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Simple picture of supercooled liquid dynamics: Dynamic scaling and
phenomenology based on clusters
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Although it is now well established that in glassy liquids, slow structural relaxation accompanies a correlated
structural rearrangement, the role of such a correlation in the transport anomaly, and thus in the slow dynamics,
remains unclear. In this paper, we argue from a hydrodynamic viewpoint that a correlated structure (cluster) with
a characteristic size ξ sustains the long-lived stress and dynamically couples with the hydrodynamic fluctuations;
therefore, the dynamics of this cluster is the origin of the mesoscopic nature of anomalous hydrodynamic transport.
Based on this argument, we derive a dynamic scaling law for τα (or η, where η is the macroscopic shear viscosity)
as a function of ξ : τα (∝η) ∝ ξ 4. We provide a simple explanation for basic features of anomalous transport, such
as the breakdown of the Stokes-Einstein relation and the length-scale-dependent decoupling between viscosity
and diffusion. The present study further suggests a different physical picture: Through the coarse graining of
smaller-scale fluctuations (�ξ ), the supercooled liquid dynamics can be regarded as the dynamics of normal
(cluster) liquids composed of units with a typical size of ξ . Although the correlation length of hydrodynamic
transport ξ and the dynamic heterogeneity size ξDH, which is determined by the usual four-point correlation
function, reflect some aspects of the cooperative effects, the correspondence between ξ and ξDH is not one to
one. We highlight the possibility that ξDH overestimates the actual collective transport range at a low degree of
supercooling.
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I. INTRODUCTION

As a supercooled liquid approaches the glass transition
point Tg , the structural relaxation slows dramatically and
the viscosity increases steeply. The origin of this viscous
slowdown remains the central issue in glass physics [1–4].
Over the past two decades, the concept of dynamic hetero-
geneity (DH) has been extensively explored in experimental
studies [5–7] and simulations [8–12] (see recent reviews
[13,14] and the references therein). In glassy liquids, a slow
structural relaxation accompanies the spatially heterogeneous
and correlated particle rearrangement whose characteristic size
grows as the system approaches Tg .

Dynamic heterogeneity and its associated phenomena
strongly suggest the significance of spatial correlations over a
mesoscopic length scale and raises two fundamental questions.
The first question of what the underlying mechanism is behind
this growing correlation length is the focus of intensive study
in this field. To elucidate this question, many theoretical and
numerical efforts have been made recently, particularly from
the viewpoint of the static origin (see recent reviews [15–18]
and papers [19–22] as well as the aforementioned reviews
[13,14] and the references therein). Although such approaches
are appealing, there are still uncertainties and thus further
investigations are necessary to definitively identify the origin
of the correlated structure. Another important question is
whether this spatial correlation substantially affects anomalous
transport and the subsequent slow dynamics. Although some
dynamical effects characteristic of supercooled liquids are
believed to be a consequence of DH, such as the breakdown of
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the Stokes-Einstein (SE) relation [23–26], no consensus exists
on the role of DH in the transport properties of supercooled
liquids. These two questions should be closely related to each
other, but we cannot generally expect that solving one problem
will automatically solve the other [27]. In this paper, as our
strategy, we do not discuss the first problem, the origin of the
dynamic correlation; instead, we assume there is a well-defined
correlated structure with a characteristic size ξ and we discuss
the possible fundamental roles of this correlation in anomalous
hydrodynamic transport.

Accumulating evidence suggests a link between the
dynamic correlation and length-scale-dependent anomalous
transport. One of the most studied phenomena directly related
to the growing length scale is the crossover from Fickian to
non-Fickian diffusion of a tagged particle [28–33]; the wave-
number- (k-) dependent relaxation rate of the self part of the
intermediate scattering function behaves as ∼Dsk

2 and ∼1/τα

for k�∗ � 1 and k�∗ � 1, respectively, where Ds is the self-
diffusion coefficient and τα is the α-relaxation time. The length
scale for the crossover to Fickian particle diffusion is given by
�∗ ∼= √

Dsτα . In all systems investigated thus far, �∗ is found
to grow monotonically as the temperature is lowered. This
crossover behavior is intrinsically linked to the breakdown
of the SE relation; thus this behavior should reflect some
aspect of the cooperative effects associated with DH. Note,
however, that it is difficult to fully understand and interpret the
cooperative effects, which are expected to cause anomalous
transport, through the analysis of the single-particle transport
only; therefore, a hydrodynamic viewpoint is necessary.

There have been few attempts to investigate the spatiotem-
poral hierarchical structures of hydrodynamic transport, such
as viscous transport and viscoelasticity [34–40], even though
this anomaly itself characterizes the glass transition. Recently,
in a series of studies [36–38], using a three-dimensional
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molecular dynamics simulation, we revealed evidence for
the nonlocal mesoscopic nature and the scaling properties
of hydrodynamic transport in supercooled liquids by directly
analyzing the k-dependent hydrodynamic transport coefficient.
Both the (longitudinal) density diffusion and the (transverse)
viscous relaxation exhibit a distinct crossover between micro-
scopic and macroscopic transport and are characterized by a
single length scale ξ . This ξ can be identified as the correlation
length of the nonlocal hydrodynamic transport and is found to
be apparently comparable to the dynamic heterogeneity length
(see the discussion in Sec. II C). We also showed that shear
stress relaxation occurs through coherent particle rearrange-
ment over distances of ∼ξ and time scales of ∼τα . These
findings suggest that a correlated structure with a characteristic
size ξ that sustains a long-lived stress dynamically couples
with density and velocity fluctuations, thus giving rise to the
mesoscopic nature of hydrodynamic transport.

In most soft materials (or complex liquids), a mesoscopic
cooperative structure is the essential origin of the slow
structural relaxation [41,42]. This cooperative nature results
in marked frequency and wave-number dependence in the
hydrodynamic transport coefficients, in which the time and
length scales for the crossover from microscopic to macro-
scopic transport directly measure the cooperative time and
length scales, respectively (more examples can be found
in the literature [41–48]). Notably, such spatiotemporally
nonlocal properties of hydrodynamic transport are not limited
to systems with static mesoscopic structures but are also found
in systems with mesoscopic dynamic correlation [45,46]. The
examination of whether such a physical description remains
valid in supercooled liquids is also interesting and important.
The purpose of this paper is to further interpret the role of the
dynamic correlation in anomalous transport through hydro-
dynamic arguments and to provide an initial step toward the
construction of a hydrodynamic theory for supercooled liquids.

II. DYNAMIC SCALING

A. Dynamic scaling behavior of hydrodynamic transport

We begin by discussing the dynamic scaling behavior
of hydrodynamic transport. Here we provide a theoretical
argument for the scaling relation between the growth of the
length and time scales based on our previously obtained
simulation results described in Ref. [38]; please refer to
Ref. [38] for simulation details.

1. Longitudinal diffusion

Figure 1(a) shows the dynamic scaling behavior of the
k-dependent collective density diffusion coefficient D(k);
in highly supercooled states the scaled diffusion coefficient
D(k)/Dc as a function of the scaled wave number kξ almost
falls on a single master curve, where Dc is the collective
density diffusion coefficient given by the limit of D(k) at long
wavelengths. Thus D(k) can be characterized by ξ only. We
subsequently write D(k) in the scaling form as

D(k) = Dc�(kξ ), (1)

where the scaling function �(x) behaves as

�(x) ∼ 1 (x � 1) (2)
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FIG. 1. (Color online) Scaled plots of (a) the k-dependent
collective diffusion coefficient D(k)/Dc and (b) the viscosity η(k)/η
in highly supercooled states as functions of the scaled wave number
kξ . Here Dc and η are the long-wavelength limits for D(k) and
η(k), respectively, and ξ is the correlation length for hydrodynamic
transport; D(k) is calculated from the simulation data for the k-
dependent relaxation time of the density fluctuations shown in the
inset of (a). Here we use the relation τρ(k) ∼= 1/D(k)k2. In the inset
of (b), the unscaled data for η(k) are shown. Both η(k)/η and D(k)/Dc

almost lie on master curves (the thick black solid curves) given by
1/[1 + x2 + (0.53x)4] and 1/[1 + (0.21x)2], respectively, in which
x = kξ . These plots are similar to Figs. 1 and 2 of Ref. [38]; please
refer to Ref. [38] for simulation details. Note that similar scaling plots
were previously reported in Refs. [28–30,33] for the k-dependent
relaxation rate of the (self) intermediate scattering function.

