (t,−y) ∂yF̄ (t,0)],

C̄(t,y) = 1
2 [F̄ (t,y) − F̄ (t,0)]2 + [F̄ (t,−y) − F̄ (t,0)]2.

7. Fitting functions for R̄(t, y)

The correlator R̄(t,y) is not known exactly at finite
time, and, thus, we have only postulated its generic form
R̄(t,y) ≈ D̃t Rξ̃t

(y) in (20). Following the DP toy model
assumption (20), we have systematically extracted the typical
width ξ̃t and amplitude D̃t for three different function Rξ̃ (y)
with the chosen normalization

∫
R dy Rξ̃ (y) ≡ 1. First, Rξ̃ (y)

is taken to be a Gaussian function, whose single feature is
given by its variance 2ξ̃ 2,

RGauss
ξ̃

(y) = e−y2/(4ξ̃ 2)

√
4πξ̃

. (35)

Second, we add phenomenologically two negative oscillations
of the observed correlator by using a cardinal sinus of period
ξ̃ /π with a Gaussian envelope function,

RSincG
ξ̃

(y) = e−y2/(4ξ̃ 2) sin[πy/ξ̃ ]

πy Erf(π )
. (36)

And, third, we consider the same function as the exact
two-point correlator of the microscopic random potential
RCubicS

ξ̃
(y) = RCubicS

ξ̃
(y) defined in (A2) and (A3). {ξ̃t ,D̃t } are

reliable quantities if they do not depend on the choice of the
fitting function, except for a numerical constant depending
solely on the choice among RGauss, RSincG, and RCubicS. In
Appendix A, we have compared the fit of the correlator
V (t,y)V (0,0) with respect to RGauss, RSincG, and RCubicS and
determined the numerical constants for passing from one to
the others as a consistency check of this procedure on this
well-controlled correlator.

IV. TIME EVOLUTION OF R̄(t, y) AT FIXED
TEMPERATURE

In this section we study in detail the time evolution of the
correlator R̄(t,y) (16) at fixed temperature, from the point
of view of our DP toy model (20). We thus focus on the
evolution of its shape around y = 0, characterized by the
effective parameters {D̃t ,ξ̃t }. Note that its behavior at large
transverse displacements y has already been investigated from
a different perspective in Ref. [41] on the equivalent correlator
C̄(t,y) (15).

In Fig. 4 we have plotted the correlators at three charac-
teristic temperatures T ∈ {0.35,1,6}, illustrating respectively
the low-, intermediate-, and high-temperature regimes of the
DP fluctuations; refer to Appendix B for the complete set
of corresponding numerical parameters. We can follow the
evolution of the correlator, starting by construction from the
thermal condition R̄(t0,y) ≡ 0 at initial time t0 = 0.1. At small
times the central peak first increases but quickly saturates, and
all the curves start accumulating in the vicinity of y = 0 (Fig. 4,
left side). This behavior suggests qualitatively the existence of
a saturation time tsat. Assuming, thus, that at sufficiently large

y

R̄sat(y)

t ∈ [0.1, 25] t ∈ [25, 40]

T = 0.35

R̄(t, y) R̄(t, y)

y y

y

R̄sat(y)

t ∈ [0.1, 25] t ∈ [25, 40]

T = 1

R̄(t, y) R̄(t, y)

yy

y

R̄sat(y)

t ∈ [0.1, 25] t ∈ [25, 40]

T = 6

R̄(t, y) R̄(t, y)

y y

FIG. 4. (Color online) Effective disorder correlator R̄(t,y) mea-
sured numerically at fixed temperature T ∈ {0.35,1,6}. The different
times t ∈ [0.1,40] are separated into two subsets [0,tmin] (left) and
[tmin,40] (right) with tmin = 25, with a time step �t = 1. Left side
(y ∈ [−10,10]): Initial development of the central peak (as indicated
by the arrows), saturation, and accumulation of the curves in the
vicinity of y = 0. Right side (y ∈ [−40,40]): Large times correlators
and their average over t > tmin (superimposed black curve). Center:
Saturation correlator R̄sat(y) (black dots) with its Gaussian (35)
(red, positive) and SincG (36) (blue, with negative oscillations)
fitting functions, CubicS collapsing exactly on SincG; see Table I
in Appendix C for the explicit values of the fitting parameters.

times the correlator has reached its presumably stationary form
at small y, the saturation correlator R̄sat(y) can be obtained by
averaging the correlator over times larger than an arbitrary
threshold tmin > tsat (Fig. 4, right side: superimposed black
curve). This correlator can then be fitted according to (21) with
respect to the three fitting functionsRGauss,RSincG, andRCubicS

defined at the end of Sec. III B (Fig. 4, center). Having checked
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that those results are stable for different values tmin > 10, we
have chosen arbitrarily tmin = 25 for all temperatures in order
to be safely above the saturation time tsat � 10.

Therefore, we can distinguish two time regimes for the
free-energy fluctuations just by considering R̄(t,y): (i) a short
time evolution at t < tsat, a priori marked by the artificial
initial condition, and (ii) a saturation regime at t � tsat, when
the correlator around y = 0 has reached a steady state and
is described by the stable function R̄sat(y) = D̃∞ Rξ̃∞ (y), as
assumed in our DP toy model (21). The linearized case (Fig. 2)
and the three temperatures in Fig. 4 exhibit qualitatively
the same two regimes. However, juxtaposing the high-,
intermediate-, and low-temperature cases allows us to point out
the slight temperature crossover in the shape of the asymptotic
R̄sat(y), which will be discussed in the next section.

An important point regarding the determination of R̄sat(y)
is that the large-y behavior of R̄(t,y) is treated as noise in
the averaging procedure. From the point of view of our DP
toy model (20), this is equivalent in neglecting the negative
excursions b(t,y) in (25) or in the linearized case (24), which
are known to move to larger y with increasing time [41]. It
results in a slight displacement below the abscissa axis of
the large-y asymptote of R̄sat(y). We have to cope with this
artifact, present in all three temperatures in Fig. 4, since we do
not know analytically b(t,y) for a correlated disorder (ξ > 0)
and, thus, we cannot remove its contribution before averaging
over large times.

In order to characterize quantitatively the two time regimes
of the free-energy fluctuations, we have measured the evolution
of the two fitting parameters {D̃t ,ξ̃t } by the bold application of
the approximation R̄(t,y) ≈ D̃t Rξ̃t

(y) of our DP toy model
(20) at all times. We refer the reader to Appendix C for a
detailed quantitative comparison of the three fitting procedures
with respectivelyRGauss,RSincG, andRCubicS for the three char-
acteristic temperatures of Fig. 4. This quantitative comparison
shows that (i) the approximation of our DP toy model (20)
can be extended even at times shorter than tsat, as the fitting
parameters can be obtained with reasonable uncertainties for
the low- versus high-temperature fits (see Figs. 11 and 12 in
Appendix C), and (ii) the three fitting functions for R(y) yield
consistent values for {D̃t ,ξ̃t } and their discrepancies allow us
to characterize the temperature crossover of the correlator’s
shape (see Fig. 13 in Appendix C).

