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Mode-distribution analysis of quasielastic neutron scattering and application to liquid water
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A quasielastic neutron scattering (QENS) experiment is a particular technique that endeavors to define a
relationship between time and space for the diffusion dynamics of atoms and molecules. However, in most
cases, analyses of QENS data are model dependent, which may distort attempts to elucidate the actual diffusion
dynamics. We have developed a method for processing QENS data without a specific model, wherein all modes
can be described as combinations of the relaxations based on the exponential law. By this method, we can obtain
a distribution function B(Q,�), which we call the mode-distribution function (MDF), to represent the number of
relaxation modes and distributions of the relaxation times in the modes. The deduction of MDF is based on the
maximum entropy method and is very versatile in QENS data analysis. To verify this method, reproducibility
was checked against several analytical models, such as that with a mode of distributed relaxation time, that with
two modes closely located, and that represented by the Kohlrausch-Williams-Watts function. We report the first
application to experimental data of liquid water. In addition to the two known modes, the existence of a relaxation
mode of water molecules with an intermediate time scale has been discovered. We propose that the fast mode
might be assigned to an intermolecular motion and the intermediate motion might be assigned to a rotational
motion of the water molecules instead of to the fast mode.
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I. INTRODUCTION

Several experimental techniques have been proposed for
studying molecular and atomic dynamics. Among them,
quasielastic neutron scattering (QENS) obtains a dynamic
structure factor S(Q,ω) that provides space and time infor-
mation on diffusion dynamics [1]. QENS data are essentially
only one peak of intensity variation against energy transfer.
All information about interesting properties of the system with
regard to relaxation, local motion, and diffusion is included in
the shape of this peak. Conventionally, fittings based on various
diffusion models have been conducted to obtain physical
quantities [1].

In general, the simple relaxation mode is described by
exponential decay with single characteristic decay time, that
is, relaxation time. This assumption is based on diffusion
according to Fick’s law or relaxation occurring by a stochastic
process such as a transition process between double wells.
Diffusion models used in conventional analysis are usually
supported from other experimental results. In most cases, such
a model is composed of one or two modes, although it is known
that diffusion processes in materials are quite complicated. In
addition, how appropriately the number of modes is chosen
always remains an open discussion.

We propose an analysis using the maximum entropy method
(MEM) [2,3] to resolve this uncertainty in the analysis. By
this method, the number of modes and the distribution of
the relaxation time in the modes can be obtained. In this
method, we first supposed that all modes can be described as
combinations of the relaxations based on the exponential law,
and the intermediate scattering function F (Q,t) is written as

F (Q,t) = A(Q) +
∫

B(Q,τ ) exp

(
− t

τ

)
dτ, (1)

where A(Q) is the elastic intensity of a neutron scattering.
B(Q,τ ) is a new distribution function to show the number

of modes and distributions of the relaxation times in the
modes and we call it the mode-distribution function (MDF).
Executing Fourier transformation on t , the dynamic structure
factor S(Q,ω) can be written by use of the Lorentz function as

S(Q,ω) = A(Q)δ(ω) +
∫

B(Q,�)
1

π

(
�

ω2 + �2

)
d�, (2)

where � is the width of the Lorentz function and B(Q,�) is
a variable-transformed MDF function obtained from B(Q,τ ).

Such analysis to elucidate the distribution of relaxation
time to study the dynamics is widely done by using the
dynamic light scattering (DLS) combined with the CONTIN

program [4]. Since measurement time ranges of QENS are
narrower than DLS in general, reliability of the results from
QENS can be less than those from DLS in the time space. Still
however, in the case of QENS, obtained distribution also has
information in momentum space (Q). Therefore, even with
narrower time range, reliable and rich information can be
obtained by measuring the change of Q. Also, one should
note that integrated intensity of QENS spectrum is equivalent
to integrated intensity of the distribution of the relaxation time,
which causes much advantage in mathematical operation.

An example of this function of the constant Q is shown in
Fig. 1. B(Q,�) consists of a few peaks in most cases. Each
peak represents several characteristics of single relaxation.
The peak position corresponds to the average relaxation time,
and the peak area reflects the number of atoms or the ratio
of moving atoms to the total atoms. In addition, our analysis
method provides new information about the nonuniformity
of the dynamics. The peak width and shape represent the
distribution of relaxation time caused by differences in the
local structure. The Q dependencies of the peaks represent
the spatial feature of motions. Because this function can not
be calculated by conventional analyses, the number of modes
has been limited and the distribution of the relaxation times
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FIG. 1. (Color online) Example of a mode-distribution function
(MDF) on constant Q.

has not been considered to date in many cases. By using our
analysis method, we can directly calculate this MDF from
QENS measurement data.