∼ x−2 (x � 1). (3)

This scaling behavior can be understood through the length-
scale-dependent decoupling between diffusion and viscosity
[28]: In the long-wavelength regimes (kξ � 1), the density
fluctuations decay through diffusion with a diffusion coeffi-
cient of Dc; in contrast, at the microscopic scale kξ � 1, the
relaxation time ∼1/D(k)k2 is nearly equal to the α-relaxation
time τα ∝ η. Consequently, the density diffusion coefficient
Dc can be given by

Dc ∼ ξ 2

τα

. (4)

However, as discussed in Ref. [38], this expression for Dc

should not be merely a consequence of the decoupling or the
crossover but should also describe the dynamical coherence
of hydrodynamic transport. We emphasize that in Ref. [38],
crossover in longitudinal transport was not investigated with
the self part of the intermediate scattering function but with
the full part, which directly reflects the cooperative effects.
The incoherent scattering function (the self part) measures
the motion of the tagged particle; this single-particle analysis
cannot directly describe the cooperative effects. In contrast, the
coherent scattering function at wave number k measures the
relaxation of the density fluctuations of size ∼1/k. As further
discussed below, the expression for the collective diffusion
coefficient [Eq. (4)] should describe the cooperative diffusion
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of correlated fluctuations (structures) of size ξ in a medium
with macroscopic viscosity η.

2. Transverse viscous transport

Likewise, we show the scaled shear viscosity η(k)/η as a
function of kξ in Fig. 1(b); η(k)/η almost lies on a single master
curve as well. Thus viscous transport in highly supercooled
states can also be characterized by ξ alone and the k-dependent
viscosity η(k) is written in the scaling form as

η(k) = η	(kξ ), (5)

where the scaling function 	(x) behaves as follows:

	(x) ∼ 1 (x � 1) (6)

∼ x−4 (x � 1). (7)

From this scaling behavior we derive the scaling relation
between η (∝τα) and ξ . Here we make use of the fact that
for kξ � 1, η(k) is almost independent of T , as shown in the
inset of Fig. 1(b). Therefore, viscous transport at smaller scales
(kξ � 1) should not be sensitive to the macroscopic transport
properties; namely, η(k) at kξ � 1 is almost independent of η

and ξ . This fact leads to the following scaling relation:

η ∼= η0

(
ξ

λ

)4

, (8)

where λ is the particle size and η0 is the viscosity at the particle
scale. In our previous simulations, we found that η0 exhibits
an Arrhenius-like weak temperature dependence [36,37].

B. Simple scaling argument: Link between the growth
of the length and time scales

Although many similar scaling relations have been reported
to date, there is no clear physical explanation for these rela-
tions, even at the phenomenological level. An understanding of
the scaling relation (8) would immediately provide insight into
the link between the growth of the length and time scales. Here,
from our observations we construct a general dynamic scaling
theory for the supercooled liquid dynamics based on clusters.
In the present argument, the only necessary assumption is
that the particle rearrangements occur cooperatively in the
form of clusters of size ξ at the longer length scale (kξ � 1)
that accompanies stress relaxation. Such cooperative particle
rearrangements are generally expected to occur in the usual
glass formers; thus the present assumption can be applied to a
wide range of molecular systems.

First, let us consider a correlated structure or cluster with
a typical size ξ that is composed of microscopic constituents
(particles) of size λ. The velocity fluctuations of the cluster are
estimated from the equipartition law as 〈v2

ξ 〉 ∼ T/ρξ 3, where
T is the temperature in units of Boltzmann’s constant and ρ is
the mass density. The mean frequency of the random rattling
motions of a cluster is c/ξ ∼ √

E/ρ/ξ , where c and E ∼
T/λ3 are typical values for the speed of sound and the elastic
modulus, respectively. Here ξ/c is the mean turnover time for
the momentum autocorrelation at kξ ∼= 1; after this time, the
direction of the motion of the cluster randomly changes. By
averaging such random motions of the cluster over long enough
times (�ξ/c), we observe diffusive motions. Therefore, the

diffusion constant of the cluster is given by

Dξ ∼ 〈
v2

ξ

〉ξ
c

∼ T

ξ 2
√

Eρ
∼ 1

τ0

λ4

ξ 2
, (9)

where τ0 ∼ η0/E is a microscopic time scale, and the micro-
scopic viscosity η0 can be evaluated as η0 ∼ √

Tρ/λ [49,50].
Assuming that cooperative particle rearrangements involve
relaxation of the stress stored in the cluster, we identify τα

as the average cluster relaxation time, during which the cluster
diffuses a distance of ∼ξ . Thus we obtain

τα ∼ ξ 2

Dξ

∼ τ0

(
ξ

λ

)4

. (10)

This relation is supported by our previous simulation results
[38]; the α-relaxation time nearly coincides with the self-
diffusion time of the correlated fluctuations (thus Dc ∼ Dξ ).

From the Maxwell relation, we obtain the viscosity as

η ∼ Eτα ∼ η0

(
ξ

λ

)4

. (11)

Under the present scaling argument, the dissipative flux is on
the order of ∼ξ/τα; therefore, the dissipation rate per cluster is
estimated to be (ηξ )(ξ/τα)2, where ηξ is the friction coefficient
of the cluster. This dissipation rate coincides with the rate of
stress relaxation for the cluster Eξ 3/τα .

The relations in Eqs. (9)–(11) can clearly be reduced to
those for normal liquids by replacing ξ with λ. In particular,
Eq. (9) reduces to Dλ ∼ T/η0λ. This expression for the
diffusion constant is the SE relation for the self-diffusion of a
single particle; this relation arises from the almost uncorrelated
motions of particles in a normal liquid state. In contrast, in
a supercooled state, particles cannot diffuse independently,
but instead move coherently by forming clusters. With this
description, the resulting dynamics can be regarded as the
self-diffusion of clusters and this observation is supported by
our previous simulation [38]. Thus we may conclude that in
supercooled liquids, the SE relation is violated at the particle
level, but is restored at the mesoscopic level.

To end this subsection, we should mention the following. In
Monte Carlo (or Brownian) dynamics without particle inertia,
a different scaling relation between the cluster size and the
α-relaxation time should be predicted by an argument similar
to that used in this section for the usual molecular liquids:
The average random displacement of a cluster with size ξ

in each Monte Carlo step �tMC is proportional to ∼ξ−3,
and after �tMC, because of the Markovian nature of Monte
Carlo dynamics, randomization of the direction of the cluster
motion occurs. Therefore, the diffusion constant of the cluster
is proportional to Dξ ∼ ξ−3 and the structural relaxation time
should behave as τα ∼ ξ 5.

C. Comparison of ξ to ξDH

The dynamic scaling τα ∼ ξ 4 is apparently comparable to
the previously reported relation τ (s)

α ∼ ξ 4.6
DH [51], where ξDH is

the dynamic heterogeneity size, which is determined by the
usual four-point correlation function, and τ (s)

α is defined to be
the relaxation time of the self-intermediate scattering function
(τα ∼ τ (s)

α [37]). However, recent studies have shown stronger
ξDH dependence for the α-relaxation time [52–54]. In fact,
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within the temperature range investigated in our simulation,
it was also found that the temperature dependence of ξ is
stronger than that of ξDH [36,38,55]. This difference in the
scaling relations should be explained by the different natures
of the characterization.

