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Selection criterion of stable dendritic growth at arbitrary Péclet numbers with convection
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A free dendrite growth under forced fluid flow is analyzed for solidification of a nonisothermal binary system.
Using an approach to dendrite growth developed by Bouissou and Pelcé [Phys. Rev. A 40, 6673 (1989)], the
analysis is presented for the parabolic dendrite interface with small anisotropy of surface energy growing at
arbitrary Péclet numbers. The stable growth mode is obtained from the solvability condition giving the stability
criterion for the dendrite tip velocity V and dendrite tip radius ρ as a function of the growth Péclet number, flow
Péclet number, and Reynolds number. In limiting cases, the obtained stability criterion presents known criteria
for small and high growth Péclet numbers of the solidifying system with and without convective fluid flow.
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It is well known that solidification processes from under-
cooled melts or saturated solutions are characterized by the
growth of a complex and highly branched crystal structure
called a dendrite [1]. A first step towards a modern theory of
dendritic growth was Ivantsov’s solution of the needle crystal
problem in the limit of zero surface tension [2,3]. For this
analytic solution of the thermal problem, only the growth
Péclet number, Pg = ρV/(2DT ), giving the product of the
dendrite tip velocity V and its tip radius ρ, is determined
by the undercooling � = (T0 − T∞)cp/Q. Here DT is the
thermal diffusivity, T0 is the crystallization temperature of the
pure liquid, T∞ is the temperature in the liquid phase far from
the growing dendrite, cp is the specific heat, and Q is the latent
heat released per unit volume of solid.

As the Ivantsov solution does not provide information on
the tip velocity V and tip radius ρ separately, the criterion for
the stable growth mode can be obtained as a second condition
for both these parameters [1]. This criterion is obtained from
a solvability theory which predicts the marginal mode of the
dispersion relation for perturbations on the dendrite interface
[4,5]. The solvability theory predicts the second combination
of parameters as σ ∗ = 2d0DT /(ρ2V ), where d0 is the capillary
length and σ ∗ is the dimensionless scaling factor (σ ∗ ∝ β7/4

for the thermal problem in the limit of Pg � 1, where β is the
small anisotropy parameter [4–6]). When an external flow and
impurities are introduced, a family of the Ivantsov paraboloids
can still be used as a solution of the Stefan problem [7–9],
either in the large Reynolds-number limit (potential flow
approximation) [10], or in the small Reynolds-number limit
(Oseen approximation) [11,12]. As in the case of the pure
thermal problem, the solidification mode is determined only
by the growth and flow Péclet numbers, which are related to
thermal and solute transport by the molecular and convective
mechanisms. These numbers give the product ρV to which
an additional expression should be found again in a form of
stability criterion.
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Using a solvability condition, different scaling ratios
σ ∗ were obtained [7–9] for a stable dendrite growth mode
at small growth Péclet numbers in one-component (pure),
binary, and multicomponent systems. The opposite limit of
large Péclet numbers was considered in Refs. [13–15], where
the scaling ratio is obtained as σ ∗ ∝ β3/4/P 2

g . However,
theoretical results connecting these limiting cases are still
absent (except approximate interpolation for the scaling
parameter σ ∗ formally postulated in Ref. [16]). Therefore, the
main goal of the present study is to develop a unified theory
for the stable mode of the nonisothermal dendrite growing
in a chemically binary system with convective flow effects
and anisotropy of surface energy. The theory presents a case
of arbitrary growth Péclet numbers that is considered as a
generalization of the aforementioned limiting cases.

We consider a two-dimensional parabolic dendrite growing
in the opposite direction to a forced convective flow of
one-component undercooled liquid. The starting point of the
present analysis is the dispersion law previously derived
by Bouissou and Pelcé [8]. In their expression (30), the
dispersion law at the neutral stability curve (having the zero
perturbation frequency) gives the following cubic equation for
the wave-number marginal mode km:

k3
m = V exp(iθ )

2dDT

km + iaU sin θ cos θ

8ρDT

km

− iV k2
m sin θ

2DT

+ V 2 cos θ exp(iθ )

4dD2
T

. (1)

Here U is the flow velocity far from the growing dendrite, i is
the imaginary unit, and θ is the angle between the normal to
the dendrite interface and its growth direction. The capillary
length d in the case of a fourfold symmetry of the crystal is
expressed as d(θ ) = d0 [1 − β cos(4θ )] and the parameter a

characterizes the hydrodynamic solution of the spatially two-
dimensional problem as [8]

a(Re) =
√

Re

2π

exp(−Re/2)

erfc(
√

Re/2)
, Re = ρU

ν
,

where Re is the Reynolds number and ν is the kinematic viscos-
ity. Note that the only difference between the two-dimensional
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and three-dimensional models consists in different functions
of a(Re) [8,17].