As shown in Fig. 5 for increasing temperatures (blue to
red curves), we can clearly identify the two regimes of short
time versus saturation directly on these fitting parameters.
The saturation is reached faster for the typical spread ξ̃t than
for the amplitude D̃t , with tsat slightly decreasing when the
temperature increases. On the temperature range we explore
numerically, we have tsat � 10, as already deduced from Fig. 4.
The temperature dependence of the asymptotic correlator
R̄sat(y) thus can be safely obtained from averaging over times
t > tmin = 25 and will be discussed in the next section.

As a concluding remark, let us emphasize that the tempera-
ture crossover of {D̃∞,ξ̃∞,R} is conditioned by the short time
regime and thus requires a deeper understanding of the KPZ
nonlinearity feedback at times t < tsat. Nevertheless, in our
numerical measurements, these short times are a priori altered
by the artificial initial condition, whose signature has thus to

ξ̃tDt

tt

T T
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1
2
3
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FIG. 5. (Color online) Temperature-dependent amplitude D̃t and
typical spread ξ̃t for SincG for T ∈ {0.35,1,2,3,4,6} as listed in
Appendix B. See Appendix C 1 for the error bars of the minimum and
maximum temperatures. For increasing temperatures (blue to red),
D̃t decreases, whereas ξ̃t slightly increases (ξ grid

y = 2 for reference),
resulting in an overall damping of the correlator R̄sat(y) (see Fig. 6).

be investigated otherwise, via the roughness in Sec. VI or the
study of ∂t F̄V (t,y) in Appendix D.

V. TEMPERATURE DEPENDENCE OF R̄sat( y)

In the previous section, we have discussed the time evolu-
tion of the correlator R̄(t,y) (15) and pointed out the existence
of a characteristic time tsat that separates a short-time regime
from a saturation regime. Now we focus on the temperature
dependence of the large-time free-energy fluctuations in order
to observe numerically the crossover from the high- to the
low-temperature regime, as predicted analytically when the
microscopic disorder is correlated with ξ > 0 [40,42] (see
Sec. II B).

From the point of view of our DP toy model (21), we
examine the saturation correlator R̄sat(y), discussing on one
hand the crossover in the shape R(y) of its central peak and
on the other hand the temperature dependence of its fitting
parameters, i.e., the amplitude D̃∞ and typical spread ξ̃∞ of
the correlator.

In Fig. 4 we have plotted R̄sat(y) and its fits with respect
to the three functions R(y) at low, intermediate, and high
temperatures (center). We observe graphically that at high
T the exact microscopic disorder correlator RCubicS(y) or,
alternatively, its phenomenological counterpartRSincG(y) both
correctly encompass the features of the whole peak, including
its maximum and its negative anticorrelations. At low T ,
on the contrary, RGauss(y) appears to be more suited to
capture the central peak and its maximum, although com-
pletely skipping its anticorrelations. These anticorrelations are
obviously inherited from the microscopic disorder correlator
Rξ (y) = RCubicS

ξ (y), plotted in Fig. 10 in Appendix A. They
are, however, progressively altered when the temperature is
lowered. As for the negative shift of the large-y asymptote, it
is an expected artifact of the averaging procedure (see Sec. IV),
and as such it is not encompassed by any of the fitting functions
R(y).

This behavior suggests that at high T the imprint of the
microscopic disorder correlator is recovered in the asymptotic
shape R(y), as it is exactly the case at infinite time for an
uncorrelated disorder (22) and for the linearized case with
ξ > 0 (23). At low T the shape is analytically not known, but
we speculate that it could be a convolution of the disorder
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correlator Rξ (y) and a universal kernel, yielding a modified
(nonuniversal) Airy kernel in (17). Note that this effect would
actually have gone unnoticed if we had focused directly on
the parameters {D̃t ,ξ̃t } or if we had considered the correlator
C̄(t,y) (15) instead of R̄(t,y) = 1

2∂2
y C̄(t,y).

We have furthermore characterized quantitatively this tem-
perature crossover in Appendix C, on one hand, by computing

the geometrical ratios D̃SincG
∞

D̃Gauss∞
and ξ̃SincG

∞
ξ̃Gauss∞

(see Appendix C 1)
and, on the other hand, by comparing the maximum of the
peak R̄(t,0) to the values deduced from the different fits
(see Appendix C 2). Both analyses support quantitatively the
high-T scenario of R(y) ≈ RCubicS(y).

We now consider the temperature dependence of the
amplitude D̃∞, which is the central quantity controlling the
temperature crossover at ξ > 0 in our analytical predictions
[42], both for the free energy and the geometrical fluctuations
[see respectively (17), (18) and (30)]. In Fig. 5 we observe
graphically that the amplitude D̃∞ decreases strongly with T ,
whereas the typical spread ξ̃∞ increases (up to 30%) when
T increases. These behaviors result in an overall damping
of the effective disorder correlator R̄sat(y) when the thermal
fluctuations are enhanced, as plotted in the inset of Fig. 6.
Comparing quantitatively the values obtained for the three
fitting functions R(y) in Appendix C 3, we find that D̃∞(T )
exhibits a monotonous crossover from 1/T at high T to a
saturation 1/Tc(ξ ) at low T . This behavior is qualitatively
consistent with the GVM prediction presented after (19), but a
quantitative test is hindered by numerical constants inherent on

R̄sat(0)∼D∞/ξ

T

y

R̄sat(y)

−2c ∂tF̄V (t, y)

T

1.0 1.5 2.0 3.0 5.0

1.0

1.5

2.0

T

FIG. 6. (Color online) Temperature dependence of the maximum
of R̄sat(y) over times t ∈ [25,40], measured by three different ways
(from bottom to top): first, deduced by the SincG and Gauss fits
as in Fig. 13 (respectively, blue and red dots); second, measured
numerically directly R̄sat(0) (black crosses); and, third, measured
indirectly from the linear slope of −2c F̄V (t,y) in Fig. 16 (purple dots)
and systematically slightly overestimated. Upper inset: Saturation
correlator R̄sat(y) for temperatures T ∈ {0.35,1,2,3,4,6} (as indicated
by the arrow) and tmin = 25 as listed in Appendix B. Lower inset: The
excellent linear behavior of F̄V (t,y) yields vanishing error bars for
the slope on the range t ∈ [25,40].

one hand to our numerical procedure and on the other hand to
the GVM approximation. The corresponding ξ̃∞(T ) displays
in parallel a slight temperature dependence that either corrects
the minimal assumption ξ̃∞ ∝ ξ of our DP toy model or can
be attributed to the mismatch between R(y) and our fitting
functions.

We summarize all these temperature dependencies in Fig. 5,
plotting R̄sat(0) ∼ D̃∞/ξ̃∞ as a function of T . The main result
of our numerical study is the observation of the temperature
crossover of the amplitude D̃∞, and, hence, of R̄sat(0), and
their saturation below a characteristic temperature Tc. We
actually compare four distinct determinations of this quantity:
(i) a direct measurement on R̄sat(y), (ii) the values obtained
from RGauss(y), (iii) the values obtained from RCubicS(y) and
RSincG(y) which collapse exactly, and (iv) and an alternative
measurement via ∂t F̄V (t,y) which is presented in Appendix D.
By their good quantitative agreement, this comparison pro-
vides a consistency check of our numerical procedure and
an additional highlight of the temperature crossover of the
correlator shape R(y). The crossover temperature cannot be
sharply determined from R̄sat(0); nevertheless, the definition
Tc(ξ ) = (ξcD)1/3 obtained by GVM [40] and by scaling
arguments [42] predicts with ξ = 2, c = 1, and D = 8 that
Tc ≈ 2.5. Without any corrective numerical constant this value
is actually compatible with the crossover of the amplitude
D̃∞(T ,ξ ) in Fig. 14 and also of the function R(y) in Fig. 13
(bottom left).