In our previous studies [36–38], the dynamic correlation
was characterized by the correlations in the transport coeffi-
cients. By definition, the nonlocal response can be written as

j‖
ρ(r) =

∫
d r ′D(r − r)∇′ρ̂(r ′), (12)

↔
σ

⊥
vis(r) =

∫
d r ′η(r − r ′){∇′v⊥(r ′) + [∇′v⊥(r ′)]†}, (13)

where D(r − r) and η(r − r ′) are the inverse Fourier
transforms of D(k) and η(k), respectively. Equations (12)
and (13) with Fig. 1 explicitly show that the hydrodynamic
fluxes (the longitudinal diffusive flux j‖

ρ and the transverse

viscous stress
↔
σ

⊥
vis) are not determined by the local fluctuations

(the longitudinal density ρ̂ and the transverse velocity v⊥,
respectively), but are dominated by fluctuations in the
distance |r − r ′| ∼ O(ξ ). Thus the nonlocal transport
coefficient directly measures the coherence of the collective
motions involved in hydrodynamic transport.

In contrast, the usual four-point correlation function method
characterizes the dynamic correlation by correlations in the
mobility field defined by the absolute value of the particle
displacement in a time interval ∼τα and ξDH is given by
the characteristic length scale of the spatially heterogeneous
pattern of the mobility field. However, such a spatial pattern of
mobile (or immobile) regions results from the accumulation
of some individual events with a size smaller than ξDH over
the time ∼τα; while some of these events are correlated, others
are not. Thus this pattern does not necessarily reflect the actual
size of the collective transport range in a direct way. That is, the
usual determination of the mobility field may not be sufficient
to distinguish between correlated and uncorrelated (or anticor-
related) events. To examine this speculation, in the Appendix
we analyze the spatiotemporal coherence of the mobility field
for the time interval τα . Based on simulation results, we suggest
the following interpretation: At a lower degree of supercooling,
the individual cooperative rearrangement events are smaller,
but they occur at a greater number of locations with less
correlation; thus the resultant ξDH is larger than ξ . In contrast,
with an increase in the degree of supercooling, the difference
between ξDH and ξ becomes smaller. Therefore, although the
cluster size does not exceed ξDH in the relevant temperature
range (see the Appendix), the temperature dependence of
ξDH is weaker than that of ξ ; namely, the usual four-point
correlation method may overestimate the actual cooperative
length scale or the collective transport range at lower degrees of
supercooling.

Here we emphasize that although both ξ and ξDH reflect
some aspects of the cooperative effects in supercooled liquids,
the relation of ξ to ξDH is not precisely one to one. The
usual four-point correlation function measures the spatial
distribution of the mobility or the activity defined during
a time interval ∼τα , but indirectly measures the correlation
length of the nonlocal transport itself. Despite the great
success of the four-point correlation method in describing the

statistical properties of spatiotemporally fluctuating particle
dynamics and its collective kinetic features in supercooled
liquids, it is difficult to elucidate the link between DH
and anomalous hydrodynamic transport. This difficulty arises
because in the conventional four-point correlation approach,
there is an ambiguity in relating the hydrodynamic trans-
port coefficients to the correlation function of the mobility
field.

Previously, decoupling of the characteristic length of DH
and that of the Fickian crossover for the self-diffusion of a
probe was analytically shown in the Fredrickson-Andersen
model and the EAST model [29]. This decoupling is ascribed
to the specific dynamic features of these lattice models.
Structural relaxation proceeds through the slow motion of
excitation lines at the mesoscopic length scale (comparable
to the dynamic heterogeneity size), whereas the self-diffusion
of a probe is governed by the a priori local spin-flipping
rules [56]. Thus these dynamical processes have different
time scales and this difference results in decoupling of the
characteristic length scales. However, in molecular systems,
such as the Lennard-Jones system, the structural relaxation
is the cooperative particle rearrangement, which also de-
termines the coherence of hydrodynamic transport, so the
characteristic lengths of DH and the transport crossover
should be more closely related (but would not be one to
one because of the different characterizations, as discussed
above).

The understanding of the relationships among these length
scales is far from sufficient, but is left for future studies.

III. LENGTH-SCALE-DEPENDENT ANOMALOUS
TRANSPORT: SLOW DYNAMICS OF CLUSTERS

In the previous section we indicated that the primary
features of the anomalous transport in supercooled liquids can
be captured with a dynamic scaling argument based on the
cluster picture. In particular, we would like to emphasize that
cooperative structural rearrangements can be idealized as the
self-diffusion of a correlated structure (cluster) of size ξ in a
medium with macroscopic viscosity η.

However, at length scales much smaller than the cooperative
length (kξ � 1), the relaxation time of the density fluctuations
is not given by the diffusion time 1/Dck

2 but by the
macroscopic structural (α-)relaxation time τα [3]. This coin-
cidence between the relaxation time for microscopic (kλ ∼ 1)
fluctuations and the macroscopic (k = 0) structural relaxation
time seems odd, but has been shown in many numerical
simulations and neutron scattering experiments. In this section,
with a continuum-mechanics-based approach, we will further
interpret such length-scale-dependent anomalous transport in
terms of clusters and we conclude that the correspondence
between these time scales may be a consequence of the
stress-diffusion coupling at kξ � 1.

The present phenomenology was inspired by the apparent
analogy between supercooled liquids and entangled polymer
solutions; that is, the essential features of mesoscopic transport
in supercooled liquids and entangled polymer solutions are
apparently analogous. In the following subsection, we will
first provide a short summary of this analogy.
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A. Apparent analogy with entangled polymer solutions

In entangled polymer solutions, cooperative transport is
characterized by the mesoscopic length scale, the “magic
length” (or viscoelastic length) ξp [44,45], which is typically
significantly larger than the static correlation length (blob
size) defined by the static two-body correlation function or
the static (Flory–Huggins–de Gennes) free energy functional.
The magic length is a dynamical correlation length that
originates from the coexistence of topological constraints
(entanglements) and the asymmetric stress division between
the polymer and solvent; the magic length can be regarded as
the correlation length of the stress relaxation [46,47] during
the (longest) structural relaxation time τp that originates from
the reptation dynamics of entanglement relaxation [57,58].
This situation is similar to that of supercooled liquids, where
the dynamical correlation length ξ is usually defined as the
spatial correlation length of the structural relaxation or particle
rearrangement event during the time duration τα . In addition,
the dynamical correlation length ξ cannot be obtained from an
ordinary static two-body correlator such as the density-density
correlation function.

In entangled polymer solutions, for kξp � 1, the concen-
tration fluctuations decay through diffusion with a diffusion
coefficient of Dp ∼ ξ 2

p/τp. In contrast, for kξp � 1, the force
from the gel-like network that is transiently formed for time τp

dominates the longitudinal modes (stress-diffusion coupling)
[44,45]. As a result, the relaxation time for the concentration
fluctuations is on the order of τp, which is much longer than that
expected from the diffusive decay, 1/Dpk2 � τp. As shown in
our previous study [38], the slowly varying density fluctuations
exhibit similar behavior.

This analogy is also relevant in the transverse modes. We
predicted that, in entangled polymer solutions, the viscous
transport and viscoelasticity would exhibit significant non-
locality [46–48]. With a decrease in k, the (k-dependent)
viscosity η(k) increases from the solvent viscosity ηs for
kξp � 1 to the polymeric viscosity ηp (�ηs) for kξp � 1.
The marked k dependence in η(k) is essential for connecting
the transport properties at the various length scales [46–48].
Recently, similar behavior has been reported for spatially
nonlocal viscous transport in supercooled liquids [35–39]. In
our previous work [36–38], we demonstrated that a distinct
crossover from microscopic to macroscopic viscosity occurs
at the dynamic correlation length ξ .

