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From a simple bulk model for the one-dimensional steady-state solidification of a dilute binary alloy we derive
the corresponding interface description. Our derivation leads to exact expressions for the fluxes and forces at the
interface and for the set of Onsager coefficients. The constitutive equations, connecting the crystallization and
diffusion fluxes and forces, decouple in the low-velocity limit and there generate an occasionally negative, but
nevertheless thermodynamically consistent friction coefficient. We, moreover, discover a continuous symmetry,
which is independent of our model and allows to decouple the constitutive equations for the two components of
the alloy for arbitrary growth velocities.
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I. INTRODUCTION

The interface kinetics at the solidification front of a growing
dilute binary alloy has been described by Baker and Cahn [1]
within the framework of linear irreversible thermodynamics.
An apparent violation of the Onsager symmetries in their
approach has led to several partly controversial discussions
in papers by Caroli, Caroli, and Roulet [2], by Kaplan, Aziz,
and Gray [3], and in the review [4] by Hillert. Another
apparent paradox is the possible appearance of a negative
friction coefficient in the crystallization flux-force relation.
This unexpected effect has been observed in the phase-field
approach by Karma and Rappel [5], and in Ref. [6] has
been shown to be compatible with the principle of a positive
entropy production. A thorough discussion of this point within
a phenomenological interface description has recently also
been presented by Brener and Temkin [7] considering the
one-dimensional steady-state solidification of a pure material
and of a binary alloy. A noteworthy question was posed in this
treatment, concerning the origin of the off-diagonal Onsager
coefficients in view of the fact that they apparently have no
counterpart in standard phase-field models.

In the present paper we are going to create a clarifying
picture of the situation by presenting a transparent exact
derivation of an interface description from a bulk model for
the case of solidification of a dilute binary alloy. Since we are
mainly interested in kinetic effects rather than in curvature cor-
rections at nonplanar interfaces, we focus, following Ref. [7],
on the scenario of a one-dimensional steady-state motion of the
solidification front. In our initially more microscopic model
we will, however, allow values of the front velocity in the
rapid-growth regime. Conceptually, our procedure utilizes the
capillary-wave representation of a phase-field model, previ-
ously worked out in Ref. [6]. A convenience of this approach is
that the artificial critical point, unavoidably appearing in phase-
field models, is effectively shifted to infinite temperatures by
projection to the soft modes of the system, which are the
capillary waves of the interface and the bulk diffusion mode

of the solute component. The freedom in the choice of the
original phase-field model, furthermore, allows us to select a
simple, nevertheless representative capillary-wave model.

Our result for the entropy production in the interface region
suggests to define pairs of fluxes and of forces at the interface,
which carry the full velocity dependence due to the solute
trapping effect. The Onsager matrix, appearing in the consti-
tutive equations connecting these pairs, is exactly calculated,
and, remarkably, turns out to be velocity independent. One, in
particular, observes that the off-diagonal Onsager coefficients
derive from the coupling between the interface position and
the solute concentration in the effective Hamiltonian of the
system. As a consequence, they even appear in the absence
of kinetic cross couplings in the original phase-field model.
Such couplings have recently been proposed by Brener and
Boussinot [8], but are absent in standard phase-field models,
as emphasized by Bi and Sekerka [9].

We next map the chosen favored basis of fluxes and forces
onto the more often used basis of crystallization and diffusion
fluxes and forces. The Onsager matrix in this basis derives from
the original one by a similarity transformation, which preserves
its sign and symmetry properties. In the low-velocity limit of
this description a two-parameter continuous symmetry is seen
to arise, which does not change the constitutive equations
and, consequently, also conserves the entropy production.
The transformed set of kinetic coefficients, however, does in
general not form an Onsager matrix due to the entrance of
the two free parameters. By a convenient choice of the latter,
a decoupled low-velocity form of the constitutive equations
can be achieved, which, in a simple way, shows the existence
of a sometimes negative, but nevertheless, thermodynamically
consistent friction coefficient.