However, there is an inverse problem in the calculation
of MDF. Both statistical errors and experimental errors can
greatly affect the result when a simple least squares method
is used because the energy range of a measurement is limited,
whereas the Lorentz function has wing tails over a wide energy
range. We adopted MEM in our analysis method to avoid this
problem and appropriately deal with the errors on the basis of
information theory.

In Sec. II, we expound on the details of our analysis
method. The validity of this method is examined by several
groups of simulated data in Sec. III. We report the first
application of our analysis method to real matter, chosen
to be liquid water, in Sec. IV. Liquid water is a material
that has interested many researchers for a long time, but
controversy surrounds the various diffusion models that have
been proposed. Therefore, liquid water is a suitable but
challenging material to demonstrate the capability of our
model-free analysis method.

II. ANALYSIS METHOD

The essential part of this study is the deduction of B(Q,�)
from S(Q,ω) by Eq. (2). In our procedure, we discretized
B(Q,�) into equally spaced discrete � in logarithmic space.
We convoluted the resolution function R(Q,ω) and added
background to Eq. (2). Then, the dynamic structure factor
Scal(Q,ω) was written as follows:

Scal(Q,ω) = A(Q)R(Q,ω)

+
N∑
i

B(Q,�i)

[
R(Q,ω) ⊗ 1

π

(
�i

ω2 + �i
2

)]

+ background. (3)

The second term on the right side is multiplied by the coeffi-
cient �i , which is derived from discretization in logarithmic
space. B(Q,�i) can be calculated at individual Q.

The obtained B(Q,�i) is the simplest distribution involving
the least information, that is, maximizing information entropy,
among all distributions that sufficiently reproduce the given
experimental data within statistical errors. Distortion of the

solution by statistics errors, experimental errors, and limita-
tions of measurable range can be minimized in this method.
MEM is a general inference method based on the theory of
information entropy and provides a way to approach the inverse
problem. It is often applied in the fields of image processing
and signal processing. In addition, the MEM-Rietveld method
[5,6] has been performed for the past two decades to deduce
electron density distribution in x-ray scatterings and nuclear
density distribution in neutron scatterings.

In our MEM method, we introduce information entropy S

for the mode-distribution function as a measure of simpleness:

S = −
N∑
i

[
Xi ln

Xi

mi

+ mi − Xi

]
, (4)

where

Xi = �i

N∑
i

B(Q,�i), (5)

and mi is defined as the simplest distribution without any
information from experimental data. The entropy becomes
maximum at {Xi} = {mi}. We set mi to a constant value
as the highest entropy state for the information theory. The
reproducibility of the experimental data is measured by the χ2

statistic as follows:

F = χ2/2 − αS, (6)

where α is an undetermined positive coefficient that controls
how closely the solution fits the data. The solution is Xi to
minimize this quality factor at a specific α. The optimal α = α̂

is determined by

−2αS =
N∑
i

λi

α̂ + λi

, (7)

where λi is an eigenvalue of the Hessian operator ∂2χ2/∂Xi∂j .
This determination procedure in the MEM solution is called
classic MEM. The actual calculations were performed with
our in-house code that was composed for the present analyses.

III. GENERAL PROPERTIES OF MODE-DISTRIBUTION
ANALYSIS

To examine the validity of our analysis method, we applied
it to several types of modeled spectra assuming typical
relaxation modes. The mock spectra S(Q,ω) were obtained
in the range −6 to 6 meV as a constant Q function and were
convoluted by a Gaussian-type resolution function with a full
width at half maximum of 0.1 meV. Under these conditions,
QENS data obtained with a neutron incident energy of about
7 meV and a ratio of energy resolution to incident energy
of about 1.5% can be simulated. To be a realistic model, the
statistical error of neutron scattering described by the Poisson
distribution was added to the spectrum, supposing that 105
neutrons were counted in the entire range of the spectrum.