These analogies do not necessarily indicate that the same
origin or mechanism underlies the slow dynamics; however,
they at least lead us to expect a common physical description
for hydrodynamic transport. In both systems, the long-lived
topological constraints (entanglement in polymer solutions
and dynamical conformations of particles in supercooled
liquids, which are both transient structures) and the stress as-
sociated with these constraints cause the correlated dynamics
and severely restrict the structural rearrangements over the
cooperative length and time scales.

B. Cluster picture

This subsection describes our cluster picture for the slow
structural relaxation of supercooled liquids.

1. Diffusive decay (kξ � 1)

For kξ � 1, as shown in Fig. 1, the slowly relaxing density
fluctuations, which we refer to as ρ̂, obey the diffusion
equation

∂ρ̂

∂t
∼= Dc∇2ρ̂. (14)

We suppose that this collective diffusive decay of density
fluctuations at longer length (kξ � 1) and time (ωτα � 1)
scales, where ω is the frequency, reflects the mutual diffusion
of correlated fluctuations (clusters). Here, on the basis of this
physical picture, we reevaluate the collective diffusion coeffi-
cient Dc through a simple hydrodynamic argument as follows:
For kξ � 1, we assume that the restoring (or pressure gradient)
force associated with the density fluctuations balances the
friction force as

0 ∼= −ζw − 1

K0
∇ ρ̂

ρ̂0
, (15)

where ζ ∼ ηξ−2 is the friction coefficient (per unit volume),
K0 is the compressibility in the long-wavelength regime, and
ρ̂0 is the average value of ρ̂. Hereafter, w represents the average
velocity of the slowly moving collective fluctuations in which
the fast time scale (ωτα � 1) motions are assumed to be
coarse grained and ρ̂w thus provides the diffusive current. The
dynamical correlation length ξ cannot be identified through the
static two-body density correlator or through the free energy
functional. Therefore, although the thermodynamic force (and
thus K0) should be insensitive to ξ , the friction force (and thus
ζ ) directly reflects the cooperative effect. Because ρ̂ evolves
by the continuity equation

∂ρ̂

∂t
∼= −ρ̂0∇ · w, (16)

we obtain

Dc ∼ 1

K0

1

ηξ−2
∼ ξ 2

τα

, (17)

where the Maxwell relation η ∼= Eτα is employed and the
relation K0E ∼ 1 is assumed. Notably, this expression of the
collective diffusion coefficient Dc corresponds to the cluster
diffusion constant Dξ derived in Sec. II B.

In the present argument, w is tacitly assumed to differ from
the total velocity v. On a faster time scale ωτ0 � 1, where τ0 is
again the microscopic time scale, the less-correlated (thermally
driven) motions are dominant. However, on a slower time scale
(ωτ0 � 1), the cooperative nature becomes pronounced and
slow cluster dynamics cannot be simply described by the
local v. We assume that w reflects the coarse graining of
the fast time scale motions. In this sense, we may view the
slow cluster diffusion at the longer length scale (kξ � 1) as
similar to the usual diffusive dynamics of (normal) colloidal
suspensions, where the positional degrees of freedom of the
colloidal particles themselves are slow variables and where
the velocity of the colloidal particles is obtained by coarse
graining the fast (solvent) degrees of freedom. Our view is
schematically shown in Fig. 2.

062321-5



AKIRA FURUKAWA PHYSICAL REVIEW E 87, 062321 (2013)

(a)
~ξ (b)12

6
3 4 5

7
1

2

6
3

577

1

2
6

3

4

5

7

555555

(c)

t<<τ t~τ t>>τ
t

4

))

))

))

))

))
))))

))

))

))
))

))
))

))

))

))

))

))

))

))))

α α α

FIG. 2. (Color online) Schematic of cooperative particle rear-
rangements based on clusters. (a) For t � τα , almost none of the
particles can move far, although small-amplitude thermal rattling
motions are shown. (b) For t ∼ τα , the particles move by forming
clusters. Structural rearrangements over a period of τα accompany
stress relaxation. In (b), the relatively mobile (immobile) clusters are
indicated with a bright-blue (dark-red) shaded color and the thick
arrows represent the average displacement of the clusters over ∼τα .
We assume that the dynamic properties of the clusters (mobile and
immobile) change on a time scale of ∼τα; these changes are observed
as DH. For longer time scales (t � τα), the supercooled liquid
dynamics can be regarded on average as cluster diffusion. After a long
time (t � τα), the particles are redistributed among new clusters.

2. Stress-limited decay (kξ � 1)

For kξ � 1, the deviation from diffusive decay becomes
apparent and the density fluctuations survive longer than
1/Dck

2 (see Fig. 1 as well as Fig. 2 of Ref. [38]). We speculate
that the transiently formed steric constraints associated with
the dynamic correlation act against the restoring force caused
by the density fluctuations: During structural relaxation, the

long-lived longitudinal stress
↔
σ

‖
may prevent the density

fluctuations from relaxing. The resultant force balance for
ωτα � 1 and kξ � 1 is expressed as

0 ∼ − 1

K0
∇ ρ̂

ρ̂0
+ ∇ · ↔

σ
‖
. (18)

In the framework of mode coupling theory (MCT), ∇ · ↔
σ

‖

is specified by the nonlinear term for the force density
−ρ̂∇(δF/δρ̂), where F{ρ̂} is the free energy functional [4];
the dominant stress is assumed to be uniquely specified
by the spontaneous density fluctuations. However, such an
approach had not yet succeeded in consistently describing the
mesoscopic nature of the anomalous hydrodynamic transport
in deeply supercooled states. Here we critically consider this
MCT approach in terms of the crossover of hydrodynamic
transport: In MCT, both the longitudinal and transverse stress
relaxations are determined by the relaxation of the scalar
density field on the particle scale and these stress fluctuations
then govern density relaxation over a wide range of length

scale. Thus ρ̂,
↔
σ

‖
, and

↔
σ

⊥
have the same time scale ∼τα for

relevant wave numbers. However, this property is inconsistent
with the strong decouplings between the (transverse) shear
viscosity and the (longitudinal) structural relaxation for kξ � 1
and between the density diffusion and the structural relaxation
for kξ � 1 (see Fig. 1). These discrepancies should be closely
related to the failure in describing the breakdown of the

SE relation and the translation-rotation decoupling by MCT.
The observed transport crossover indicates that the density
and the longitudinal and transverse stress relaxations each
have different spatiotemporal hierarchical properties; thus the
stress tensor contains components that cannot be directly
expressed in terms of the density field. We speculate that
such stress components reflect the topological conformation of
the particle configurations; these configurations are transiently
formed in supercooled liquids and their dynamical properties
are not conserved, but alternately appear and disappear
on the time scale of τα . In the present paper, instead of
representing

↔
σ with the density field as in MCT, we treat

↔
σ as an independent nonconserved tensor variable [36,37,59].
Furthermore, the length-scale-dependent dynamical coupling
(kξ � 1) and decoupling (kξ � 1) between the density and
stress fluctuations can be described through a set of coupled
linear transport equations.

In soft matter systems, such as polymer solutions, to
describe complex mesoscopic dynamics, it is essential to
consider the mechanical viscoelastic stress tensor, which
arises from dynamic coupling between internal strain and
geometrical conformation, as an independent coarse-grained
(hydrodynamic) variable separate from the density (or
concentration) field [41,42]. Of course, in supercooled liquids,
such a treatment is difficult to justify a priori, so it would be
highly desirable to evaluate the relevance of this speculation
with a first-principles approach. However, as shown in the
following subsection, the phenomenological inclusion of the
nonconserved stress tensor field

↔
σ in addition to the conserved

scalar density field ensures coherent dynamics for kξ � 1.