The first summand on the right-hand side of Eq. (1)
corresponds to the usual Mullins-Sekerka growth rate. The first
line of this relation describes the growth rate in the presence of
convection analyzed by Bouissou and Pelcé [8]. Their solution
is

kmBP = −
(

V

2dDT

)1/2 [
exp(iθ ) + i

aUd

4ρV
sin θ cos θ

]1/2

.

(2)

Let us estimate the main contributions in Eq. (1) in accordance
with the Mullins-Sekerka or Bouissou-Pelcé solution as
V/DT ∼ 102 (m−1), d ∼ 10−9 (m), and km ∼ 106 (m−1). Then
the summands entering in the second line of this expression
are much smaller than the first summand. Physically, the
second line represents perturbations to the Mullins-Sekerka
and Bouissou-Pelcé solutions. This is why the second line
can be neglected in comparison with the first line in the
case of a small Péclet number limit. The role of the two last
summands in Eq. (1) increases with increasing the growth
Péclet number Pg = ρV/(2DT ), and Eq. (1) can be solved
using Cardano’s formula for cubic equations. Taking into
account the aforementioned numeric estimations, one obtains

km = kmBP + V exp(−iθ )

4DT

, (3)

with kmBP given by Eq. (2). As would be expected, the
solution (3) transforms to the Bouissou-Pelcé wave number
in the limit of small growth velocity V .

The solvability condition previously derived and used by
Pelcé, Bensimon, and Bouissou [4,5,8] as the vanishing of an
oscillating integral is given by∫ +∞

−∞
dl G[X0(l)] exp

[
i

∫ l

0
km(l′)dl′

]
= 0. (4)

Here G is the curvature operator, km(l) is the function of
the local nonzero marginal mode of the conjugate dispersion
equation for the perturbations, and X0(l) represents a contin-
uum of solutions from which the function km(l) is deduced.
Substituting now Eq. (3) into Eq. (4), one can rewrite the
solvability condition as∫ +∞

−∞
dη G[X0(η)] exp

{
−i

∫ η

0

[
Pg

2
(1 − iη)

−
√

(1 + iη)(1 + η2)5/2 + iαηB(η)

σ ∗B(η)

]
dη

}
= 0, (5)

where

l′ = −ρ

2

[
tan θ

cos θ
+ ln

(
1

cos θ
+ tan θ

)]
, η = tan θ,

B(η) = (1 + η2)2(1 − β) + 8βη2, α = aUd0

4ρV
.

Equation (5) corresponds to the result obtained by Bouissou
and Pelcé for small growth Péclet numbers [see Eq. (39) in
Ref. [8]].

The solvability integral (5) can be calculated in analogy
with the theory developed by Bouissou and Pelcé [8], where

two dominant contributions to the integral (5) exist: the
contribution from the loop and the contribution from the
stationary phase points. The first of them should be calculated
between a distance ∼i(1 − √

2βτ 2/7) (which is a splitting
distance of the stationary phase points, τ = 2−5/4β−3/4α) at
the intersection of the steepest descent path and the real axis
and η = i(1 − √

2β). As a result, the first contribution gives
an oscillating factor to the exponentially small value of the
integral which behaves as

cos

[
A1β

7/8

√
σ ∗ (1 + B1τ

11/14) − Pg

√
2β(1 − τ 2/7)

]
.

Each stationary phase point contributes by a term with an
oscillating part of the form

cos

[
A2β

7/8

√
σ ∗ (1 + B2τ

11/14) − Pg

√
2βτ 2/7

]
.

Here A1, A2, B1, and B2 are constants, which transform to
corresponding expressions found in the case of small growth
Péclet numbers [8].

The cancellation of the sum of these contributions gives the
following selection criterion:

σ ∗ = σ0β
7/4

(1 + a1
√

βPg)2

[
1 + b

(
α

β3/4

)11/14
]−1

, (6)

where σ0, b, and a1 are constants. With a1
√

βPg � 1, Eq. (6)
transforms to the selection criterion in the limit of small Péclet
numbers [8].