We, finally, consider the mapping from the basis of
crystallization and diffusion fluxes and forces to the also
frequently used basis of two-component fluxes and forces. The
associated Onsager matrix again derives from the original one
by a similarity transformation, once more preserving its sign
and symmetry properties. Contrary to this, apparent violations
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of Onsager symmetries have been reported by the authors of
Refs. [1,3]. Both papers, however, suffer from a conceptional
mistake, which, deviating from the authors of Ref. [2], we
uncover, using the example of a simple model, borrowed
from Ref. [1]. Another issue, visible in the two-component
representation, is the existence of a second more general
symmetry, which applies to arbitrary values of the growth
velocity in all approaches, dealing with a planar solidification
front. This symmetry can again be used to decouple the
constitutive equations, in which the two remaining diagonal
coefficients turn out to have opposite signs. Due to this, the two
driving forces have opposite orientations, a necessary premise
of the solute-trapping effect.

II. CAPILLARY-WAVE MODEL

Based on a phase-field description, we have established
in Ref. [6] a capillary-wave model for the solidification of a
dilute binary alloy where the interface position Z(x,t) enters
as an extra field variable in addition to the solute concentration
C(r,t). In the one-dimensional case the effective Hamiltonian
of our model reads

H = κ

2

∫ +∞

−∞
dz[C(z,t) − U (z − Z(t))]2. (1)

Here, in addition to the coupling constant κ , the function U (z −
Z) enters as an input quantity, which, following from the
condition δH/δC = 0, means the equilibrium concentration
of the solute. The equations of motion of the model are given
by

∂tZ = −�
δH

δZ
, ∂tC = ∂zD(z − Z(t))∂z

1

κ

δH

δC
, (2)

where � and D(z − Z) are kinetic coefficients, measuring
the mobility of the interface and the local diffusivity of the
solute. Instead of including an external driving force in
the first of these equations, as was done in Ref. [6], the
solidification process will be activated, as in Ref. [7], by
imposing appropriate boundary conditions on the second of
the equations (2).

In a steady-state solidification process with constant growth
velocity V in the z direction, the solute concentration in the
comoving frame only depends on the variable

ζ ≡ z − V t. (3)

As a result, the insertion of Eq. (1) into the first equation in
Eqs. (2) yields

V = −�κ

∫ +∞

−∞
dζU ′(ζ ) [C(ζ ) − U (ζ )] . (4)

The second equation in Eqs. (2) can be integrated once, which,
with the boundary condition

C(−∞) = C0, (5)

leads to the first-order differential equation

[C0 − C(ζ )]V = D(ζ )[C ′(ζ ) − U ′(ζ )]. (6)

Equation (4) can be rewritten in the form of the force-
balance equation

− V

�
+ F + G(V ) + κ

(�C)2

2
= 0, (7)

where the first term has the form of a viscous-friction force.
The contribution

F ≡ κ(�C)(CS − C0) (8)

acts as an external driving force where, in terms of the solute
concentrations

CS ≡ U (−∞), CL ≡ U (+∞) (9)

in the liquid and solid phases,

�C ≡ CL − CS (10)

means the miscibility gap. Evidently, F describes the effect of a
quench from the equilibrium value CS to some nonequilibrium
value C0, which for CS − C0 � 0 induces a growth rate V � 0.
The contribution

G(V ) ≡ −κ

∫ +∞

−∞
dζU ′(ζ )[C(ζ ) − C0] (11)

is a drag force, generated by the comoving solute layer at the
interface. Using the steady-state boundary condition

C(+∞) = C(−∞), (12)

it can be rewritten, due to Eq. (6), in the form

G(V ) ≡ −κ

∫ +∞

−∞
dζ

D(ζ )

V
[U ′(ζ ) − C ′(ζ )]2, (13)

which, for velocities 0 < V < ∞, is negative and shows the
appropriate behavior G(V ) → 0 for V → ∞. In the limit
V → 0, corresponding to C0 → CS , Eq. (7) implies G(0) =
−κ(�C)2/2, elucidating the role of the last term in Eq. (7).