VI. TEMPERATURE DEPENDENCE OF THE
ROUGHNESS FUNCTION B(t)

Until now we have analyzed in detail the disorder free-
energy fluctuations from the point of view of our DP toy
model [(20) and (21)], i.e., characterizing specifically the two-
point correlator R̄(t,y) (16). Keeping in mind the translation
of the time t for the DP end point into the 1D interface
length scale, we focus now on the implications of tsat and
D̃∞ in the geometrical fluctuations. We examine specifically
their variance as a function of time, namely the roughness
B(t) = 〈y(t)2〉 as presented in Sec. II C.

As recalled in Sec. II after the definition (28), the
roughness is expected to display at least two asymptotic
power-law regimes (30), crossing from a pure thermal behavior
B(t) � Bth(t) = T t

c
at short times to the random-manifold

BRM(t) ∼ [D̃∞/c2]2/3 t4/3 at large times. Above Tc there is a
single crossover Larkin time t∗(T ) = T 5

cD2 corresponding to the
intersection of the two asymptotic regimes of (30). This length
diverges with T and essentially prevents us from observing
the complete crossover to the RM regime in our numerical
approach in a reasonable computational time for T > 2. Below
Tc, however, we expect from Ref. [40] the appearance of an
intermediate Larkin-modified roughness regime ending at the
generalized Larkin time Lc(T ,ξ )

Lc(T ,ξ ) = 4π
T 5

cD2
f (T ,ξ )−5, (37)

which marks the beginning of the RM regime, cf. Sec. II C.
It depends on the interpolating parameter f (T ,ξ ) = D̃∞/( cD

T
)

defined in (19) and which characterizes the crossover between
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the high- and low-temperature regimes [42]. In order to
understand how the intermediate Larkin-modified regime
appears, we focus on the pure disorder component of the
roughness,

Bdis(t) = B(t) − T t

c
= 〈y(t)2〉c (38)

(this equality is a consequence of the STS [42,49–51]). We will
argue that the two-time regimes of R̄(t,y), separated by tsat,
are actually transposed to Bdis(t): The competition between
Bth(t) and Bdis(t) then yields two or three roughness regimes,
respectively, at high T and at low T . In particular, the Larkin
time is reached when B(t) ≈ Bdis(t) ≈ BRM(t), implying that
tsat � Lc.

Although the GVM framework yields a prediction for
the full temperature crossover of the DP toy model (see,
e.g., Ref. [40] and Appendix A of Ref. [42]), a complete
quantitative test of this prediction is hindered by the numerical
constants that are a priori present in the determination of D̃t ,
ξ̃t , Tc, and Lc and the amplitude of the asymptotic roughness
itself, due to previously discussed numerical artifacts and
also to the GVM approximation. Nevertheless, we observe
qualitatively these different roughness regimes, as plotted
at fixed temperature T ∈ {0.35,1,1.8} in Fig. 7, indicating
both the total roughness B(t) = 〈y(t)2〉 and its pure disorder
component. In all three graphs we can follow the crossover in
time from the thermal asymptote to the RM asymptote which
stems from the increasing Bdis(t) added to Bth(t). Note that
the RM asymptote has been constructed consistently with (30)
with a numerical correction fixed once and for all, from the
data set T = 0.4 averaged over t ∈ [25,40], assumed to be
already in the RM regime,

BRM(t)

t4/3
≈ corr(T =0.4)

3

22/3π1/3

[
D̃SincG

∞ (T ,ξ )

c2

]2/3

, (39)

with corr(T =0.4) = 0.292 ± 0.008. This RM asymptote is
graphically consistent with all the available data sets in the
range T ∈ [0.35,1.8], which plays in favor of a numerical
corrective factor common to all temperatures and absorbing
the discrepancy in BRM(t) stemming from D̃∞ and the
GVM. The low-T regime is illustrated by T = 0.35 where
the intermediate Larkin-modified regime is clearly present,
whereas it has disappeared as such already at T = 1.

We are limited, in our numerical procedure, in the large
times that we can explore in a reasonable computation time.
Larger times have, however, been explored at T = 1.8, which
is believed to be close to Tc (cf. Sec.V) and is consistent
with lower temperatures, except for a sudden increase at
t > 400, which can clearly be attributed to the finite size
of the box y ∈ [−ym,ym]. Confining effects due to the finite
box [−ym,ym] do not appear until

√
B(t) ∼ ym, and this

condition translates for this data set into B(t) < 1602 = 2.5104

and yields an adequate upper bound in Fig. 7 (bottom).
The corresponding upper bound for most of the data sets
is B(t) < 402 = 160, consistent with the range of roughness
displayed in all the other graphs.

Gathering in Fig. 8 the roughness B(t) and Bdis(t) over
the range T ∈ [0.35,6], we observe, as expected with in-
creasing temperature, that the disorder roughness Bdis(t) is

Bdis(t)

t
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FIG. 7. (Color online) Roughness B(t) = 〈y(t)2〉 and its disorder
component Bdis(t) = B(t) − T t

c
= 〈y(t)2〉c

measured numerically at
fixed temperature T ∈ {0.35,1,1.8}. Main: Focus on the crossover
of B(t) (thick) from the pure thermal behavior Bth(t) = T t

c
(dotted

red) at short times to the asymptotic BRM(t) ∼ D̃∞(T )2/3t4/3 (dotted
green) at asymptotically large times; Bdis(t) is the thinner lower curve.
Inset: Focus on the short-times crossover of Bdis(t) (thick) in parallel
to B(t) (thin).

progressively damped by thermal fluctuations. The interme-
diate Larkin-modified regime thus shrinks with increasing
temperature. The beginning of the RM regime is, consequently,
pushed to larger times, as it could also be deduced by the
condition that Bdis(t) becomes comparable to Bth(t) close to the
Larkin time t = Lc. From the point of view of the 1D interface,
the temperature dependence of Bdis(t) can be physically
understood with the following picture: At small length scales
the thermal fluctuations make the interface rougher within
the local valleys of the disordered free-energy landscape and
B(t) � Bth(t) increases with T as expected; and at large length
scales, on the contrary, thermal fluctuations allow the interface
to explore more effectively the free-energy landscape by
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t

Bdis(t)

B(t)

T

B(t) =
Tt

c
+ Bdis(t)

FIG. 8. (Color online) Temperature-dependent roughness
B(t) = 〈y(t)2〉 and its disorder component Bdis(t) (in logarithmic
scale, respectively, the top and bottom curves) for T ∈ [0.35,6] as
listed in Appendix B (blue to red for increasing temperatures, as
indicated by the black arrows). Bdis(t) for T = 6 is indicated in
dotted red. See Fig. 7 for the description of the different regimes for
three fixed temperatures.

overcoming some free-energy barriers in order to minimize its
elastic energy and, thus, have BRM(t) decreasing with T . From
the point of view of the DP, these behaviors are encoded in the
evolution of the translation-invariant distribution P̄[F̄ ,t] (13),
the integration of the microscopic disorder V (t ′,y ′) explored
by the elastic DP over times [0,t] defining the effective
disorder F̄V (t,y), or, equivalently, in the moments 〈y(t)k〉 of
the DP end point. The saturation at low T of the amplitude
D̃∞ in Fig. 14 and of the peak R̄(t,0) in Fig. 6 naturally
translates into a saturation of the asymptotic amplitude of the
roughness (39).