Substituting

σ ∗ = 2d0DT

ρ2V
= d0V

2DT P 2
g

into the left-hand side of Eq. (6), the selection criterion for the
thermal problem with convection (expressed in terms of the
dendrite tip velocity V , the growth Péclet number Pg , and
the anisotropy parameter β) reads

V = DT β3/4

d0

2σ0βP 2
g

(1 + a1
√

βPg)2

[
1 + b

(
α

β3/4

)11/14]−1

. (7)

Expression (7) completely corresponds to the previous theory
developed by Brener and Mel’nikov [15] in the absence of
external flow (U = 0 and α = 0), which predicts the dendrite
velocity at arbitrary Péclet numbers as

V ∝ DT β3/4

d0
f (

√
βPg).

Considering now the case of large Péclet numbers
(a1

√
βPg 	 1) in the absence of convection (U = 0), Eq. (7)

predicts the following relation:

V = DT β3/4

d0

2σ0

a2
1

, (8)
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where V ∼ β3/4. The limiting case (8) was studied earlier
by Langer and Hong [13] and Barbieri [14]. To obtain the
unknown constant a1 in Eq. (8) one can use the asymptotic
formula (19) of Brener and Mel’nikov [15], which, in the limit
of large Péclet numbers, gives

V = DT β3/4

d0

7

4

(
56

3

)3/4

. (9)

Combining Eqs. (8) and (9), one can easily get

a1 =
(

8σ0

7

)1/2 (
3

56

)3/8

≈ 0.381σ
1/2
0 . (10)

An interesting example can be formulated for the growth
of a so-called “chemical dendrite,”which is considered as
a dendrite growing in a binary system with convection at
a constant temperature. The concentration problem for a
chemical dendrite can be well formulated as a one-sided model
in which the diffusion coefficient is negligible in the solid
phase. Therefore, multiplying the result by a scale factor of 2,
we rewrite the selection criterion (6) as

σ ∗
CD ≡ 2d0DC

ρ2V
= d0V

2DCP 2
CD

= σ0β
7/4

(1 + a2
√

βPCD)2

× 2mCi(1 − k0)

(Q/cp)

[
1 + b

(
αCD

β3/4

)11/14]−1

, (11)

where DC is the diffusion coefficient in the liquid phase, m

is the liquidus slope, Ci is the concentration of impurity at
the dendrite surface, k0 is the equilibrium partition coefficient,
PCD = ρV/(2DC) = PgDT /DC , and αCD = aUd0CD/(2ρV )
with the rescaled capillary length,

d0CD = (Q/cp)d0

2mCi(1 − k0)
,

defined for chemical dendrite. The factor mCi(1 − k0)cp/Q

arises due to the symmetry of Stefan models for temperature
and concentration [7]. Rewriting the selection criterion (11) in
the limiting case of large Péclet numbers PCD, we arrive at the
expression (U = 0)

V = DCβ3/4

d0CD

2σ0

a2
2

.

Equating this expression for V to its asymptotics [15] (factor 2
in denominator appears due to the use of the one-sided model
for solute diffusion),

V = DCβ3/4

2d0CD

7

4

(
56

3

)3/4

,

we determine constant a2 in the form

a2 =
(

16σ0

7

)1/2 (
3

56

)3/8

≈ 0.505σ
1/2
0 . (12)

Now generalizing expressions (6) and (11), the selection
criterion for the simultaneously solved thermal and concen-
tration problem with convection at small anisotropy β and

arbitrary growth Péclet numbers looks like

σ ∗ = σ0β
7/4

1 + b(ᾱβ−3/4)11/14

[
1

(1 + a1
√

βPg)2

+ 1

(1 + a2
√

βPCD)2

2mCi(1 − k0)DT

(Q/cp)DC

]
, (13)

where constants a1 and a2 are determined by Eqs. (10) and (12),
respectively, and

ᾱ = aUd0

4ρV P
+ aUd0DT

2ρV PDC

, P = 1 + 2mCi(1 − k0)DT

(Q/cp)DC

.

Note that the presence of factor P in the denominator of
ᾱ is caused by renormalization of the scaling factor σ ∗ in
the solvability condition (4). The two constants σ0 and b

entering in Eq. (13) can be found from the asymptotic analysis,
experimental data [18] or the phase-field simulations [19,20].

Several limiting cases following from Eq. (13) can be
outlined. At small growth Péclet numbers (a1

√
βPg � 1 and

a2
√

βPCD � 1) and in the absence of convection (U = 0
and α = 0) expression (13) transforms to the criterion earlier
obtained by Ben Amar and Pelcé [7]. The analogues limiting
case with convection was studied in Ref. [21] for a chemically
diluted system with the far-field concentration C∞ in the liquid
phase and leading to the corresponding σ ∗ from Eq. (13). Inter-
polation for the dendrite growing in a stagnant system at small
and large Péclet numbers was done by Müller-Krumbhaar
with coauthors [16]. Equation (13) tends to their expression
(3) in the limit of large velocities V when U = 0. Thus the
selection criterion (13) generalizes previously obtained results
on dendritic growth with anisotropy of surface energy.