A. Case I: Single relaxation

First, we demonstrated the method by applying it to the
single relaxation derived from elemental motion as a typical
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FIG. 2. (Color online) (a) Dynamic structure factor S(Q,ω) and
(b) mode-distribution function B(Q,�) of a single relaxation mode
with narrower Gaussian-distributed relaxation time calculated using
Eq. (8) (h̄�0 = 0.3 meV, σ = 0.05). In (b), the original spectrum and
the analysis results are shown by dotted and solid lines, respectively.

relaxation model, where the relaxation time has Gaussian
distribution in logarithmic space. Under this supposition,
B(Q,�) multiplied by � is expressed as

�B(Q,�) = 1√
2πσ

exp

[
(ln � − ln �0)2

2σ 2

]
, (8)

where �0 is the peak position and σ is the standard deviation.
Figure 2(a) shows S(Q,ω), which was calculated by this
equation with h̄�0 = 0.3 meV and σ = 0.05. Figure 2(b)
shows the result obtained from the mode-distribution analysis.
In addition, the case of a wider mode distribution S(Q,ω),
with h̄�0 = 0.3 meV and σ = 0.2, was also demonstrated,
as shown in Fig. 3. Although, at a glance, we can not see
clear differences in S(Q,ω) between the narrower [Fig. 2(a)]
and wider [Fig. 3(a)] mode distributions, this method can
distinguish original widths, as seen in Figs. 2(b) and 3(b).

B. Case II: Slow and fast limitations

To examine the computable � range, we assume slow and
fast limit relaxations; the width of the slow limit relaxation is
narrower than the resolution’s width, and the width of the fast
limit relaxation is about the maximum energy of the spectrum.
B(Q,�) for slow and fast relaxations is represented in Eq. (8)
with h̄�0 = 0.02 meV, σ = 0.1 and with h̄�0 = 3 meV,
σ = 0.1, respectively. S(Q,ω) in this model and the result of
the analysis are shown in Fig. 4. The figure shows that the
analysis is quite possible in the range of this level, although
the reproducibility is lower than the result seen in Fig. 2.
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FIG. 3. (Color online) (a) Dynamic structure factor S(Q,ω) and
(b) mode-distribution function B(Q,�) of a single relaxation mode
with wider Gaussian-distributed relaxation time calculated using
Eq. (8) (h̄�0 = 0.3 meV, σ = 0.2). In (b), the original spectrum and
the analysis results are shown by dotted and solid lines, respectively.
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FIG. 4. (Color online) (a) Dynamic structure factor S(Q,ω) and
(b) mode-distribution function B(Q,�) of a model with slow and fast
limit motions represented by Eq. (8) (h̄�0 = 0.02 meV, σ = 0.1 and
h̄�0 = 3 meV, σ = 0.1, respectively). The solid line in inset of (a)
shows the resolution. In (b), the original spectrum and the analysis
results are shown by dotted and solid lines, respectively.

The reproducible � range must be from the slowest time
limit in the relaxation process at the resolution width to the
fastest limit at the maximum energy of the spectrum. In fact,
Fig. 4 shows that the analysis is quite possible in such a range,
although the reproducibility is fair, where B(Q,�) for the slow
relaxation of h̄�0 = 0.02 meV, σ = 0.1 and the fast relaxation
of h̄�0 = 3 meV, σ = 0.1 is verified.

C. Case III: Separation of modes

We mentioned that the number of modes in the dynamics
is obtained by our analysis method. There must be difficulties
in separating the two modes when they have similar relaxation
times. Figure 5 shows an example of two closely located
relaxation modes calculated by Eq. (8) with h̄�0 = 0.1 and
0.4 meV, where the modes could be separated surely. We
confirmed that the capability to separate two closely located
modes obviously depends on the statistics precision and the
energy range of the experimental data.