In order to focus on the disorder contribution, we computed
numerically directly F̄V (t,y), but, regarding the roughness,
we had to, first, construct the total free energy F = Fth + F̄

and then compute the total roughness B(t) and eventually
deduce its disorder component, Bdis = B − Bth. This quantity
is, thus, more subject to noise at higher T (see, i.e., T = 6
in Fig. 8), but, especially at low T , it clearly displays two
regimes in time. To address the question of a possible power
law at short times, the logarithmic slope ζ(dis)(t) = 1

2
∂B(dis)(t)
∂ log t

is plotted in Fig. 9. While ζ (t) crosses over as expected
from ζth = ζEW = 1

2 to ζRM = ζKPZ = 2
3 (30) but excludes the

definition of an intermediate-time power law for B(t), ζdis(t),
on the contrary, displays a plateau at low T which disappears
at T = 1, a tendency confirmed at T = 1.8. According to the
GVM prediction [40], Bdis(t) should start in ∼ D̃

c2 t
2/ξ̃ , in which

case the value of the plateau would have 1 as a lower band
and only a time dependence of D̃t and/or ξ̃t could correct
ζdis to match the GVM prediction. This results is not to be
trusted a priori at times shorter than Lc [42]. The value of this
plateau exhibits, moreover, a slight temperature dependence,
which cannot be accounted for by our DP toy model but
might also simply be an artifact of the thermal condition
imposed at t0 = 0.1. Note, finally, that all these effects on
Bdis(t) take place before tsat � 10 < Lc, as estimated on the
saturation of the free-energy correlator R̄(t,y) in the previous
sections.

t

ζ(t)ζdis(t)

t

T

(t ≤ tsat)(t t0)

FIG. 9. (Color online) Logarithmic slope of the roughness, ζ (t)
and ζdis(t), obtained, respectively, from B(t) and Bdis(t) of Fig. 8 for
T ∈ [0.35,1] (blue to red for increasing temperatures, as indicated by
the black arrow) and T = 1.8 (in thin dashed dotted black). The ther-
mal exponent ζth = ζEW = 1

2 and the RM exponent ζRM = ζKPZ = 2
3

are indicated by the thick dash-dotted lines, respectively red and
green. At larger times those logarithmic slopes are very noisy but still
oscillate around the expected value ζRM = 2

3 .

VII. CONCLUSION

In this paper, we have studied numerically the free-energy
and geometrical fluctuations of a 1 + 1 DP growing in a
quenched disordered energy landscape, uncorrelated in the
time direction and with a finite disorder correlation length
ξ in the transverse direction y as given in (3). This model
actually yields an effective description of the static 1D
interface fluctuations at fixed length scale, which translates
into the DP growing time. We have specifically charac-
terized the fluctuations of the disorder free energy F̄ (t,y)
defined by (10)–(12), focusing on one hand on its two-point
correlator R̄(t,y) = ∂yF̄V (t,y)∂yF̄V (t,0) and its mean value

F̄V (t,y) = − 1
2c

∫ t

0 dt ′ R̄(t ′,0) and on the other hand on its con-
sequent geometrical fluctuations, via the roughness function
B(t). Our numerical procedure amounts to the integration of
the KPZ equation for the total free energy (8) with a “sharp-
wedge” initial condition and a colored noise of correlator
RCubicS

ξ (y), resulting from a cubic-splined interpolation of the
random potential (as presented in Appendix A).

We have, first, successfully tested the main assumption
of our DP toy model at the core of the analytical study in
Ref. [42] and the GVM roughness computations [18,40]: At
small transverse displacements y the correlator behaves as
R̄(t,y) ≈ D̃t Rξ̃t

(y), consistently with three different fitting
functions for R(y) in Sec. IV, respectively, RGauss (35),
RSincG (36), and RCubicS [(A2) and (A3)]. We have clearly
identified two time regimes in the evolution of the free-energy
fluctuations: a short-time regime where the correlator starts
from its initial flat condition and grows while integrating
the interplay between the disorder correlation and thermal
fluctuations that intervenes precisely at small length scale y;
and a large-time regime above a saturation time tsat where the
correlator is well approximated locally by its asymptotic limit
D̃∞ Rξ̃∞ (y) and, thus, keeps track of the short-time evolution
from tsat up to the macroscopic scale. The combination between
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the disorder free energy F̄V (t,y) and the thermal free energy
Fth(t,y) leads to two or three regimes for the roughness
B(t), respectively, at high or low temperature with respect
to the characteristic temperature Tc(ξ ) = (ξcD)1/3. A simpler
physical picture is, however, regained by focusing on the
disorder roughness Bdis(t) = B(t) − Bth(t), which displays the
same two time regimes as the disorder free energy (see Fig. 8).

We have, second, followed the temperature dependence of
the large-time DP fluctuations, whose amplitudes are found
in qualitative agreement with the analytical predictions of our
companion paper [42]. On one hand, we have multichecked
that the free-energy amplitude D̃∞ ∼ R̄(t,0) ξ̃∞ crosses over
monotonously from the high-temperature limit D̃∞ ∼ 1/T

to the low-temperature saturation D̃∞ ∼ 1/Tc(ξ ) (see
Fig. 6), and, on the other hand, that this crossover matches
the temperature dependence of the asymptotic roughness
BRM(t) ∼ D̃

2/3
∞ t4/3 (see Fig. 7). Although numerical constants

stemming from the analytical approximations or from the
numerical procedure clearly hinder a quantitative test, these
results support a universality scenario for the amplitudes.
Consequently, even though ξ might lie below accessible
resolution in physical systems, it can still play a role at
all length scales below Tc(ξ ) (including scales much larger
than ξ itself) and, hence, proves experimentally relevant. In
other words, if the temperature dependence of the parameters
{c,D,ξ} is known, changing the temperature amounts to the
exploration of the disorder spatial correlation: The details of
the random potential are probed with the thermal fluctuations.
This conclusion is, thus, encouraging to study the temperature
dependence of experimental systems, such as the magnetic
domains walls or interfaces in liquids crystals as discussed in
Ref. [42].