To derive the interface description, one needs an expression
for the density of the entropy production, generated in the
steady-state solidification process. Such an expression is
provided by the authors of Ref. [9] in terms of a phase field
�(ζ ). Assuming in the original phase-field model a linear
coupling between the phase field and the solute concentration,
one finds, following the authors of Ref. [6], the relation

U (ζ ) = CL + CS

2
+ �C

2
�E(ζ ), (14)

where �E(ζ ) is the equilibrium profile of the phase field at
coexistence of the two phases, which, due to the settings in
Ref. [6], obeys the normalization condition∫ +∞

−∞

dζ

ξ
[ξ∂ζ�E(ζ )]2 = 1. (15)

Here ξ is a microscopic length scale of the order of the interface
thickness. The insertion of Eq. (14) into the result for the
entropy production, given in Ref. [9], leads, in accordance
with the analogous procedure in Ref. [6], to the obviously
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positive expression

p(ζ ) = 1

T

V 2

�

(
2

�C

)2 1

ξ
[ξ∂ζU (ζ )]2

+ 1

T

D(ζ )

κ

(
∂ζ

δH

δC(ζ )

)2

(16)

for the density of the entropy production at some fixed
temperature T .

To explicitly evaluate Eqs. (6), (7), and (16), we now
consider the specific model, defined by

U (ζ ) = CS + 1

4ξ
(CL − CS)

×

⎧⎪⎨⎪⎩
0 ζ < −2ξ

ζ + 2ξ −2ξ < ζ < +2ξ

4ξ +2ξ < ζ,

(17)

D(ζ ) = DS + 1

4ξ
(DL − DS)

×

⎧⎪⎨⎪⎩
0 ζ < −2ξ

ζ + 2ξ −2ξ < ζ < +2ξ

4ξ +2ξ < ζ.

(18)

Here, DS and DL are the diffusion coefficients of the solute
in the solid and liquid phases, and the width 4ξ of the well-
encompassed interface region has been chosen to ensure the
normalization (15).

The usefulness of the concentration profile (17) can be
substantiated by connecting it via Eq. (14) with standard
phase-field models. There the function �E(ζ ) appears as a kink
profile, generated from a double-well potential of the phase
field. The choice of this potential is a matter of convenience,
except for the presence of two pronounced degenerate minima,
representing the two phases of the material. Numerical simu-
lations are frequently based on a Ginzburg-Landau phase-field
potential, which leads to a tanh-like equilibrium-concentration
profile, as shown by Löwen et al. in Ref. [10]. The analytical
treatment by Löwen et al. in Ref. [11] is based on a two-
parabola potential, producing a piecewise exponential profile.

A common feature of these profiles is the appearance of
two shifted flat branches, which are connected by a link in
the interface region. In the model equation (17) this property
is realized by a piece-wise linear profile, which only in the
tiny regions near the matching points ζ = ±2ξ deviates from
the concentration profiles, deriving from standard phase-field
models. In the same spirit the model equation (18) constitutes
a representative specification of the space-dependent diffusion
coefficient.

In Ref. [6] we have demonstrated that the model, given
by Eqs. (17) and (18), leads in a few lines to the form of the
velocity-dependent partition coefficient, established by Aziz in
a discussion of the solute-trapping effect [12]. In an elaborate
phase-field approach Ahmad et al. [13] have presented a
numerical plot of this coefficient, which convincingly supports
the Aziz formula. Another feature, obtained in Ref. [6] in
a surprisingly simple way from our model, is the relation
between the undercooling and the growth rate of a solidifying
material. Our analytic result for this relation closely matches
the respective plots in Refs. [10,13], and is almost identical to

the findings by Umantsev [14] in a phase-field discussion of
adiabatic solidification processes. In view of these experiences,
we also expect to derive from our model generic expressions
for the the forces and fluxes at the solidification front and for
the set of Onsager coefficients.