D. Case IV: Diffusion by the KWW function

In conventional QENS analysis, the Kohlrausch-Williams-
Watts (KWW) function is often utilized. In the space of the
intermediate scattering function, the KWW function represents

F (Q,t) = exp

[
−

(
t

τ

)β
]

, (9)
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FIG. 5. (Color online) (a) Dynamic structure factor S(Q,ω) and
(b) mode-distribution function B(Q,�) of a model with two closed
relaxation time modes represented by Eq. (8) (h̄�0 = 0.1 meV,
σ = 0.05 and h̄�0 = 0.4 meV, σ = 0.05). Solid line shows the fit
to S(Q,ω). In (b), the original spectrum and the analysis results are
shown by dotted and solid lines, respectively.
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FIG. 6. (Color online) (a) Dynamic structure factor S(Q,ω) of
models by the KWW function with τ = 5 ps and β = 0.9 (solid line),
0.7 (dotted line), and 0.5 (dashed line). (b)–(d) Mode-distribution
function B(Q,�)s of these models; (b) β = 0.9, (c) β = 0.7, and
(d) β = 0.5. In (b)–(d), the original spectrum and the analysis results
are shown by dotted and solid lines, respectively.

where β is an index of the stretched exponential. The Fourier
transform of this function is needed to calculate S(Q,ω). It
can be performed only by numerical integration because the
analytical results of the Fourier transform of this function
are not derived. In addition, the KWW function can be
described as an integral of exponential decay relaxations [7,8]
or B(Q,�) of this model can be directly transformed. Figure 6
shows S(Q,ω)s and B(Q,�)s with τ = 5 ps and β = 0.9,
0.7, and 0.5. As seen in this figure, B(Q,�)s of the KWW
function are asymmetric distributions with long tails on the
right side, and the distributions become wider with increasing
β. We applied the mode-distribution analysis to calculate
S(Q,ω)’s by the KWW function. The results of the analysis
are shown in Figs. 6(b)–6(d). The B(Q,�)s of the analysis
results consist of about three peaks broadened widely, but
roughly conforming to the transformed distributions. Because
the information entropy of the asymmetrically distributed
relaxation represented by the KWW function is low in our
analysis method, the reproducibility of the shapes is not so
good. The origin of the inability to reproduce B(Q,�) derived
from the KWW function may relate to a large difference in
the basic principle between our method and the relaxation by
the KWW function. Because our method is based on simple
exponential decay as a unit relaxation, motions represented by
the KWW function have low information entropy; that is, a
more informative state is difficult to reproduce properly in our
method.

IV. APPLICATION TO LIQUID WATER

A. Background

For the first application of the analysis method, we chose
liquid water as a typical sample for a QENS experiment.
Although water is a relatively simple material consisting of
H2O molecules, its diffusion is rather complicated. In partic-

ular, the local motions of water molecules still have not been
determined clearly. As for QENS, since the earliest studies in
the 1970s [9], many experiments have been conducted on water
and related materials to date, subsequently producing various
diffusion models of liquid water (e.g., the traditional multiple
exponential time-decay model [10,11], the translation-rotation
coupling of molecular motion [12,13], and the relaxing-cage
scheme [14]). The studies on this subject have been conducted
recently [15].

B. Experimental details

The QENS experiment on liquid water at ambient tem-
perature was conducted on AMATERAS, a cold-neutron disk
chopper spectrometer, installed at the spallation neutron source
of the Materials and Life Science Experimental Facility (MLF)
at J-PARC [16]. The sample was loaded into an aluminum
double-cylinder cell (wall of diameter 14 mm and thickness
0.3 mm). The weight of the sample was 0.6 g.

AMATERAS can perform multiple incident energy (multi-
Ei) measurements by repetition rate multiplication [17,18].
Therefore, one can simultaneously perform high-resolution
measurements with low Ei’s and wide energy-range measure-
ments with high Ei’s. Our analysis method is quite suitable
for such a measurement with wide time-scale relaxations. The
selected Ei’s in the present experiments are 1.68, 3.13, and
7.74 meV. The resolutions of those Ei’s were 17, 35, and
121 μeV, respectively. Under these conditions, time ranges
from 0.1 to 100 ps are accessible. Data acquisition time was 4 h
with J-PARC operation at a 120-kW proton-beam power. We
also measured a vanadium cylinder, 14 mm in diameter and
0.3 mm thick, as a standard sample for estimating constant
background and intensity corrections and for obtaining the
resolution function, which are required in our fittings.