Beyond the universal large-scale exponent ζKPZ = 2
3 and the

universal crossover of the amplitude D̃∞(T ,ξ ), we believe that
the precise shapeR(y) also displays universality, in the form of
a universal kernel that combines with the specific microscopic
disorder correlator Rξ (y) in order to yield a generalized Airy2

process (17). This guess is supported analytically by the ξ = 0
limit (22) and the linearized case (23) and numerically by
an increasing discrepancy between R(y) and RCubicS

ξ (y) as
the temperature is lowered. The imprint of the microscopic
disorder on the macroscopic fluctuations of the 1 + 1 DP, or the
static 1D interface, is numerically such that at high temperature
R(y) ≈ RCubicS

ξ (y), whereas at low temperature it displays a
better agreement with RGauss

ξ (y). The determination of the
zero-temperature limit of R(y), let alone its complete temper-
ature dependence, remains an open question analytically and
will require a complete understanding of the non-Gaussian
features of the free-energy fluctuations and the role of the
KPZ nonlinearity in (14). To tackle this issue numerically will
require a better characterization of the short-time free-energy
fluctuations and in particular of the initial-condition signature
in {D̃t ,ξ̃t }, ∂t F̄V (t,y), and Bdis(t).

To summarize, systems belonging to the KPZ universality
class are characterized not only by the large-scale exponent
ζKPZ = 2

3 but also by universal distributions and universal
amplitudes. The high-temperature limit of the amplitude
D̃∞ = cD

T
is known from the generic KPZ scaling theory

(see Refs. [33,34] for reviews), while the crossover to lower

temperatures seems to be new, even at the numerical level. We
suspect that the anomaly observed numerically in Ref. [64]
for the free-energy amplitude D̃∞ with respect to the expected
scaling is an effect due to a small correlation length of the
disordered potential that was not taken into account since D̃∞
was compared to its zero ξ (i.e., high-temperature) expression.
Another situation where our results might prove relevant is
that of the last-passage percolation [24], which is a “zero-
temperature” discrete DP on a lattice: The problem amounts to
finding a path with minimal energy, which, in our framework,
corresponds to a situation where both ξ and T are equal to 0
in the macroscopic limit. In the continuum formulation, those
two limits do not commute, so a correct scaling limit remains
to be found, and our findings indicate that the lattice spacing
might induce observable evidences at large scale.

From a broader perspective, our numerical procedure
provides a new computation frame for the continuous 1 + 1
KPZ equation (8) with a “sharp-wedge” initial condition,
which allows us to study the interplay of a colored noise
with the KPZ nonlinearity, whose resulting feedbacks generate
new phases compared to the white-noise case. Last, note
that if the two temperature regimes can be hinted by scaling
arguments [18], the question of relating those to possible two
opposite functional renormalization group regimes of high
temperature [56] versus a zero-temperature fixed point [65,66]
remains open. In the case of DP in higher dimensionalities,
as recently studied exhaustively in Ref. [67], one might also
expect manifestations of the disorder correlation length ξ at
low-enough temperatures.
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APPENDIX A: EFFECTIVE CORRELATOR OF A 2D
CUBIC-SPLINED MICROSCOPIC DISORDER

As described in Sec. III, a given configuration of the
microscopic disorder V (t,y) is generated, first, by picking up
a set of random numbers {Vj } on a grid of spacing {ξ grid

t ,ξ
grid
y }

with a normal distribution of variance Dgrid and then by
interpolating between the grid points with a 2D cubic spline
(cf. Fig. 10, top).

In the reduced case of a 1D cubic spline between a set of
points at a fixed position t on the grid, it is possible to determine
analytically the effective correlator of the 1D cubic-splined
random potential with a normalized function RCubicS

ξy
(y) [cf.

(3)]. For the 2D spline we then assume that the effective
two-point disorder correlator is given by the translation
invariant,

V (t,y)V (0,0) = D RCubicS
ξt

(t) RCubicS
ξy

(y), (A1)
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FIG. 10. (Color online) Top: Visualization of a single disorder
configuration V (t,y); the mesh accounts for the grid {yj } and
fluctuates smoothly. Bottom: Graph of the numerically measured
effective 1D cubic-splined disorder correlator (blue), with the SincG
and CubicS (red, respectively dashed and continuous) superimposed
with a slight translation for more visibility. Inset: Full effective
disorder correlator at fixed t = 0 computed over 10 000 disorder
configurations with Dgrid = 4, ξ

grid
y = 2, and ξ

grid
t = 1.

with ξt = ξ
grid
t and ξy = ξ

grid
y by construction and, because of

the passage from the discretized yj to the continuous variable
y, an amplitude D = Dgridξ

grid
t ξ

grid
y .

In practice, for 2n + 1 points indexed by j = −n, . . . ,n on
a grid of spacing ξ , a random value Vj is attached on each
site yj = jξ of the grid following the statistical distribution
Vj = 0 and VjVj ′ = δjj ′ . A cubic spline of {Vj }−n�j�n is a
function V (y) which is a cubic polynomial on each lattice
segment y ∈ [yj ,yj+1], continuous on each lattice site yj and
with its first and second derivatives also continuous at y = yj .
Combining the equations of the cubic-splined parameters for
a given set {Vj } and the disorder average over those possible
sets, we obtain the following symmetric effective correlator in
the limit of n → ∞:

RCubicS
ξ (0 � y � ξ )

= − 1

ξ 4
(y − ξ ) [(4 − 3

√
3)y2 + ξy + ξ 2], (A2)

RCubicS
ξ (yj � y � yj+1)

= − 3

ξ 4
(y − yj )(y − yj+1)(

√
3 − 2)j

× [y − yj−1 −
√

3(y − yj )], (A3)

where there is a distinction between the central segment
0 � y � ξ which contains the autocorrelation

RCubicS
ξ (y = yj=0) = V 2

0 = V 2
j = 1

and the other segments yj � y � yj+1 (j = 1 · · · n) with
oscillations constrained by the cancellation at y = yj �=j ,

RCubicS
ξ (y = yj �=0) = V0Vj �=0 = 0.

Note that this correlator has been obtained exactly by averaging
over disorder the cubic splines, whose coefficients depend
linearly in the random potential and, thus, allow an analytical
computation of this average.

For the microscopic disorder correlator (A1) the function
Rξ is, thus, exactly known, but it is not the case for the effective
disorder in our DP toy model [(20) and (21)] approximating
R̄(t,y) = ∂yF̄V (t,y) ∂yF̄V (t,0). As explained in Sec. III, we
try nevertheless to extract the effective parameters at fixed
time {D̃t ,ξ̃t } with three different fitting functions normalized
to 1: (i) a Gaussian (35) (Gauss), (ii) a sinus cardinal with
a Gaussian envelope (36) (SincG), and (iii) the exact cubic-
spline correlator [(A2) and (A3)] (CubicS). The comparison
between those three options accounts for a consistency check
for the determination of the effective parameters via the
stability of the function. We first test this procedure on
V (t,y)V (0,0) (A1) by fitting this correlator separately at fixed
time t = 0 versus at fixed position y = 0,

V (t,0)V (0,0) = [
D Rξy

(0)
]
Rξt

(t) ∝ Rξt
(t),

(A4)
V (0,y)V (0,0) = [

D Rξt
(0)

]
Rξy

(y) ∝ Rξy
(y),

we summarize thereafter the values obtained for the amplitude
D and the correlation lengths ξt,y with respect to the grid
parameters (which are kept at fixed value throughout all our
computations). The errors are provided by the nonlinear-
regression procedure on a correlator obtained over 10 000
disorder configurations:

D ξy ξt R1(0)

Grid 4 2 1 –
Gauss 10.08 ± 0.08 0.625 ± 0.005 0.312 ± 0.003 1√

4π

SincG 8.04 ± 0.02 2.020 ± 0.004 1.012 ± 0.002 1
Erf(π )

CubicS 7.95 ± 0.02 2.006 ± 0.004 1.005 ± 0.002 1

As we can check both in this table and visually in
Fig. 10 (bottom), the sinus cardinal RSincG catches the main
phenomenological features of the exact RCubicS, i.e., the
amplitude of the central peak and the position of the first
oscillation, and keeps satisfied the relations ξt,y = ξ

grid
t,y and

D = Dgridξ
grid
t ξ

grid
y .