C. Decoupling (kξ � 1) and coupling (kξ � 1) between
diffusion and viscosity (α relaxation): Possible role of

mechanical stress

As described so far, a dynamical cooperative length scale ξ

exists; above this length scale, the density fluctuations decay
by diffusion with a diffusion coefficient Dc ∼ ξ 2/τα , and
below this length scale, relaxation of density fluctuations is
limited during the α-relaxation time. Here we again recall
the analogy to the mesoscopic dynamics of entangled polymer
solutions [44,45] surveyed in Sec. III A, where stress-diffusion
coupling (decoupling) is observed at kξp � 1 (kξp � 1). This
coupling arises from topological constraints (entanglement);
the mechanical stress relaxation requires cooperative structural
rearrangements on the length scale of ξp and these rearrange-
ments result in the cooperative diffusion of concentration fluc-
tuations. These dynamical properties are quite similar to those
observed in supercooled liquids; thus one should expect that a
similar description of the mesoscopic dynamics holds. In this
subsection, using this analogy, we propose a minimal model
based on a cluster picture; this model consistently describes
length-scale-dependent anomalous transport in supercooled
liquids.

The longitudinal force balance equation for the dynamics
over the entire range of wavelengths is represented in Fourier
space as

0 ∼= −ζ (k)wk − 1

ρ̂0K0
ikρ̂k + ik · ↔

σ k. (19)
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Thus the longitudinal part of the mechanical stress
↔
σ induces

the dissipative flux, as the pressure gradient (the restoring
force due to density fluctuations) does. In structural fluids or
soft materials, it is often the case that the longitudinal part of
the mechanical stress is inevitably coupled to the density or
concentration fluctuations. The strong k dependence of η(k)
[36,37] leads to the nonlocal friction coefficient ζ (k), which
should follow ζ (k) = ζ ∼ ηξ−2 and ζ (k) ∼ η(k)k2 for kξ � 1
and kξ � 1 [60], respectively. However, the explicit form of
ζ (k) does not affect the final result. Note that here we neglect
the weak k dependence of the isothermal compressibility (and
the shear modulus) at larger k. As shown in this subsection,
Eq. (19) includes Eqs. (15) and (18) for kξ � 1 and kξ � 1, re-
spectively, and thus is the generalization of Eqs. (15) and (18).

Assuming that a cluster is a transient viscoelastic body, the
slow internal distortion of the cluster causes mechanical stress↔
σ , which, for simplicity, is assumed to obey the following
simple constitutive equation:

↔
σ k(t) =

∫ t

dt ′h(t − t ′)
↔
κ k(t ′), (20)

where
↔
κ = ∇w† + ∇w − 2(∇ · w)

↔
δ /3 is the traceless strain-

rate tensor that describes the slow cluster deformation. The
bare response function h(t) is usually well approximated
by the Kohlrausch-Williams-Watts (KWW) form as h(t) =
E exp[−(t/τα)ψ ]. In this relation, ψ is the KWW exponent.

In frequency space, Eq. (20) is rewritten as

↔
σ ve(k,ω) = G∗(ω)

iω

↔
κ (k,ω), (21)

where G∗(ω) = iωh(ω) is the complex shear modulus [57] and
η = h(ω = 0). From Eqs. (16), (19), and (21) we can derive
the following:

ρ̂(k,ω) ∼= 1

iω + k2

ζ (k)K0

1
1+ 4

3 k2 G∗ (ω)
iωζ (k)

ρ̂k(t = 0), (22)

For ωτ0 � 1, where τ0 is the microscopic time scale, which is
comparable to the momentum relaxation time, |G∗(ω)/iωη| �
1. Thus, for kξ � 1,

ρ̂(k,ω) ∼= 1

iω + k2

ζK0

ρ̂k(t = 0), (23)

which provides the diffusive decay with a diffusion coefficient
of Dc

∼= 1/ζK0 ∼ ξ 2/τα . Here ζ (k) ∼= ζ at smaller kξ � 1.
In contrast, for kξ � 1 and ωτα � 1, we determine that

ρ̂(k,ω) ∼= 1

iω
[
1 + 3

4K0G∗(ω)

] ρ̂k(t = 0), (24)

which indicates that the density fluctuations are dominated
by the mechanical relaxation. When the simple Maxwell
model (ψ = 1) is adopted, G∗(ω)/iω = Eτα/(1 + iωτα) and
Eq. (24) reduces to

ρ̂(k,ω) ∼= 1

1 + γ

1

iω + γ

(1+γ )τα

ρ̂k(t = 0), (25)

where 1/γ = 4K0E/3.
Equations (24) and (25) indicate that the density fluctua-

tions decay with the α-relaxation time within the cooperative

length scale (kξ � 0); i.e., unless the topological constraints
on the size of ξ are relaxed, the microscopic constituents
(particles) cannot relax (stress-limited decay). This mechanism
for the rearrangements of particles is almost the same as
the stress-diffusion coupling in entangled polymer solutions
[44,45]; however, this mechanism is completely different from
that predicted by MCT, where caging at the particle scale
causes the slowing down.

D. Brief remarks

The dynamic properties of clusters over the time period ∼τα

are distributed, that is, some clusters are mobile while others
are immobile, and this distribution should be observed as DH
(schematically shown in Fig. 2). Although the populations of
mobile and immobile particles (or clusters) are not permanent
but interchange after ∼τα , by averaging the mobile and
immobile motions of a cluster over times longer than τα , we
should observe well-averaged diffusive motions [61].

It should be noted that the present diffusive mechanism
is different from that predicted by conventional macroscopic
hydrodynamics (or the theory of simple liquids), which
cannot explain the anomalously slow density diffusion [or the
expression for Dc, Eq. (17)] observed in supercooled liquids.
Conventional macroscopic hydrodynamics predict that the
relaxation time for the density fluctuations at long wavelengths
is given by 1/DT k2, where DT is the thermal diffusion
coefficient [49,50]. However, in supercooled liquids, a much
slower structural relaxation process dominates the transport
properties; thus the heat mode is decoupled from the structural
relaxation and from the density diffusion.

Even within the framework of MCT, recent efforts to
explore the higher-order dynamical correlations of density
fluctuations have indicated the existence of a growing length
scale associated with a diverging relaxation time [65–67].
However, in the present MCT, it is an input assumption that the
nonlinear interactions of density fluctuations at wavelengths
near the first peak of the structure factor dominate anomalous
hydrodynamic transport. Consequently, macroscopic transport
coefficients are observed already at the particle scale and
the correlation of hydrodynamic transport is therefore micro-
scopic. In this sense, caging on the particle scale should be
the primary effect and the mesoscopic dynamical correlation
observed in a multipoint density correlation function in MCT
might be a by-product of the slow dynamics.

This feature of MCT can be associated with the fact that the
present mathematical framework of MCT for the supercooled
liquid dynamics originates from the theory of simple liquids. In
normal simple liquids, the hydrodynamic transport coefficients
do not exhibit significant differences between the microscopic
and macroscopic scales [49,50]. In normal simple liquids,
the macroscopic transport coefficients can be applied over
a wide range of spatiotemporal scales because no important
characteristic length scale exists beyond that of the particle
size and particle-scale dynamics dominate the hydrodynamic
transport properties. However, in realistic supercooled liquids,
this situation does not hold. For example, our simulation
studies [36–38] strongly indicate that in supercooled liquids,
a slow dynamical process at the mesoscopic scale governs
hydrodynamic transport.
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IV. CONCLUSION

Based on simulation results presented in the literature
[36–38], we have constructed a dynamic scaling theory for
anomalous hydrodynamic transport in supercooled liquids.
The most important prediction is the scaling relation between
the dynamic correlation length and the structural relaxation
time, τα ∼ ξ 4. In Sec. II we have also shown that the basic
transport properties can be captured by simple scaling argu-
ments. In addition, a continuum mechanics model has been
provided to describe the length-scale-dependent anomalous
hydrodynamic transport. We indicated that a nonconserved
tensor field should be introduced to describe coherent dynam-
ics for smaller length scales (�ξ ).