In the special case DS = 0 the solution of Eq. (6), subject
to the boundary condition (12), has the simple form

C(ζ ) = C0 + 1

4ξ
(CL − CS)

(
1 + 4ξ

V

DL

)−1

×

⎧⎪⎨⎪⎩
0 ζ < −2ξ

(ζ + 2ξ ) −2ξ < ζ < +2ξ

4ξ exp
[ − V

DL
(ζ − 2ξ )

] +2ξ < ζ,

(19)

showing, due to the factor (1 + 4ξV/DL)−1, the solute-
trapping effect. Some properties of this solution have already
been discussed in Ref. [6] and below will be used to establish
the interface description of the solidification process.

The entropy production P , generated in the interface region
per unit area, follows from Eq. (16) by integration along the
interval −2ξ < ζ < +2ξ . Taking into account Eqs. (1), (6),
(7), (11), and (15), one obtains

P ≡ V

T

[
F + G(V ) + κ

2
(�C)2

]
+ V

T

∫ +2ξ

−2ξ

dζ [C0 − C(ζ )]κ[C ′(ζ ) − U ′(ζ )]

= V

T

[
F + κ

2
(�C)2 − κ

2
(C+ − C−)2

]
, (20)

where we have used the notation

C± ≡ C(ζ = ±2ξ ), (21)

and the identity

C− = C0, (22)

implied by Eq. (19). By insertion of the solution (19) into the
force balance (7) one, furthermore, finds the relation

C0 = CS − (�C)

(
1

VC

− 1

VD + 2V

)
V, (23)

written in terms of crystallization and diffusion velocities

VC ≡ κ(�C)2�, VD ≡ DL

2ξ
. (24)

According to the result (23), the limit F → 0 of the driving
force (8) not only is compatible with the behavior V → 0, but
also with the possibility V → (VC − VD)/2. In the process of
establishing the interface description, this observation leads us
to take care of the full velocity dependence, appearing in the
solution (19).

III. INTERFACE DESCRIPTION

The last expression in Eq. (20) can be written in the standard
form

P = JĈFĈ + JD̂FD̂, (25)
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where the fluxes JĈ,JD̂ and the related forces FĈ,FD̂ are
exactly given by

JĈ ≡ ρV, FĈ ≡ 1

T

F

ρ
,

JD̂ ≡ 1

2
(C− − C+ − �C)V, (26)

FD̂ ≡ κ

T
(C+ − C− − �C),

ρ meaning the density of the material.
The constitutive equations, connecting the fluxes and forces

(26), are obtained by evaluating Eqs. (6) and (7) by means of
Eqs. (17), (18), and (19). This leads to the result(

FĈ

FD̂

)
= κ

T VD

(
RĈĈ RĈD̂

RD̂Ĉ RD̂D̂

) (
JĈ

JD̂

)
(27)

with the again exact expressions of the matrix elements

RĈĈ =
(

VD

VC

+ 1

) (
�C

ρ

)2

, RD̂D̂ = 4,

(28)

RĈD̂ = 2
�C

ρ
, RD̂Ĉ = 2

�C

ρ
,

which obviously obey the basic properties

RĈD̂ = RD̂Ĉ, RĈĈ � 0,
(29)

RD̂D̂ � 0, RĈĈRD̂D̂ − R2
ĈD̂

� 0

of general Onsager coefficients. We point out that the fluxes
and forces (26) carry the full velocity dependence, reflecting
the solute trapping effect, whereas the kinetic coefficients (28)
turn out to be velocity independent.