To illustrate the effect of large growth Péclet numbers on
the scaling factor σ ∗ one needs to know the concentration Ci

at the surface of the dendrite entering in the criterion (13). The
concentration is determined from the steady-state solution for
two-dimensional and three-dimensional geometries [8,17,21].
More specifically, for a two-dimensional geometry, a part of
this solution required for the solute concentration Ci is given
by [21]

Ci = C∞
1 − (1 − k0) exp(P0DT /DC)PgIC(∞)DT /DC

,

IC(η) =
∫ η

1
exp

[
Pf

DT

DC

∫ η′

1

g(η′′)√
η′′ dη′′ − DT

DC

P0η
′
]

dη′
√

η′ ,

g(η) =
√

2/(π Re)

erfc
√

Re/2

[
exp

(
−Re

2

)
− exp

(
−Reη

2

)]

+√
η

erfc
√

Reη/2

erfc
√

Re/2
, P0 = Pg + Pf ,

and Pf = ρU/(2DT ) is the flow Péclet number. Substituting
Ci into the right-hand side of Eq. (13) we illustrate in Fig. 1
the selection criterion (13) obtained for arbitrary growth Péclet
numbers and its limiting case valid for low values of Pg [8,23]:

σ ∗ = σ0β
7/4P

1 + b(ᾱβ−3/4)11/14
. (14)

It is seen that the two curves plotted in Fig. 1 practically
coincide at the small values of the growth Péclet number. With
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FIG. 1. (Color online) Scaling ratio σ ∗ = 2d0DT /(ρ2V ) as a
function of the growth Péclet number. Parameters σ0 = 2.1 and
b = 10 of the selection theory are estimated using the phase-field
simulations [19]. Physical parameters used for calculations are typical
for metallic alloys [8,21,22]: ρ = 10−5 m, DT = 5 × 10−6 m2 s−1,
DC = 5 × 10−9 m2 s−1, mC∞ = 10 K, Q/cp = 660 K, d0 = 2 ×
10−9 m, k0 = 0.6, β = 0.195, (a) Pf = 0, Re = 0, and (b) Pf = 10−4,
Re = 10−3.

Pg � 10−5 − 10−4 the difference between these functions
becomes significant. Moreover, in the case of high Péclet num-
bers these curves behave differently: the presently obtained
selection criterion (13) decreases with the increase of Pg , con-
trary to predictions of the previously obtained criterion (14).
Such difference in predictions is explained by the presence of
quadratic terms (∼ P 2

g at high Péclet numbers, which are al-
ready not negligible in comparison with unity) in denominators
of Eq. (13). Finally, the influence of convective flow is clearly
visible in Fig. 1 with the growth Péclet number Pg � 10−5,
where the selection criterion σ ∗ decreases for the growth with
convection [compare figures (a) and (b) in Fig. 1 at small values
of Pg]. This shows that the dendritic tip grows more rapidly in

FIG. 2. (Color online) Dendritic growth velocity as a function
of tip radius. Parameters correspond to Fig. 1 and, additionally, ν =
10−7 m2 s−1 and U = 10−3 m s−1.

the presence of convective flow than in stagnant liquid (see also
results from Ref. [24] on the influence of forced convection of
viscous fluid on a stable mode of growing dendrite).

Substitution σ ∗ = 2d0DT /(ρ2V ) into the left-hand sides of
selection criteria (13) and (14) leads to direct dependencies
between the dendrite velocity and tip radius as is shown
in Fig. 2. An important point is that the tip velocity V

obtained for arbitrary Péclet numbers sufficiently differs from
its low Péclet number limit in the case of high growth
rates when ρ ∼ 10−6 m. Our calculations clearly demonstrate
that V selected in accordance with the presently obtained
criterion (13) is approximately three times greater than V

obtained from expression (14) at ρ ∼ 10−6 m (see Fig. 2). Such
essential difference in the growth velocity might be verified in
natural or computational experiments.

As a final note, the solvability theory is able to predict
the criterion for the stable mode of dendritic growth with
convection at arbitrary Péclet numbers. The obtained criterion
of stability generalizes earlier known results for the cases of
stable growth mode with anisotropy of surface energy and
with the negligible atomic kinetics on the phase interface. The
demonstrated numeric examples explicitly show an essential
difference in the prediction of dendrite velocity using criteria
following from the theory which takes into account small
Péclet numbers and from the theory which takes the arbitrary
value Péclet numbers into account.
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