We have assumed that fluctuations with a typical size
of ξ behave as transiently correlated clusters. Smaller-scale
(�ξ ) fluctuations are subordinate to the cluster dynamics,
which result in τρ(k) ∼ τρ(k = 1/ξ ) ∼ τα , where τρ(k) is
the k-dependent relaxation time of the (collective) density
fluctuations. In contrast, the relaxation of larger-scale (�ξ )
fluctuations can be understood as diffusive decay, where the
cluster is regarded as a unit; thus the relaxation time is given
by τρ(k) ∼ 1/k2Dc ∼ τα/(kξ )2. These dynamic behaviors are
clearly shown by previous simulation results in the literature
[38]. In the derivation of the scaling relation, we tacitly
assumed that densely packed clusters with a typical sizes of ξ

diffuse in an almost uncorrelated manner. By coarse graining
the fluctuations at wavelengths smaller than ξ , we can idealize
the supercooled liquid dynamics with the dynamics of a normal
(cluster) liquid composed of effective particles with a size of
ξ . Based on this simple coarse-grained cluster view, we can
essentially understand anomalous hydrodynamic transport.
Although our results are purely qualitative, the present study
should shed light on this field.

The most fundamental and difficult problem remaining
is to determine the temperature dependence of ξ (thus
that of τα) or to determine why clusters are preferentially
formed when rearrangements of particle configurations occur
in supercooled states. Moreover, theoretical studies are still
needed to determine how ξ grows at low temperatures. Further
theoretical investigations on the development of a general
theory for the slow dynamics of structural glasses are the
subject of another study [68].
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APPENDIX

We argue in Sec. II C that the dynamic heterogeneity size
ξDH(�t) reflects the spatial distribution of the accumulation
of the displacement events during a time interval �t , but
does not necessarily coincide with the actual cluster size of

comoving particles or the collective transport range. Here,
based on simulation results, we further discuss this point.

We use the same three-dimensional model of glass-forming
liquids employed in Refs. [36–38]; this model has been
thoroughly studied by many authors [10,69,70] (for details
of the model, please see these papers). As mentioned in the
preceding text, the mobility field for a time interval �t is
usually defined in terms of the displacement during the time;
here the mobility field is defined as [12]

Q(r,t0; �t) =
∑

i

qi(t0; �t)δ(r − r i(t0)), (A1)

where qi(t0; �t) = q(|r i(t0 + �t) − r i(t0)|) and |r i(t0 +
�t) − r i(t0)| is the absolute value of the displacement of
particle i over time �t . Here q(|u|) = 1 for |u| > a and
q(|u|) = 0 otherwise, which is opposite to the usual con-
vention for q [12,36,53]. In the following analysis, we set
a = 0.3, which is slightly larger than the plateau value of
the mean square displacement of a particle in supercooled
states. Hereafter, the particle of qi(t0; �t) = 1 is referred as a
mobile particle for the time interval [t0,t0 + �t]. The structure
factor of Qk, SQ(k; �t) = (1/N )〈|Qk|2〉, where Qk(t0; �t)
is the Fourier transform of Q(r,t0; �t), is a measure of
the mobility correlation and its characteristic length deter-
mines the dynamic heterogeneity size ξDH(�t) for the time
interval �t .

To analyze the spatiotemporal coherence of the rearrange-
ment dynamics during �t = τα with a shorter time resolution,
we first divide the time interval [t0,t0 + τα] into subintervals
[t0 + mδt,t0 + (m + 1)δt] (m = 0,1,2, . . . ,τα/δt − 1), where
δt < τα . Then we introduce another field variable

P (r,m; t0,δt)

=
∑

i

qi(t0; τα)qi(t0 + mδt ; δt)δ(r − r i(t0 + mδt)), (A2)

where qi(t0; τα)qi(t0 + mδt ; δt) selects mobile particles at the
mth subinterval among those for the total interval [t0,t0 + τα].
Thus the spatiotemporal correlation of P (r,m; t0,δt) reflects
the coherence properties of the mobility for �t = τα with
the time resolution of δt . In supercooled states of our model
system [36,37], on a time scale �0.1τα , rearrangements that
have a relatively large particle displacement (�0.3) become
pronounced, which are expected to cooperatively occur. On
a much shorter time scale, however, less-correlated small-
amplitude (� 0.3) thermal motions are dominant. Therefore,
in the following analysis, we set δt = τα/8 and τα/4 for
the subinterval. The present selection of δt is arbitrary, but
does not affect the qualitative property of our results for
0.1τα � δt � τα .

We present the temperature T and the time interval
�t dependences of the spatial coherence of the mobility
field. In Fig. 3(a), SQ(k; τα) = (1/N )〈|Qk|2〉 and SP (k; δt) =
(1/N )〈|Pk|2〉 (δt = τα/4 and τα/8) scaled by SQ(0; τα) are
plotted as a function of the scaled wave number kξDH(τα). The
dynamic heterogeneity size ξDH(τα), which is the correlation
length of Q(r,t0; τα), can be determined by fitting SQ(k; τα)
to the Ornstein-Zernike form [12,36,53,71]. The correlation
length of P (r,m; t0,δt), ξ̄DH(δt), is determined in the same
manner. With increasing T and decreasing δt , the ratios
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FIG. 3. (Color online) (a) SQ(k; τα) and SP (k; δt) scaled by
SQ(0; τα) for several T and δt . The curves are determined by
fitting SQ(k; τα) and SP (k; δt) to the Ornstein-Zernike form. The
inset presents the ratios ξ̄DH(δt)/ξDH(τα). With increasing T and
decreasing δt , the ratios SQ(0; τα)/SP (0; δt) and ξDH(τα)/ξ̄DH(δt)
increase. As demonstrated in Refs. [36–38], T = 0.267 and 0.306
correspond to the temperatures of high and low supercooling states,
respectively. However, at T = 0.352, the system hardly exhibits the
characteristic features of supercooled states. While in supercooled
states (T = 0.267 and 0.306), for δt = τα/8 (τα/4), more than
90% (80%) of the mobile particles for a total period [t0,t0 + τα]
are mobile in at least one subinterval, at T = 0.352, the ratio
is smaller [∼80% (70%)]. (b) Correlation between the mobility
fields defined at different shorter periods H (k,m − m′; τα/8) =
〈Pk(m; t0,τα/8)P−k(m′; t0,τα/8)〉/N (m − m′ = 0, 1, and 7), for low
and high degrees of supercooling, which is scaled by H (0,0; τα/8).

SQ(0; τα)/SP (0; δt) and ξDH(τα)/ξ̄DH(δt) increase, which sug-
gests that the spatiotemporal coherence of the particles motion
is further weakened at higher temperatures. A similar tendency
is observed in the analysis of the temperature T and the
time interval �t dependences of dynamic heterogeneity in
Refs. [12,53]. To further examine the time coherence of the
cooperative rearrangement motions for the long-term (�t =

τα) accumulation, we analyze the correlation of Pk(m; t0,δt)
at different shorter periods

H (k,m − m′; δt) = 1

N
〈Pk(m; t0,δt)P−k(m′; t0,δt)〉, (A3)

which is presented in Fig. 3(b) for δt = τα/8. We observe that,
at a higher degree of supercooling, the time coherence decays
much more slowly. For �t � τα , the average value of the
particle displacement during �t is much less than the dyna-
mic heterogeneity size ξDH(τα); thus this decay is not due
to the advection of the mobility field but rather due to the
temporal change of the mobile properties of particles during
τα . Previously, Kim and Saito systematically revealed that as
the temperature decreases toward the glass transition point, the
lifetime of DH increases [62,63].