In the limit �C → 0 the diagonal elements in Eqs. (28)
approach, due to the definitions (24), the finite values RĈĈ =
VD/(κρ2�),RD̂D̂ = 4 whereas the off-diagonal elements dis-
appear. Simultaneously the expression (17) for U (z − Z(t))
approaches the constant value CS , so that the coupling term
between the basic field variables Z(t) and C(z,t) in the
effective Hamiltonian (1) also vanishes. The appearance of
finite off-diagonal Onsager coefficients, therefore, is caused
by this coupling term in the Hamiltonian and, accordingly, is
of thermodynamic rather than of kinetic origin. This statement
solves the puzzle raised by Brener and Temkin in Ref. [7].

IV. CRYSTALLIZATION-DIFFUSION BASIS

Whereas the definitions (26) of fluxes and forces are
naturally suggested by the expression (20) of the entropy
production, the relations (4) and (6) suggest to define the
crystallization and diffusion fluxes

JC ≡ ρV, JD ≡ (C− − C+)V. (30)

The later of these derives from the left-hand side of Eq. (6) at
ζ = +2ξ , and from the identity (22).

In view of these definitions and the corresponding ones in
Eqs. (26), one is led to the relations(

JC

JD

)
=

(
1 0

X 1

) (
JĈ

JD̂

)
, (31)

(
FC

FD

)
=

(
1 −X

0 1

) (
FĈ

FD̂

)
, (32)

where the matrix element X is given by

X ≡ 1

2ρ
(C− − C+ + �C). (33)

Equation (32) determines the crystallization force FC , and
is enforced by assuming that the entropy production has the
canonical form

P = FCJC + FDJD, (34)

The constitutive equations in the C,D basis read(
FC

FD

)
= κ

T VD

(
RCD RCD

RDC RDD

) (
JC

JD

)
(35)

where the Onsager matrix is given by(
RCC RCD

RDC RDD

)
=

(
1 −X

0 1

) (
RĈĈ RĈD̂

RD̂Ĉ RD̂D̂

)(
1 0

−X 1

)
. (36)

One easily verifies that the Onsager symmetry and sign
conditions (29) also are valid in the C,D basis.

A noticeable simplification of Eqs. (35) occurs in the
limit V → 0 where, following from Eq. (19), the quantity
X vanishes, so that the Ĉ,D̂ and C,D representations become
identical. Eqs. (30) then also imply the relation

(�C)JC = −ρJD, (37)

which, independently of our model, leads us to establish the
two-parameter continuous symmetry operation(

R̃CC R̃CD

R̃DC R̃DD

)
=

(
RCC RCD

RDC RDD

)
+

(
SCC SCD

SDC SDD

)
(38)

with matrix elements

SCC = λ

(
�C

ρ

)2

, SDD = μ,

(39)

SCD = λ
�C

ρ
, SDC = μ

�C

ρ
.

The transformation (38) causes separate cancellations of the
contributions containing the free parameters λ and μ in
Eq. (35) and, consequently, also conserves the entropy produc-
tion (34). It should be noticed that the matrix on the left-hand
side of Eq. (38) is a proper Onsager matrix only in the domain

λ = μ � 0, (40)

where, however, it still depends on the single redundant
parameter λ.

Generally, it is fairly allowed to ignore the constraint (40)
and to choose in Eqs. (39) the values

λ = μ = −2, (41)

062402-4



RELATION BETWEEN BULK AND INTERFACE . . . PHYSICAL REVIEW E 87, 062402 (2013)

which leads to a diagonal form of the transformed matrix and,
consequently, to the decoupled transport equations

FC = κ

T

(
�C

ρ

)2 (
1

VC

− 1

VD

)
JC,

(42)

FD = κ

T

2

VD

JD,

which explicitly show that the coefficient, connecting FC

and JC , can become negative. Simultaneously one finds the
expression

P = κ

T

(
�C

ρ

)2 (
1

VC

+ 1

VD

)
J 2

C (43)

for the entropy production, which, in an impressively simple
way, demonstrates the thermodynamic consistency of a possi-
bly negative friction coefficient.