As for the Gaussian fit RGauss, it overestimates the ampli-
tude of the peak and underestimates its typical variance. For the
latter statement, it is simply due to the geometrical definitions
of the parameter ξ proper to each of these functions and
whose discrepancy can be merged up to a numerical constant
(ξCubicS/ξGauss ≈ 3.6). For the first statement, it stems from
the fact that a normalized Gaussian function is used to fit a
normalized function which has negative contributions: The
integral of the central peak has, thus, an unnormalized integral
larger than 1 and fitting it by a Gaussian naturally yields a
larger corresponding amplitude (DCubicS/DGauss ≈ 0.80). This
discrepancy will actually be present in all the similar fitting
procedures in Secs. IV and V.
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APPENDIX B: SET OF PARAMETERS FOR THE
NUMERICAL SIMULATIONS

We have listed thereafter the parameters of the numerical
study presented throughout this paper. These parameters are
defined in Sec. III.

The discretization grids for the generation of the random
potential and for the recording of the data are fixed once and
for all to the following values for all the computations (the last
three parameters are, respectively, the number of points for the
linear grid in t , the logarithmic grid in t , and the linear grid in
y as defined in Fig. 3):

Dgrid ξ
grid
t ξ

grid
y nbptlint nbptlogt nbptliny

4 1 2 80 80 100

The following sets of data have been generated, with the
elastic constant being fixed at c = 1 and at different temper-
atures T . The number of configurations “NconfV” per data
set have fluctuated as a compromise between the convergence
of the disorder average and a reasonable computation time,
as already mentioned in Sec. III. The first column gathers
the sets used for the study of R̄(t,y), D̃t , and ξ̃t , whereas
the second column corresponds to the additional sets which
explore larger times t < tm and thus have been used for the
study of the roughness B(t):

No. T tm ym NconfV tm ym NconfV

1 0.35 40 50 572
2 0.4 40 50 1092
3 0.5 40 50 728
4 0.55 40 50 540
5 0.6 40 50 654
6 0.7 40 50 1281
7 0.8 40 50 2665
8 0.9 40 50 900
9 1 40 50 1350
10 1.1 40 50 1040 100 70 518
11 1.35 40 50 1050 300 60 390
12 1.5 40 50 1435 200 80 1600
13 1.6 40 50 1600
14 1.8 40 50 1000 800 160 159
15 2 40 50 1750
16 2.25 40 50 1300
17 2.5 40 50 1900
18 2.75 40 50 1000
19 3 40 50 2300
20 3.2 40 50 1000
21 3.5 40 50 1825
22 4 40 50 1100
23 6 40 50 900 80 50 280

APPENDIX C: QUANTITATIVE TEST OF THE DP TOY
MODEL: COMPARISON AMONG RGauss, RSincG,

AND RCubicS

We have discussed in Secs. IV and V the time and
temperature dependencies of the correlator R̄(t,y) from the

Dt

t

T = 0.35

DGauss
∞ = 4.6 ± 0.3

DSincG
∞ = 4.4 ± 0.3

DCubicS
∞ = 4.4 ± 0.3

DSincG
∞ /DGauss

∞ = 0.95

Dt

t

T = 6
DGauss

∞ = 1.12 ± 0.05
DSincG

∞ = 0.98 ± 0.05
DCubicS

∞ = 0.98 ± 0.05
DSincG

∞ /DGauss
∞ = 0.87

FIG. 11. (Color online) Fitting parameter D̃t at fixed low versus
high temperature T ∈ {0.35,6} with respect to Gauss (red, top)
and SincG (blue, bottom), CubicS collapsing exactly on SincG.
The straight lines indicate the respective average value D̃∞ for
t > tmin = 25, whose standard deviation is given explicitly for
each fit.

point of view of our DP toy model [(20) and (21)]. The
determination of the fitting parameters {D̃t ,ξ̃t }, their average
over large times {D̃∞,ξ̃∞}, and the fitting parameters {D̃sat,ξ̃sat}
of the averaged correlator R̄sat(y) depends, however, on the
choice of the fitting function R(y). We thus have gathered
in this appendix the detailed quantitative comparison of the
three fitting procedures with, respectively, RGauss, RSincG, and
RCubicS.

1. Effective parameters {˜Dt,ξ̃t} and their saturation values
{˜D∞,ξ̃∞} versus {˜Dsat,ξ̃sat}

In Figs. 11 and 12, we follow the evolution of the two
fitting parameters {ξ̃t ,D̃t } for the same fixed low versus high
temperatures T ∈ {0.35,6} as in Fig. 4, assuming that the
validity of the decomposition R̄(t,y) ≈ D̃t Rξ̃t

(y) could be
extended to smaller times. Even though the DP toy model
assumption a priori breaks down for t < tsat, the three fits
yield consistent values both for D̃t and ξ̃t , with reasonable
uncertainties even at short times (see the error bars in Figs. 11
and 12). On one hand, we recover for D̃t the two regimes
observed for the correlator R̄(t,y), i.e., an increase of this
amplitude at short times and a saturation beyond tsat as
indicated by the straight lines D̃∞ in Fig. 11 (obtained by
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ξ̃t

t

T = 0.35

ξ̃Gauss
∞ = 0.61 ± 0.02

ξ̃SincG
∞ = 2.25 ± 0.05

ξ̃CubicS
∞ = 2.25 ± 0.05

ξ̃SincG
∞ /ξ̃Gauss

∞ = 3.72

t

ξ̃t T = 6

ξ̃Gauss
∞ = 0.92 ± 0.02

ξ̃SincG
∞ = 2.99 ± 0.09

ξ̃CubicS
∞ = 2.97 ± 0.09

ξ̃SincG
∞ /ξ̃Gauss

∞ = 3.25

FIG. 12. (Color online) Fitting parameter ξ̃t at fixed low versus
high temperature T ∈ {0.35,6}, computed conjointly to D̃t of Fig. 11
and following the same convention regarding the legend with respect
to Gauss (red, bottom) and SincG (blue, top).

averaging D̃t over t > tmin = 25). On the other hand, ξ̃t slightly
decreases at short times and its saturation seems to appear
much sooner, especially at high T .

As a self-consistency check, we can notice that the average
of the fitting parameters {ξ̃∞,D̃∞} have the same values as the
fitting parameters of the averaged correlator {ξ̃sat,D̃sat} listed
in Table I. Their estimated errors are actually surprisingly
close, even though they have distinct origins, stemming
respectively from the variance of {ξ̃t ,D̃t } at t > tmin and from
the uncertainty over the fit of R̄sat(y).