This simple investigation suggests the following picture:
The spatially heterogeneous pattern of the mobility field is con-
structed from many cooperative rearrangement events during
τα . At a low degree of supercooling, the individual cooperative
events are smaller, but occur at a greater number of locations
with less correlation. However, in the usual measurement of
ξDH(τα), neighboring regions that have cooperative events oc-
curring during a time interval τα are counted as one cooperative
region, even if those events are not actually correlated. This
practice occurs because a measurement of the absolute value of
the particle displacement cannot precisely distinguish between
correlated and less-correlated or anticorrelated rearrangement
modes [72]. Thus ξDH(τα) may overestimate the actual size of
the cooperative range of hydrodynamic transport or the clusters
of comoving particles at a low degree of supercooling. At a
high degree of supercooling, however, ξDH(τα) may approach
the actual cooperative length scale and the time coherence
between each event is enhanced.

In our simulation, ξ grows as ξ ∼= 0.25τ
1/4
α within the range

of τα of our simulations (10 � τα � 105). In contrast, ξDH(τα)
is found to grow more slowly but with a larger coefficient
as ξDH(τα) ∼= 2.1τ

1/8
α [36]. Here the relaxation time of a

normal state is ∼1. Thus, although the correlation length of
hydrodynamic transport ξ exhibits a stronger T dependence
than that of ξDH(τα), ξ is still comparable to ξDH(τα) at
τα ∼ 108. However, in such an extremely supercooled state, the
relevance of the present simple phenomenological argument
and simulation results is not clear (a change of eight orders
of magnitude in the viscosity or the α-relaxation time greatly
exceeds the results of existing simulation studies).

Though the dynamic heterogeneity size at �t = τα has
usually been considered to be a dynamic correlation length,
the physical meaning of this correlation is not clear. In this
appendix, we critically addressed this problem by extending
the usual four-point correlation function method. However,
further analysis will be required to clarify the meaning and the
relation between ξ and ξDH(τα) [68].
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[12] N. Lačević, F. W. Starr, T. B. Schrøder, and S. C. Glotzer,

J. Chem. Phys. 119, 7372 (2003).
[13] L. Berthier and G. Biroli, Rev. Mod. Phys. 83, 587 (2011).
[14] Dynamical Heterogeneities in Glasses, Colloids, and Granu-

lar Media edited by L. Berthier, G. Biroli, J.-P. Bouchaud,
L. Cipelletti, and W. van Saarloos, (Oxford University Press,
Oxford, 2011).

[15] H. Tanaka, Eur. Phys. J. E 35, 113 (2012).
[16] V. Lubchenko and P. Wolyness, Annu. Rev. Phys. Chem. 58, 235

(2007).
[17] A. Cavagna, Phys. Rep. 476, 51 (2009).
[18] G. Tarjus, S. A. Kivelson, Z. Nussinov, and P. Viot, J. Phys.:

Condens. Matter 17, R1143 (2005).
[19] H. Tanaka, T. Kawasaki, H. Shintani, and K. Watanabe, Nat.

Mater. 9, 324 (2010).
[20] W. Kob, S. Roldan-Vargas, and L. Berthier, Nat. Phys. 88, 164

(2012).
[21] L. Berthier and W. Kob, Phys. Rev. E 85, 011102 (2012).
[22] C. Cammarota and G. Biroli, Proc. Natl. Acad. Sci. USA 109,

8850 (2012).
[23] F. Fujara, B. Geil, H. Sillescu, and G. Fleischer, Z. Phys. B 88,

195 (1992).
[24] M. T. Cicerone and M. D. Ediger, J. Chem. Phys. 104, 7210

(1996).
[25] C. A. Angell, K. L. Ngai, G. B. McKenna, P. F. McMillan, and

S. W. Martin, J. Appl. Phys. 88, 3113 (2000).
[26] D. N. Perera and P. Harrowell, Phys. Rev. Lett. 81, 120 (1998).
[27] These fundamental questions regarding the spatial correlation

pose a chicken-and-egg problem for the origin of the slowing
down: Does the microscopic slowing down cause the mesoscopic
(and thus the macroscopic) slowing down, or vice versa?

[28] L. Berthier, Phys. Rev. E 69, 020201(R) (2004).
[29] L. Berthier, D. Chandler, and J. P. Garrahan, Euro. Phys. Lett.

69, 320 (2005).
[30] A. C. Pan, J. P. Garrahan, and D. Chandler Phys. Rev. E. 72,

041106 (2005).
[31] G. Szamel and E. Flenner, Phys. Rev. E 73, 011504 (2006).
[32] P. Chaudhuri, L. Berthier, and W. Kob, Phys. Rev. Lett. 99,

060604 (2007).
[33] S. F. Swallen, K. Traynor, R. J. McMahon, M. D. Ediger, and

T. E. Mates, J. Phys. Chem. B 113, 4600 (2009).
[34] J. G. Amar and R. D. Mountain, J. Chem. Phys. 86, 2236 (1987).
[35] J. Kim and T. Keyes, J. Phys. Chem. B 109, 21445 (2005).
[36] A. Furukawa and H. Tanaka, Phys. Rev. Lett. 103, 135703

(2009).
[37] A. Furukawa and H. Tanaka, Phys. Rev. E 84, 061503 (2011).
[38] A. Furukawa and H. Tanaka, Phys. Rev. E 86, 030501(R) (2012).
[39] R. M. Puscasu, B. D. Todd, P. J. Daivis, and J. S. Hansen,

J. Chem. Phys. 133, 144907 (2010).
[40] V. A. Levashov, J. R. Morris, and T. Egami, J. Chem. Phys. 138,

044507 (2013).
[41] R. G. Larson, The Structure and Rheology of Complex Fluids

(Oxford University Press, Oxford, 1999).

[42] A. Onuki, Phase Transition Dynamics (Cambridge University
Press, Cambridge, 2002).

[43] K. Kawasaki, Ann. Phys. (NY) 61, 1 (1970).
[44] F. Brochard and P. G. de Gennes, Macromolecules 10, 1157

(1977).
[45] M. Doi and A. Onuki, J. Phys. (Paris) II 2, 1631 (1992).
[46] A. Furukawa, J. Phys. Soc. Jpn. 72, 209 (2003).
[47] A. Furukawa, J. Phys. Soc. Jpn. 72, 1436 (2003).
[48] A. Furukawa, J. Chem. Phys. 121, 9716 (2004).
[49] J. P. Boon and S. Yip, Molecular Hydrodynamics (Dover,

New York, 1991).
[50] J. P. Hansen and I. R. McDonald, Theory of Simple Liquids

(Academic, Oxford, 1986).
[51] S. Whitelam, L. Berthier, and J. P. Garrahan, Phys. Rev. Lett.