C. Results

The data obtained after a series of corrections, such as
a background correction and an intensity correction among
different Ei’s, are shown in Fig. 7. Multiple scattering in the
data has also been corrected on the basis of a simulated multiple
scattering spectrum. The QENS spectrum for light liquid water
is mainly contributed by the self-diffusion of hydrogen atoms
because the light hydrogen atom has quite a large incoherent
scattering cross section (19 times larger than the total scattering
cross section of the oxygen atom). For Ei = 1.68, 3.13, and
7.74 meV, covered Q ranges of the data are 0.2–1.3 Å−1,
0.2–1.9 Å−1, and 0.3–3.0 Å−1, respectively. For each Q, we
used as much as possible data. Especially, in the range of
0.3 < Q < 1.9 Å−1, three spectra obtained by three different
Ei’s were fitted simultaneously to improve the precision and
reliability of the results in our analysis. The typical spectra
at Q = 1.0 Å−1 after the series of corrections are shown in
Fig. 8 with a fitted function. The obtained B(Q,�) has three
components as seen in Fig. 9. Each component may correspond
to water molecules with different diffusional motions of water
molecules. Hereafter, we call them slow, intermediate, and
fast components in the relaxation time axis on the left. Each
contribution to S(Q,ω) is also shown in Fig. 8 by dotted,
dashed, and dashed-dotted lines, respectively.
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(b) 3.13 meV, and (c) 7.74 meV. Colors represent the intensity of the QENS spectra. Sharp peaks at Q = 2.7 and 2.1 Å−1 at elastic
position are Bragg reflections from Al and subtracted in the fitting process.

A full picture of B(Q,�) is shown in Fig. 10. The Q

dependencies of the three components are clearly seen. These
peaks are substantially sharp, which indicates that relaxations
of these components are almost homogeneous. In other words,
each relaxation is an approximately simple relaxation. We
can characterize these peaks by their intensities (as shown
in Fig. 11) and peak positions.

The intensity of the slow component is relatively large in
all ranges of Q and decreases with increasing Q in a high-Q
region. The peak position of this component is strongly shifted
from small � to large � as Q increases in the middle-Q region
and is almost constant in the higher-Q region. Relatively higher
intensity in all Q regions and large Q dependence of the peak
position in the low-Q region indicate that the slow component
is related to a translational diffusion. Small Q dependence of
the peak position in the higher-Q region can be accounted
for by considering the motion as a series of jumps and not a
continuous translation.

On the other hand, the intensity of the fast component
increases with Q. This component can not be seen in a low-Q
region. The peak maintains almost the same � position. The
disappearance of intensity in a low-Q region indicates that
the fast component is a motion in a limited space. This motion
corresponds to a water molecule motion previously considered
to be rotational motion in early studies by the INS [11].

These two components have been reported in earlier
investigations on the diffusion of liquid water [11–13]. In the

current investigation, we found a third component, that is, an
intermediate component, which has not been reported so far.
The intensity of the intermediate component is weak and is
merged into the slow component in the range Q > 1.2 Å−1.
The peak position shows weak Q dependence. We will discuss
these three components in the next section.

D. Analysis and discussion of each component

1. Slow component

Translational diffusion of this component is considered to
be a series of jumps. The classical jump diffusion model is
suitable for this component. This model has also been used in
the analysis of the translational motion of water molecules in
earlier studies [11–13]. The model approximately represents a
motion of repeating jumps between distant places after some
residence time. Given a mean jump length L and a mean
residence time τ0, the diffusion coefficient D and � can be
described as

D = L2

6τ0
, (10)

� = DQ2

1 + DQ2τ0
. (11)

We analyze Q dependence of the peak position of the slow
component by fitting to this equation. Because the slow com-
ponent can not be separated from the intermediate component
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FIG. 8. (Color online) Measured spectra by multi-Ei and fitting results for H2O at RT and Q = 1.0 Å−1. Symbols are experimental data. (a),
(b), and (c) are spectra with Ei = 1.68, 3.14, and 7.74 meV, respectively. Thick solid lines are S(Q,ω) obtained by fitting with Eq. (3). Other lines
represent the contributions of slow components (dotted lines), intermediate components (dashed lines), and fast components (dashed-dotted
line). Thin solid lines are the resolution functions obtained by measuring the vanadium cylinder sample.
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in the high-Q range, we analyzed the slow component in
the range Q > 1.2 Å−1. In the results, we obtained a good
fitting, as shown in Fig. 12. The obtained parameters are
D = (2.27 ± 0.05) × 10−5 cm2 s−1, τ0 = 0.46 ± 0.10 ps, and
L = 0.79 ± 0.09 Å and are comparable with those obtained
in the earlier studies [11,15]. Therefore, the motion of this
component must be the same as the translational motion in the
conventional analyses.