V. TWO-COMPONENT REPRESENTATION

The fluxes, associated with the two components of the
solidifying alloy, are given by the relations

(
JA

JB

)
=

(
1 − Y −1

Y 1

) (
JC

JD

)
, (44)

(
FA

FB

)
=

(
1 −Y

1 1 − Y

)(
FC

FD

)
, (45)

where, by definition,

Y ≡ C+
ρ

. (46)

In the entropy production

P = FAJA + FBJB, (47)

arising from the similar expression (25), all Y -dependent terms
cancel. The special choice (33), however, leads to the familiar
relations

JA = (ρ − C−)V, JB = C−V, (48)

which are valid in all descriptions of solidification at a flat
interface, ranging from Ref. [1] up to Ref. [7]. To establish
the corresponding expressions for FA and FB , we insert the
definition (8) for F into the second line of Eqs. (26), and
introduce the chemical potentials

μA(ζ ) ≡ 1

ρ

[
1 − C(ζ )

∂

∂C(ζ )

]
f [C(ζ )],

(49)

μB(ζ ) ≡ 1

ρ

{
1 + [ρ − C(ζ )]

∂

∂C(ζ )

}
f [C(ζ )],

where, in accordance with the Hamiltonian (1)

f [C(ζ )] ≡ κ

2
[C(ζ ) − U (ζ )]2 (50)

is the free-energy density of the system. In terms of these
quantities one is led to the again standard relations

FA = 1

T
[μA(+2ξ ) − μA(−2ξ )],

(51)

FB = 1

T
[μB(+2ξ ) − μB(−2ξ )].

By inversion of Eqs. (44) and (45) one also finds the
relations

JC = JA + JB, FC =
(

1 − C+
ρ

)
FA + C+

ρ
FB,

(52)

JD =
(

1 − C+
ρ

)
JB − C+

ρ
JA, FD = FB − FA,

which agree with the corresponding expressions, known from
Ref. [1].

The constitutive equations, connecting the fluxes JA,JB

with the forces FA,FB , read(
FA

FB

)
= κ

T VD

(
RAA RAB

RBA RBB

)(
JA

JB

)
, (53)

where, according to Eqs. (27), (44), and (45), the matrix of the
Onsager coefficients is given by(

RAA RAB

RBA RBB

)
=

(
1 −Y

1 1 − Y

) (
RCC RCD

RDC RDD

)(
1 1

−Y 1 − Y

)
. (54)

One easily sees that this mapping conserves the Onsager
symmetry and sign conditions (29).

The last statement seems to contradict a conclusion by
Baker and Cahn [1], which later has been criticized by Caroli,
Caroli, and Roulet [2] as a fallacy, resulting from the assumed
absence of solute diffusion in the solid phase. Contrary to this
claim, the erroneous conclusion in Ref. [1] is, to our mind, due
to an conceptual mistake, which we here clarify, picking up
from Ref. [1] a model, which has only diagonal elements in
the inverse relation of Eq. (53),

JA = LAAFA, JB = LBBFB. (55)

From Eqs. (44), (45), and (55) one correctly obtains the first
constitutive equation in the C,D basis,

JC = (LAA + LBB)FC + [(1 − Y )LBB − YLAA]FD. (56)

To attain the second equation, which determines JD , the
authors of Ref. [1] just multiplied Eq. (56) by the ratio of
the fluxes (30). This procedure, however, does not exhaust
the full content of Eqs. (55), and as a result, their mapping
from the A,B to the C,D basis is singular instead of being a
one-to-one mapping. A similar mistake has led to an apparent
violation of Onsager symmetries in the analysis of one of the
models, discussed by Kaplan, Aziz, and Gray in Ref. [3], an
issue, which later has also been criticized by Hillert [4].