If the function Rξ̃t
(y) did coincide exactly with the

microscopic disorder correlator RCubicS
ξ (y) at small y and large

times, we would expect to have the following geometrical

ratios D̃SincG
∞

D̃Gauss∞
= DSincG

DGauss ≈ 0.80 and ξ̃SincG
∞

ξ̃Gauss∞
= ξSincG

ξGauss ≈ 3.6 as dis-
cussed in Appendix A. Despite the temperature dependence
of {ξ̃∞,D̃∞} discussed in Sec. V, these ratios are numerically
found to be of the expected order of magnitude and reasonably
constant for different values of tmin at fixed T (cf. Table I).
However, as discussed in Sec. IV, the average procedure over
t > tmin introduces an overall negative shift of the large-y
asymptote of R̄sat(y) and this artifact will inevitably alter the
geometrical ratios.

TABLE I. Fitting parameters {ξ̃sat,D̃sat} at T ∈ {0.35,1,6}, com-
puted from the saturation correlators R̄sat(y) plotted in Fig. 4 for
tmin = 25. These values are almost identical to the average of the
fitting parameters {ξ̃∞,D̃∞} over the same time range t > tmin.

(t > tmin = 25) T = 0.35 T = 1 T = 6

D̃Gauss
sat 4.6 ± 0.2 4.3 ± 0.2 1.13 ± 0.04

D̃SincG
sat 4.4 ± 0.2 3.9 ± 0.2 0.99 ± 0.03

D̃CubicS
sat 4.37 ± 0.07 3.89 ± 0.05 0.98 ± 0.06

D̃SincG
sat /D̃Gauss

sat 0.95 0.91 0.87

ξ̃Gauss
sat 0.61 ± 0.04 0.70 ± 0.04 0.92 ± 0.04

ξ̃SincG
sat 2.25 ± 0.07 2.42 ± 0.05 2.99 ± 0.06

ξ̃CubicS
sat 2.25 ± 0.07 2.40 ± 0.05 2.97 ± 0.06

ξ̃SincG
sat /ξ̃Gauss

sat 3.72 3.45 3.25

A quantitative benchmark is nevertheless available for the
comparison among RGauss, RSincG, and RCubicS. It consists
in applying our whole fitting procedure on the linearized
correlator R̄lin(t,y) (24) corresponding to our microscopic
disorder correlator Rξ (y) = RCubicS

ξ (y) (depicted in Fig. 2).
We refer the reader to our analytical paper [42] for the exact
computation of R̄lin(t,y). We thus determine the correlator
R̄lin(t,y) at {ξ = 2,c = D = T = 1}, and we compute its
fitting parameters {D̃t ,ξ̃t } using the Gauss and the SincG fitting
functions. Averaging it over a set of times t > tmin, we then
extract on one hand the average of its parameters {D̃∞,ξ̃∞} and
on the other hand its averaged correlator R̄lin

sat(y) of parameters
{D̃sat,ξ̃sat}. We obtain for T = 1 the following geometrical

ratios: D̃SincG
∞

D̃Gauss∞
= D̃SincG

sat

D̃Gauss
sat

≈ 0.89 and ξ̃SincG
∞

ξ̃Gauss∞
= ξ̃SincG

sat

ξ̃Gauss
sat

≈ 3.27. These
ratios are in a surprisingly good quantitative agreement with
the high-T case given in Table I. This agreement supports
the idea that at high T we recover the microscopic disorder
correlator R̄(∞,y) ≈ cD

T
RCubicS

ξ̃∞
(y), taking into account the

artifact of the large-y asymptote in the determination of
the fitting parameters. Finally, we have checked that these
ratios depend only slightly on the value of the temperature,
decreasing for both D̃ and ξ̃ when T increases (the same trend
as in Table I).

2. Evolution of the peak R̄(t,0) ∼ ˜Dt/ξ̃t

The short-times behavior of the fitting parameters {D̃t ,ξ̃t }
can have either a deep physical meaning or be an artifact due
to the inadequacy of the fitting function R(y) for the measured
correlator R̄(t,y). Note, for instance, that the short-time
increase of D̃t is compatible with the analytical predictions
discussed in Ref. [42].

An additional characterization of the time evolution of the
correlator’s shape R(y) consists in comparing the evolution
of the peak R̄(t,0) deduced from the three fits, Gauss, SincG,
and CubicS (combining Rfit

ξ̃=1
(0), D̃fit

t , and ξ̃fit
t ), to the value

measured numerically. This provides a consistency check, on
the whole time range available, that there is a temperature
crossover in the shape of the correlator.

In Fig. 13 (top) we see that at low T the peak is correctly
captured by Gauss, and, when increasing the temperature,
the relative difference between the fits decreases. However,
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R̄(t, 0)

t

T = 6

T = 1

T = 0.35

10 20 30 40

0.5

1.0

1.5

2.0

T = 6

R̄(t, 0)

t

T

ΔR̄sat(0)/R̄sat(0)

Δξ̃∞/ξ̃∞

ΔD∞/D∞

FIG. 13. (Color online) Top: Time evolution of the maximum
of the correlator peak R̄(t,0) at fixed temperature T ∈ {0.35,1,6}
measured numerically (black dots) or predicted by the fitting
functions via R̄fit(t,0) = Rfit

ξ̃=1
(0) D̃fit

t /ξ̃fit
t {(top) red for Gauss (35)

and blue for SincG (36); (bottom) cyan for CubicS [(A2) and
(A3)]}. The curves for SincG and CubicS systematically coincide.
Bottom left: Close-up of the high-T case, where the SincG and
CubicS predict more accurately the peak at high T , whereas
at low T Gauss seems more suited. Bottom right: Decrease in
the relative differences between the Gauss and SincG parameters
with increasing temperature, averaged on the large-time window

t ∈ [25,40]: �D̃∞
D̃∞

= D̃SincG∞ −D̃Gauss∞
D̃SincG∞

, �ξ̃∞
ξ̃∞ = ξ̃SincG∞ −ξ̃Gauss∞ ξSincG/ξGauss

ξ̃SincG∞
(see

the end of Appendix A), and �R̄sat(0)
R̄sat

= R̄SincG
sat (0)−R̄Gauss

sat (0)

R̄SincG
sat (0)

.

zooming on the high T (bottom left) we see that CubicS’
and SincG catch the peak more precisely. Comparing the
relative differences between the fits as a function of T

(bottom right), two temperature regimes can be postulated
regarding the normalized function R(y): at high T we have
R(y) ≈ RCubicS(y) with the relative behavior between the
fits as expected from Appendix A (geometrical collapse of
ξ̃SincG
∞ /ξ̃Gauss

∞ ≈ ξSincG/ξGauss, overestimation of the amplitude
and, thus, of the peak by Gauss); at low T the modification of
the function R(y) is essentially pushed into the increasing dis-
crepancy �ξ̃∞/ξ̃∞. Let us emphasize that the zero-temperature
limit of R̄(∞,y), and, hence, its normalized shape R(y), are
not known analytically.

3. Temperature dependence of ˜D∞ and ξ̃∞

We conclude the quantitative comparison of the three fitting
procedures RGauss, RSincG, and RCubicS by discussing the
temperature dependence of the asymptotic amplitude D̃∞ and
typical spread ξ̃∞.

