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Analytical model of batch magnetophoretic separation
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Magnetophoresis (the motion of magnetic particles driven by the nonuniform magnetic field), that for a
long time has been used for extracting magnetically susceptible objects in diverse industries, now attracts
interest to develop more sophisticated microfluidic and batch techniques for separation and manipulation of
biological particles, and magnetically assisted absorption and catalysis in organic chemistry, biochemistry, and
petrochemistry. A deficiency of magnetic separation science is the lack of simple analytical models imitating real
processes of magnetic separation. We have studied the motion of superparamagnetic (generally, soft magnetic)
particles in liquid in the three-dimensional field of the diametrically polarized permanent cylindrical magnet; this
geometry is basically representative of the batch separation mode. In the limit of the infinite-length magnet, we
found the particle magnetophoresis proceeds independently of the magnet polarization direction, following the
simple analytical relation incorporating all the relevant physical and geometrical parameters of the particle-magnet
system. In experiments with a finite-length magnet we have shown applicability of the developed theory as to
analyze the performance of the real batch separation systems in the noncooperative mode, and finally, we have
presented an example of such analysis for the case of immunomagnetic cell separation and developed a criterion
of the model limitation imposed by the magnetic aggregation of particles.
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I. INTRODUCTION

Simple by nature, the idea of magnetic separation, the use
of which has been known for decades in diverse industries
[1], nowadays arouses wide interest integrating with modern
sophisticated, primarily biomedical, technologies. Is seems
that the germination of new approaches in the field of magnetic
separation is marked by introducing two concepts. First is the
concept of high-gradient magnetic separation [2,3], proposed
in the search for magnetic monopole, and second, the concept
of magnetic particle functionalization (for magnetic control of
cell separation [4] and biocatalysis [5]). A vast amount
of publications in this field is necessitated by the variety
of realized and potential applications and by the complex na-
ture of the problem related with various branches of chemistry,
biology, physics, and engineering. There are several reviews
analyzing recent advances in magnetic separation as whole
[6,7], and also in its different branches including traditional
(glass and ceramic production [8], water purification [9],
food processing [10]), and novel applications such as im-
munomagnetic cell separation [11,12], analytical biochemistry
[13,14], and organic synthesis [15]. Chemical and biochemical
laboratories have proposed a wide spectrum of functionalized
magnetic carriers intended for separation and manipulation
of biological particles (cells, proteins, amino acids) [11–14],
and magnetically assisted absorption [16,17] and catalysis in
organic chemistry [18–20], biochemistry [21], and even petro-
chemistry [22]. A distinct area is composed of a few studies of
the old but still attractive idea of direct (label-free) magnetic
separation of submagnetic microparticles, primarily biological
particles, using differences between magnetic susceptibility of
the particles and the liquid carrier [23–31].
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The scope of problems relating to the applied physics is
wide. In the field of label-free separation of submagnetic
microparticles and cells from liquid we indicate research
and development of magnetophoretic measuring methods for
determining individual magnetic characteristics of particles
[32–34] and studies of the diamagnetic separation mode
[35–38], the effectiveness of which can be dramatically
enhanced [39–43] by employing, in the capacity of liquid
carrier, the stable magnetic colloids (magnetic fluids [44,45])
having incomparably stronger magnetic susceptibility than
ordinary liquids. Moreover, magnetic fluids have relatively
slow magnetic relaxation, the rate of which is limited by the
rotation of colloidal magnetic particles in viscous carrier [44].
This dramatically changes the character of interaction with
magnetic fields of both magnetic fluids [44,46] and suspended
nonmagnetic particles [47]. The symmetry of the Maxwell
stress tensor is violated, the electrodynamic bulk torque and the
dissipative addition to the bulk electrodynamic force appear,
and nonmagnetic particles acquire regular internal rotation. A
complicated combination of these factors was found to create
new possibilities for magnetic manipulation of nonmagnetic
particles [48–50]. Also, magnetic separation, with its specific
problems, calls for reexamination of the cooperative behavior
of the systems of interacting magnetic particles, which for
decades have been an important issue of the above mentioned
magnetic fluids and magnetorheological suspensions [51,52].
In magnetic fluids, the size of magnetic nanoparticles is
limited from above to prevent aggregation [45], and the
long-range particle-particle magnetic interactions may affect
their macroscopic properties either at the local level (via
formation of chains [53,54]), or at the thermodynamic level.
The latter manifests itself in the magnetic fluid separation
into dilute and concentrated phases [55–58] and anisotropy of
the particle mass diffusion [59–61]. In the case of magnetic
separation, it may be desirable to increase the active specific
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surface of particles. This suggests decreasing of the particle
size, and hence, the driven magnetic force. When estimated for
an isolated particle, magnetic separation of particles smaller
than 50 nm appears impractical [62]. But magnetically induced
aggregation of unstabilized (in contrary to magnetic fluids)
magnetic nanoparticles makes it possible, with the use of
rather moderate magnetic field gradients, to extract from
liquid even much smaller (∼12 nm) particles [63]. Magnetic
aggregation can accelerate the batch separation 100-fold
[64,65]. Cooperativity also may be important in separation
of nonmagnetic particles in magnetic fluids. In the case of
uniform magnetic fields, cooperativity was studied long ago
[66], and was found strong enough to considerably influence
the magnetic fluid/nonmagnetic particle system fluidity in
magnetic fields [67,68].