92, 185705 (2004).
[52] E. Flenner and G. Szamel, Phys. Rev. E 79, 051502 (2009).
[53] E. Flenner, M. Zhang, and G. Szamel, Phys. Rev. E 83, 051501

(2011).
[54] E. Flenner and G. Szamel, J. Chem. Phys. 138, 12A523

(2013).
[55] A. Furukawa (unpublished).
[56] Y. J. Jung, J. P. Garrahan, and D. Chandler, Phys. Rev. E 69,

061205 (2004).
[57] M. Doi and S. F. Edwards, Theory of Polymer Dynamics (Oxford

University Press, Oxford, 1986).
[58] P. G. de Gennes, Scaling Concepts of Polymer Physics (Cornell

University Press, Ithaca, 1979).
[59] R. A. MacPhail and D. Kivelson, J. Chem. Phys. 90, 6549 (1989);

90, 6555 (1989).
[60] A scaling behavior for ζ (k) can be written as ζ (k) = ζ�(kx),

where �(x) ∼ 1 for x � 1 and �(x) ∼ x−2 for x � 1. Equa-
tion (8) yields the friction coefficient on the particle scale as
ζ (k = 1/λ) ∼= η0λ(1/λ)3. The scaling form of ζ (k) suggests
that the dissipation at smaller scales (kξ � 1) should also be
insensitive to the cooperative properties.

[61] Recent studies show that the lifetime of DH is comparable to or
slightly longer than τα [62,63]. The slowly varying correlated
cluster may be defined over much longer periods. In fact, as
shown in the literature [64], the neighboring particles around a
tagged particle remain almost unchanged for considerably longer
than τα . However, the present view of slow cluster diffusion is
established (on average) as long as a cluster is defined for at least
τα .

[62] K. Kim and S. Saito, Phys. Rev. E 79, 060501(R) (2009).
[63] K. Kim and S. Saito, J. Chem. Phys. 133, 044511 (2010).
[64] H. Shiba, T. Kawasaki, and A. Onuki, Phys. Rev. E 86, 041504

(2012).
[65] G. Biroli and J.-P. Bouchaud, Europhys. Lett. 67, 21 (2004).
[66] G. Biroli, J.-P. Bouchaud, K. Miyazaki, and D. R. Reichman,

Phys. Rev. Lett. 97, 195701 (2006).
[67] L. Berthier, G. Biroli, J.-P. Bouchaud, W. Kob, K. Miyazaki, and

D. R. Reichman, J. Chem. Phys. 126, 184503 (2007).
[68] A. Furukawa (unpublished).
[69] B. Bernu, J. P. Hansen, Y. Hiwatari, and G. Pastore, Phys. Rev.

A 36, 4891 (1987).
[70] J.-N. Roux, J.-L. Barrat, and J. P. Hansen, J. Phys.: Condens.

Matter 1, 7171 (1989); J.-L. Barrat, J.-N. Roux, and J. P. Hansen,
Chem. Phys. 149, 197 (1990).

[71] The available range of wave numbers for the fit becomes
narrower as the temperature decreases. This situation makes

062321-10

http://dx.doi.org/10.1126/science.287.5453.627
http://dx.doi.org/10.1103/PhysRevE.52.1694
http://dx.doi.org/10.1103/PhysRevLett.79.2827
http://dx.doi.org/10.1103/PhysRevE.58.3515
http://dx.doi.org/10.1103/PhysRevLett.80.4915
http://dx.doi.org/10.1063/1.1605094
http://dx.doi.org/10.1103/RevModPhys.83.587
http://dx.doi.org/10.1140/epje/i2012-12113-y
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104653
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104653
http://dx.doi.org/10.1016/j.physrep.2009.03.003
http://dx.doi.org/10.1088/0953-8984/17/50/R01
http://dx.doi.org/10.1088/0953-8984/17/50/R01
http://dx.doi.org/10.1038/nmat2634
http://dx.doi.org/10.1038/nmat2634
http://dx.doi.org/10.1103/PhysRevE.85.011102
http://dx.doi.org/10.1073/pnas.1111582109
http://dx.doi.org/10.1073/pnas.1111582109
http://dx.doi.org/10.1007/BF01323572
http://dx.doi.org/10.1007/BF01323572
http://dx.doi.org/10.1063/1.471433
http://dx.doi.org/10.1063/1.471433
http://dx.doi.org/10.1063/1.1286035
http://dx.doi.org/10.1103/PhysRevLett.81.120
http://dx.doi.org/10.1103/PhysRevE.69.020201
http://dx.doi.org/10.1209/epl/i2004-10401-5
http://dx.doi.org/10.1209/epl/i2004-10401-5
http://dx.doi.org/10.1103/PhysRevE.72.041106
http://dx.doi.org/10.1103/PhysRevE.72.041106
http://dx.doi.org/10.1103/PhysRevE.73.011504
http://dx.doi.org/10.1103/PhysRevLett.99.060604
http://dx.doi.org/10.1103/PhysRevLett.99.060604
http://dx.doi.org/10.1021/jp808912e
http://dx.doi.org/10.1063/1.452122
http://dx.doi.org/10.1021/jp052338r
http://dx.doi.org/10.1103/PhysRevLett.103.135703
http://dx.doi.org/10.1103/PhysRevLett.103.135703
http://dx.doi.org/10.1103/PhysRevE.84.061503
http://dx.doi.org/10.1103/PhysRevE.86.030501
http://dx.doi.org/10.1063/1.3499745
http://dx.doi.org/10.1063/1.4789306
http://dx.doi.org/10.1063/1.4789306
http://dx.doi.org/10.1016/0003-4916(70)90375-1
http://dx.doi.org/10.1021/ma60059a048
http://dx.doi.org/10.1021/ma60059a048
http://dx.doi.org/10.1143/JPSJ.72.209
http://dx.doi.org/10.1143/JPSJ.72.1436
http://dx.doi.org/10.1063/1.1806133
http://dx.doi.org/10.1103/PhysRevLett.92.185705
http://dx.doi.org/10.1103/PhysRevLett.92.185705
http://dx.doi.org/10.1103/PhysRevE.79.051502
http://dx.doi.org/10.1103/PhysRevE.83.051501
http://dx.doi.org/10.1103/PhysRevE.83.051501
http://dx.doi.org/10.1063/1.4773321
http://dx.doi.org/10.1063/1.4773321
http://dx.doi.org/10.1103/PhysRevE.69.061205
http://dx.doi.org/10.1103/PhysRevE.69.061205
http://dx.doi.org/10.1063/1.456683
http://dx.doi.org/10.1063/1.456322
http://dx.doi.org/10.1103/PhysRevE.79.060501
http://dx.doi.org/10.1063/1.3464331
http://dx.doi.org/10.1103/PhysRevE.86.041504
http://dx.doi.org/10.1103/PhysRevE.86.041504
http://dx.doi.org/10.1209/epl/i2004-10044-6
http://dx.doi.org/10.1103/PhysRevLett.97.195701
http://dx.doi.org/10.1063/1.2721554
http://dx.doi.org/10.1103/PhysRevA.36.4891
http://dx.doi.org/10.1103/PhysRevA.36.4891
http://dx.doi.org/10.1088/0953-8984/1/39/028
http://dx.doi.org/10.1088/0953-8984/1/39/028
http://dx.doi.org/10.1016/0301-0104(90)80139-O


SIMPLE PICTURE OF SUPERCOOLED LIQUID . . . PHYSICAL REVIEW E 87, 062321 (2013)

the precise determination of ξDH difficult. In fact, in almost
all existing simulation studies of deeply supercooled states,
ξDHk0 � 1, where k0 = 2π/L0 is the minimum wave number
of the computation determined by the system size L0.

[72] In Ref. [38], we characterized DH not by the absolute value of the
particle displacement but by the change in shear stress over a time
interval ∼τα . Then the characteristic size of the heterogeneous
stress relaxation was found to be almost given by the correlation

length for hydrodynamic transport ξ : Because anticorrelated or
less-correlated rearrangements exhibit different stress changes,
such rearrangement events are somewhat distinguished by a
measurement of the coherence of the stress relaxation [38].
However, within the usual characterization of DH, the absolute
value of the particle displacement cannot distinguish such
different rearrangements; this lack of distinction results in a
different characteristic length scale ξDH(τα) (> ξ ).
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