2. Fast component

As we mentioned above, the fast component is due to a
motion in a limited space. Assuming that � is strictly constant,
the necessary and sufficient condition of the diffusion model
can be derived; that is, a model in which several sites (a few
sites or many sites) movable for the atom are relatively fixed
and the moving ratio per time between sites is dependent only
on the destination site and is independent of the departure site.
We propose two models that are derived by this condition.

The first is a model of a few fixed sites. In this model, a few
sites are available to the moving atom with the same distance.
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FIG. 10. (Color) Map of the intensity distribution of the Lorentz
function B(Q,�) from H2O at RT. Colors represent the intensity of
�B(Q,�).
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FIG. 11. (Color online) Intensities of individual components and
summations of some components; slow component (open circle), in-
termediate component (open square), fast component (open triangle),
sum of slow and intermediate components (filled circle), and sum of
all components (filled triangle). In the Q range larger than 1.1 Å−1,
the slow and intermediate components become one component. In
this range, its intensity is regarded as the sum of intensities of the two
components.

The particle, atom or molecule, jumps to the site after staying
at the other site for a certain interval. Residence time and jump
probability are also assumed to be constant in each site so that
relaxation times are the same for all destinations. In this first
model, � can be written as follows:

� = 2πNsite

t1
, (12)

where Nsite is the number of the site available to the jumping
atom and t1 is the residence time. As shown in this equation,
� is independent of Q. The elastic incoherent structure factor
(EISF) can be written as

IEISF(Q) = 1

Nsite
+

(
1 − 1

Nsite

)
j0(Qd), (13)

where d is the distance between the sites and j0 is the spherical
Bessel function of the first kind order 0. In our analysis,
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FIG. 12. (Color online) Average peak positions of slow (filled cir-
cle) and intermediate components (filled triangle). The open triangle
represents the difference between the intermediate component and the
slow component. The line is obtained by fitting the slow component
with the jump diffusion model, Eqs. (10) and (11).
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FIG. 13. (Color online) Q dependency of EISF, obtained from
the intensity ratio of the slow and intermediate components to the
total. The solid line is a fit by the fixed sites model [Eq. (13)],
the dotted line is a fit by the free jump region model [Eq. (14)],
and the dashed line is the EISF for a spherical surface of radius
0.98 Å, as in the Sears expansion [10].

EISF was regarded as the ratio of the sum of the intensities
between the slow and intermediate components to the total
intensity. In general, EISF represents the intensity ratio of the
elastic component to the total one. In the case the system
contains several motions as the present one, and when we
focus on the faster motion, we consider that the remaining
slower motions can be regarded as elastic component. By
fitting experimental data to Eq. (13) as shown in Fig. 13, Nsite

and d were determined to be 3.37 ± 0.47 and 1.007 ± 0.043 Å,
respectively. The obtained Nsite is reasonable for the dimension
of space and d is of the same order as the intermolecular
distance, considering the O-H distance of 0.99 Å in the
literature [19]. Therefore, this model is appropriate rather than
the standard rotational model by the Sears expansion [10].
From this result, the motion in this first model must be a
rotational motion that switches hydrogen bondings.

We propose another model to satisfy the condition of the �

constant, which is assumed to be an intermolecular motion
whereas the motion in the first model is a rotation of a
molecule. In this second model, atoms in a specific region
can jump freely within the same region. The number of sites is
meaningless. The destination site of the jump does not depend
on the departure site, and residence time and jump probability
are also constant and independent from the departure and
destination sites. When the free jump region is a single sphere
with a radius of R, the EISF can be written as

IEISF(Q) = 9 [sin(QR) − QR cos(QR)]2

(QR)6
. (14)

By fitting to Eq. (14), R was determined to be 0.766 ± 0.005 Å,
as shown in Fig. 13. This free jump region is similar to the
basin in the study of MD simulation [15]. We also consider
the model of the diffusion inside a sphere with impermeable
boundaries. In this model, EISF also follows Eq. (14), although
� deviates from a constant value in the high-Q range. In order
to clearly determine between the two models, a measurement
in higher-Q range. In both models, the radius of the confined
space is shorter than O-H distance of water molecules and the
motion is highly localized. We thought that this motion is like

a fluctuation without breaking the local correlation structure.
We thought that this second model approximates the actual
motion of the fast component better than the first model. In
our future studies, higher-Q data must allow us to validate the
two models.