Theoretical studies have always been an important ingre-
dient of magnetic separation science, providing practically
useful patterns of relationship between the process char-
acteristics and physical and geometrical properties of the
separation systems. As can be seen from recent overviews
[69,70] of magnetic separation models, as well as from
recent theoretical studies of particular systems [65,71–74],
the behavioral complexity due to magnetic (and to some
extend hydrodynamic [34]) interactions of particles is widely
recognized, but the dominant approach since the early studies
[1,75–79] remains noncooperative, relying on calculations of
single-particle motion under given magnetic and hydrody-
namic conditions. Basically a different (continuous) approach
is under development to account for the thermal diffusion
influential in the case of colloidal magnetic nanoparticles
[80,81]. The proposed model is also noncooperative by
nature, and is applicable to very dilute systems, as far as
it takes the Stokes-Einstein diffusion constant for the mass
diffusion coefficient and ignores the coupling between the
volume distribution of particles and that of the magnetic
field intensity, due to which the particle mass diffusivity in
magnetic field becomes anisotropic and dependent upon the
field intensity even in ideally stable magnetic colloids [59,60],
let alone the particle chaining. In most cases, quantification
of even single-particle behavior in real systems involves
numerical simulations, which, considering the multiplicity
of involved physical and geometrical parameters, are not
very suitable for the system optimization [82]. Analysis
can be simplified with the use of magnetic field sources
having analytical representation. Magnetized by the uniform
external field cylindrical wire is a classical model for magnetic
trapping studies. Recently, more complex but still analytically
representable magnetic fields have been employed created by
systems of either externally magnetized or permanent-magnet
rectangular rods [43,72,83–86]. Still, the magnetic field is
rather complicated which excludes the possibility of deriving
analytical description imitating real separation systems. More
simplification should be employed to obtain such results. The
lack of analytical solutions as an essential drawback of the
magnetic separation science was recently cited to develop an
analytical single-particle model of batch magnetic separation
in the uniform magnetic field gradient [65].

Here we study magnetophoresis and magnetic separation in
the three-dimensional nonuniform field created by a diametri-
cally magnetized permanent cylindrical magnet. We consider

this geometry the basic one, embodying key characteristics of
the typical batch immunomagnetic columns consisting of the
set of a transversely magnetized rod and the adjacent container
with the suspension to be separated. As for any permanent
magnet, magnetic field distribution around the cylindrical one
is rather complicated. Still, there is an encouraging advantage,
determining the methodological importance of this geometry.
Namely, in the limiting case of infinite length, a diametrically
polarized cylindrical magnet creates the field with a simple
analytical presentation. So the first issue of our studies is
magnetophoresis of a single magnetic particle in this field. We
will show that for the case of superparamagnetic (in general,
soft magnetic) particle, the driving magnetic force around the
permanent diametrically polarized cylindrical magnet does not
depend on the magnet polarization direction. This fact, which
seems to have never been appreciated in the relevant literature,
has important consequences. It implies that the motion (and
hence, separation) of magnetically noninteracting particles
proceeds homogeneously from any direction. Furthermore, the
problem of the particle magnetophoresis turns out to be one
dimensional. Under reasonable assumptions, this problem has
a simple analytical solution, which incorporates all the relevant
physical and geometrical parameters of the particle-magnet
system.

To clarify the relevance of the developed model as to
finite-length magnets, we perform experiments with a single
magnetic particle at different sites near a cylindrical magnet
with a length to diameter ratio typical for applications. On
establishing reasonable relevance, we apply the developed
model to analyze some performance characteristics of the
immunomagnetic batch system constituted by a cylindrical
magnet and adjacent cylindrical vessel. Considering the lim-
itation imposed upon the developed single-particle model by
the possible magnetic chaining in real magnetic columns, we
introduce a simple dynamic criterion based upon comparing
the time of full separation with the time of the magnetic
chaining initiation.