The measured amplitude D̃∞ as a function of T is reported
in Fig. 14 for both Gauss and SincG (which collapses with
CubicS) fits. Qualitatively, it decreases in 1/T at high T

D∞(T )

T

cD/T

T

D∞(T )

FIG. 14. (Color online) Temperature dependence of D̃∞ with
respect to Gauss (red, top) and SincG (blue, bottom). The straight line
cD/T indicates the expected behavior in the high-T regime (cD = 8
for our data). Inset: Corresponding mean and standard deviation for
the average of D̃t over t > tmin = 25.

and saturates at low T , as detailed in Ref. [42], accord-
ing to the scaling arguments and GVM predictions of the
full model and the DP toy model. A parametrization of
this temperature crossover has been defined in the relation
D̃∞(T ,ξ ) = f (T ,ξ ) cD

T
(19) with the interpolating parameter

f (T ,ξ ). Quantitatively, its ξ = 0 limit requires at high T to
have f � 1 without any additional numerical prefactor but
extracting the strength of disorder D from the 1/T behavior
of D̃∞ actually yields a systematic underestimation with

T

ξ̃fit
∞(T ) · ξSincG

ξfit

ξ̃SincG
∞ (T ) ξ̃Gauss

∞ (T )

TT

FIG. 15. (Color online) Top: Temperature dependence of ξ̃∞ with
respect to Gauss (red, bottom) and SincG (blue, top), normalized
for Gauss with ξSincG/ξGauss ≈ 3.6 (cf. Appendix A). Bottom:
Corresponding mean and standard deviation for the average of ξ̃t

over t > tmin = 25.
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respect to the microscopic disorder: DGauss = 6.72 ± 0.08,
DSincG = 5.92 ± 0.05, and DCubicS = 5.89 ± 0.05 (obtained
on the three larger available temperatures), whereas D = 8
(33). As in Sec. C 1, we attribute again this discrepancy to
the negative excursions of R̄(t,y) at large y [the contribution
b(t,y) in (25)] which bias all the fits and preclude a quantitative
test of f (T ,ξ ) with respect to the GVM prediction (recalled
after (19) and discussed in Ref. [42]).

Finally, the typical spread ξ̃∞ obtained in parallel to D̃∞
is reported in Fig. 15. The collapse of the different fits for
ξ̃∞ has already been discussed in Sec. C 1; it is compatible
with the scenario of a high-T correlator, Rsat(y) ≈ RCubicS(y).
However, it displays a temperature dependence that a priori
corrects to first order the minimal assumption that ξ̃∞ ≈ ξ

in our DP toy model, since the thermal fluctuations seem to
increase the effective ξ̃∞ compared to the microscopic disorder
correlation length ξ grid = 2 (which consistently remains a
lower bound in our measured ξ̃CubicS

∞ ). We know from the
linearized solution (24) that neglecting the KPZ nonlinearity
we recover asymptotically cD

T
RCubicS

ξ (y) for the correlator, so
any modification of ξ̃∞ in this two-point correlator can only
stem from the KPZ nonlinearity at high T . A numerical artifact
similar to the underestimation of D̃∞ is not to be excluded,
but no more conclusions can be drawn from our numerical
results.

APPENDIX D: FLUCTUATIONS OF F̄V (t, y)

We present in the Appendix a study of the mean value
of the disorder free energy. Its time dependence yields an
alternative measurement of the two-point correlator maximum
R̄(t,0). It thus provides an independent measurement of
R̄sat(0) ∼ D̃∞/ξ̃∞, incorporated in Fig. 6 and discussed in
Sec. V.

In its initial definition the disorder free energy F̄V (t,y)
is defined up to a constant cteV (t) depending of the chosen
path-integral normalization of WV (t,y) in (1). As far as
statistical averages with quenched disorder are concerned, such
as the roughness B(t), this constant is irrelevant and, thus,
usually completely skipped. The Feynman-Kac equation (14)
actually yields a univocal definition of F̄V (t,y) which satisfies
the STS (13). In our numerical approach F̄V (t,y) = cte(t) is
in fact a tractable quantity which provides an independent way
to measure R̄sat(y = 0) from its large-times linear evolution.
This is remarkable and a direct consequence of the KPZ non-
linearity, since linearizing (14) trivially predicts F̄ lin

V (t,y) = 0,
while averaging over disorder the tilted KPZ equation (14)
yields, on the contrary,

∂t F̄V (t,y) = − 1

2c
[∂yF̄ (t,y)]2 = − 1

2c
R̄(t,0). (D1)

Therefore, the nonlinearity induces a large-time behavior of
F̄V (t,y) which must be affine in t if we assume that the free-
energy fluctuations saturate for times t > tsat as in (21). In
other words, we expect at t > tsat,

−2c F̄V (t,y) =
∫ tsat

0
dt ′ R̄(t ′,0) + (t − tsat) R̄sat(0). (D2)

F̄V (t, y) F̄V (t, y) F̄V (t, y)y y y

(T = 0.35) (T = 1) (T = 6)

−2c F̄V (t, y)

t

T
(T = 0.35)

(T = 1)

(T = 6)

10 20 30 40

20

40

60

80

1 2 5 10 20

1

10

100

FIG. 16. (Color online) Disorder average of F̄V (t,y) at fixed
temperature T ∈ {0.35,1,6}. Top: F̄V (t,y) as a function of y for
increasing times t ∈ [0.1,40] with time steps �t = 2.5 (top to
bottom). Bottom: −2c F̄V (t,y) averaged over y as a function time, the
error bars indicating the corresponding standard deviation; the result
of the linear fit for t > tmin = 25 is indicated by the straight lines
in black. Inset: Zoom on the short-time behavior in a logarithmic
scale, which shows qualitatively the existence of a saturation time
tsat � 10 marking the beginning of the linear regime at large times (the
dotted lines guide the eye for a quadratic behavior ∼t2 as predicted
analytically in Ref. [42]).

This prediction provides an additional graphical estimation of
tsat from the breakdown of the affine behavior of F̄V (t,y).

In Fig. 16 we have plotted the disorder average of F̄V (t,y)
at the same fixed temperature T ∈ {0.35,1,6} as in Fig. 4,
keeping, first, the spatial resolution in (t,y) (top) and then
averaging over the y direction (bottom). F̄V (t,y) should be y

independent, but at short time and low T it displays a slight
curvature that we attribute to the artificial thermal condition at
t0 = 0.1. The resulting standard deviation is strongly reduced
at higher T where this initial condition is more accurate with
respect to thermal fluctuations.

At large times F̄V (t,y) follows a robust linear behavior
which extends down to tsat � 10, as emphasized in Fig. 16.
Below tsat no clear power law could be identified although
the logarithmic scale in Fig. 16 makes explicit a superlinear
short-time behavior, a priori conditioned by the initial thermal
condition and not incompatible with the analytical prediction
∼t2 in Ref. [42]. The temperature dependence of the averaged
slope −2c ∂t F̄V (t,y) yields an independent measurement of
R̄sat(0) and as such has been included in Fig. 6 in Sec. V.
We find an excellent agreement between these quantities,
with a slight crossover of the direct measurement from the
Gauss to the SincG fits and a systematic overestimation of
−2c ∂t F̄V (t,y); this last point is an artifact of the short-times
curvature in y of F̄V (t,y).
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