3. Intermediate component

We consider two possibilities as a motion of the inter-
mediate component. The first is a translational motion of a
water molecule in different local surroundings from the case
of the slow component. The relaxation time of the motion is
simply calculated as the inverse of �. � of the peak position
of the intermediate component is shown in Fig. 12. The Q

dependence of � resembles that of translational motion, such
as the slow component. But, the intensity of the intermediate
component decreases with decreasing Q in contrast to the slow
component, as seen in Figs. 10 and 11.

The second possibility is an additional motion of the
atom during the motion of the slow component. In this
case, the relaxation time of the motion is calculated as the
inverse of the difference in � between the intermediate and
slow components. The difference in � at the peak position
between the intermediate and slow components is shown in
Fig. 12. Since the atom already participates in the translational
diffusion, which is described as the slow component, it is
unlikely that the intermediate component is attributed to
a long-distance diffusion motion. Therefore, � is possibly
almost constant in the low-Q range. Actually, in the present
results, one may think that gamma is almost constant in Fig. 12
except one point at the lowest Q. Therefore, to consider
the Q dependency of the intensity (as seen in Fig. 11), the
motion occurs in some confined space. If the fast component
is attributed to an intermolecular motion as just discussed
above, this intermediate component is more likely to be a
rotation of water molecules. We need to further investigate
this component.

V. DISCUSSION

As we have demonstrated above, by applying this analysis
method to liquid water data, we have revealed the existence
of an intermediate time-scale motion in water molecules.
Moreover, by separating the intermediate-range mode from the
spectrum, we could discuss two other motions more distinctly
than has been done before. The model-free analysis allows us
to reveal not only all diffusional aspects of new materials but
also a new fact about molecular motion in a basic material
such as water.

However, we must discuss here some MEM applications
that require careful consideration. One of the points requiring
care is the problem of peak separation in the results obtained
from MEM analysis. For example, the MEM result sometimes
shows only a single peak in the B(Q = const,�) profile,
although two isolated peaks exist at the same Q in the actual
B(Q,�). In Fig. 10, two peaks exist in the low-Q region
(0.3–1.1 Å−1) and they merge into a single peak at a higher
Q. This merging into a single peak arises discontinuously
at around 1.1–1.2 Å−1, although it might also appear more
smoothly in this system. These artificial phenomena are caused
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by the MEM analysis for B(Q = const,�) profiles that contain
closely located peaks.

On the other hand, the MEM result sometimes shows
multiple or isolated peaks in the Q region in the B(Q =
const,�) profile, although there is only a single peak in the Q

region in the actual B(Q = const,�) profile. In the case of a
very wide or an asymmetric peak such as the KWW function,
this phenomenon is common, as seen in Figs. 6(b)–6(d). Such
actual phenomena are also caused by MEM analysis, although
the origin is a substantial problem in “inverse transform” rather
than that in the MEM analysis. MEM operates to counteract
peak splitting by inverse transform. The appearance of such
an artificial phenomenon depends on measurement conditions
such as statistical precision and energy range. However, it
is difficult to eliminate the phenomenon by improving a
measurement condition. Therefore, to distinguish a reliable
result from an artificial phenomenon such as this, it is desirable
to judge whether the result is consistent after constructing
a contour map (such as Fig. 10) from consecutive Q data
measured under the same condition.

VI. CONCLUSION

The mode-distribution analysis method developed in this
study does not require a model for each material, unlike
conventional methods; therefore, in this sense, this method is
completely model free. For materials that have several modes,
their measurement data can be analyzed without making

any assumption about the number of modes. In addition,
we can access the distribution of relaxation time, which
can be important for characterizing the relaxation. For these
reasons, our analysis method is versatile and valuable to our
understanding of relaxation phenomena in materials.

Because neutron spectrometers have evolved in recent
years, QENS data over a wide Q-E space can be easily
obtained nowadays. Our analysis method could possibly
maximize the capability for exploring spectra in a wide Q-E
space, and it gave intuitive results for molecular and atomic
relaxations. QENS measurements on various other samples
could benefit from the use of this method; therefore, we plan
to continue to apply our method to other QENS studies. We will
also try to expand the time scale of the result by simultaneous
analysis of data from a few spectrometers and are considering
a comparison with simulated data. We are convinced that the
analysis method shown here will become one of the standards
of QENS data analysis.
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