The correct procedure to establish an equation for JD ,
complementing Eq. (56), is, to adopt from Eqs. (44) the
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expression

JD = (1 − Y )JB − YJA, (57)

which, together with Eqs. (45) and (55), yields

JD = [(1 − Y )LBB − YLAA]FC

+ [(1 − Y )2LBB + Y 2LAA]FD. (58)

Comparing this with Eq. (56), one immediately observes that
the diagonal matrix elements are positive and that the off-
diagonal matrix elements are equal. It is an easy exercise, to
verify that the determinant, formed with these matrix elements,
also is positive, in accordance with our general statement below
Eq. (54).

We finally point out that, on the basis of Eqs. (48), one can
establish a symmetry operation, similar to that in the preceding
chapter, which now, however, conserves the constitutive
equations and the entropy production for arbitrary values of
the growth velocity. In the present case the transformation
reads(

R̃AA R̃AB

R̃BA R̃BB

)
=

(
RAA RAB

RBA RBB

)
+

(
SAA SAB

SBA SBB

)
, (59)

this time with matrix elements

SAA = λ
C0

ρ
, SBB = μ

(ρ − C0)2

ρC0
,

(60)

SAB = −λ
ρ − C0

ρ
, SBA = −μ

ρ − C0

ρ
.

Remembering the identity (22), one easily verifies that the
symmetry transformation (59) again conserves the constitutive
equations (53) and the entropy production (47). It is obvious,
however, that the matrix on the left-hand side of Eq. (59) is in
general not a proper Onsager matrix.

In the case of the special choice

λ = μ = ρ

ρ − C0
RAB, (61)

the off-diagonal elements R̃AB and R̃BA vanish, so that the
constitutive equations decouple in the form

FA = κ

T VD

R̃AAJA, FB = κ

T VD

R̃BBJB. (62)

Although this looks rather surprising, these equations are
completely equivalent to Eqs. (53). The crucial point is that,
pursuing the way from the initial Onsager matrix in Eq. (27)
to the final one in Eq. (59), the coefficient R̃AA turns out
to be positive whereas the sign of the coefficient R̃BB is
determined by its lowest-order term in C0/ρ, which is found

to be negative. The corresponding signs of the driving forces
FA and FB satisfy a necessary condition for the appearance
the solute-trapping effect.

VI. CONCLUSION

The model, leading to the exact results (26)–(28) presum-
ably is the simplest one, which can exactly be evaluated. We
also have considered the case of a nonzero diffusion constant
DS in the model equation (18), which did not lead to any new
substantial effects, as one might expect from the discussion
in Ref. [2]. The only changes we noticed were slightly more
complicated expressions for the Onsager coefficients.

A remarkable result of our analysis is the observation that
the Onsager coefficients turn out to be independent of the
growth velocity in the Ĉ,D̂ basis, which is the most natural
basis, suggested by the underlying phase-field model. As a
more important feature we have seen that the off-diagonal
Onsager coefficients in this basis do not necessarily require the
presence of kinetic cross couplings in the phase-field model.
Such cross couplings have recently been proposed by Brener
and Boussinot [8] and shown to generate additional terms in
the Onsager coefficients.

Another crucial point in our treatment is the advice not to
disregard, in the discussion of steady states, the possibility
of a finite growth velocity, which, according to Eqs. (8) and
(23), is clearly compatible with a small driving force. At
low velocities these equations signal a possible change of
sign of the driving force, which, in the low-velocity version
(42) of the constitutive equations, leads to a thermodynam-
ically consistent change of sign of the friction coefficient.
The ultimate physical origin of this unexpected behavior is
easily identified as the solute-drag component in the force
balance (7).

We finally have shown that all approaches describing the
steady-state motion of a planar solidification front are invariant
under a continuous symmetry, unavoidably generating a
redundancy in the kinetic coefficients. This redundancy can
be used to eliminate the off-diagonal terms in the constitutive
equations.
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