II. SINGLE-PARTICLE MAGNETOPHORESIS

A. Analytical model: Magnetophoresis near
the infinite-length magnet

We consider a diametrically polarized cylindrical magnet of
infinite length with radius Rm and with uniform magnetization
Im along the unit vector e. The magnetic field intensity H
around such a magnet does not vary along the magnet axis,
and in the transverse plane is given by the relation

H = −2πImR2
m

R2

[
e − 2

R2
(e · R)R

]
. (1)

Here R is the radius vector drawn in the transverse plane
from the magnet axis to the referring point. Equation (1)
can be obtained as follows. Inside the uniformly magnetized
cylinder there exist the uniform demagnetizing self-field Hi =
−2πIme (which follows from the well-known uniformity of
the demagnetizing field of the uniformly magnetized body
with quadric surface [87]) and its scalar magnetic potential
ψi = 2πIm(e · R). The magnetic potential of the outer field,
that satisfies the Laplace equation �ψ = 0 and coincides
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with ψi at the cylinder boundary is given by the relation
ψ = 2πImR2

mR−2(e · R), from which Eq. (1) follows.
According to the continuous media electrodynamics

[87], in a nonuniform magnetic field, a body of any magnetic
complexity with the total magnetic moment M, given the size
of the body is small as compared to the scale of the field
nonuniformity (here, the magnet radius), is acted upon by the
magnetic force,

F = (M · ∇) H. (2)

Equation (2) is valid for any small object to be magnetically
separated, including cells labeled by magnetic beads with the
total magnetic moment M. Let us denote the whole object as
“particle,” and its magnetizable part as “magnetic carrier.” The
basic assumption of our consideration is that the total moment
M of the magnetic carrier is a single-valued function of the
applied magnetic field, which we write as follows:

M(H) = M(H )H/H, M(H ) = Msf (H ), Ms = IsVc.

(3)

Here Is is the magnetic carrier saturation magnetization,
Vc its volume. Note that Eq. (3) suggests alignment of
magnetic moment M in the field direction, which obviously
holds for any isolated particle in liquid. But the single-
valuedness of magnetization function f (H ) excludes particles
with magnetic hysteresis, retaining soft magnetic (including
superparamagnetic) particles. Now, with the use of Eq. (3) and
the magnetostatic equation rotH = 0, we reduce Eq. (2) to the
form

F = Msf (H )∇H, (4)

which shows, that under assumption (3), the driving magnetic
force is related with the field intensity only through the vector
H magnitude. Further, addressing Eq. (1) we find that in the
case of an infinite-length diametrically polarized permanent
cylindrical magnet, the spatial distribution of magnetic field
magnitude is axially symmetric, and is given by the following
simple function of the distance to the magnet axis:

H = 2πImR2
m

R2
. (5)

Equation (5) allows us to write down the driving magnetic
force (4) as follows:

F = −4πImR2
mMsf [H (R)]R−4R. (6)

This result implies that magnetophoresis, and hence, magnetic
extraction of soft magnetic particles by the infinite-length
diametrically polarized cylindrical magnet does not depend on
the magnet polarization direction. The particles are attracted
towards the magnet axis equally from all directions. To
completely quantify the driving magnetic force (6) we have
to specify magnetization function f (H ). Remind that the
quantity H in Eq. (6) stands for the external magnetic field
intensity. This means that if proceeding from the magnetization
law of the magnetic carrier material, we have to take into
consideration its demagnetizing field. Otherwise, function
f (H ) can be obtained experimentally, from the magnetization
curve, J (H ), of a dilute (preferably solid) suspension of
magnetic carrier particles. Given that all carrier particles are

FIG. 1. Magnetization curve of the particle material (dispersion
of magnetite nanoparticles in plasticine).

of the same shape and magnetic material, we can relate the
sought function f (H ) with the measured function J (H ) as
follows:

J (H ) = Jsf (H ), Js = cIs. (7)

Here c stands for the volume fraction of the carrier particles
in the suspension; Js is the suspension saturation magneti-
zation. As one more assumption, we represent the suspension
magnetization function J (H ) by the following simple relation,
incorporating only two basic magnetic characteristics of soft
magnetic materials, the initial magnetic susceptibility χ , and
the saturation magnetization Js :

J (H ) = Js

(
1 + Js

χH

)−1

. (8)

This relation is known as the Fröhlich-Kennelly law primarily
introduced to approximate magnetization of ferromagnetic
materials near saturation [90]. Equation (8) gives correct val-
ues of magnetization on the linear section of the magnetization
curve and in the saturating fields, and agreeably approximates
magnetization in the intermediate fields. This statement is
supported below in Sec. II B (Fig. 1).

Using Eqs. (7) and (8) we write down the magnetization
function in the form

f (H ) =
(

1 + Js

χH

)−1

≡
(

1 + Is

χcH

)−1

. (9)

The identity in Eq. (9) is written under the assumption that
both the saturation magnetization and the initial magnetic
susceptibility of the suspension are proportional to the volume
fraction of carrier particles, χc = χ/c, standing for the initial
susceptibility of a single carrier particle (magnetic bead).

Now, on substituting Eqs. (9) and (5) in Eq. (6) we arrive at
the following representation for the magnetic force that affects
the particle around the infinite-length cylindrical magnet:

F = −4πImR2
mMs

R3

(
1 + Is

2πχcIm

R2

R2
m

)−1

. (10)

Using the final assumption, namely, remaining within the
inertialess approximation, we obtain the equation of particle
motion in liquid from the condition of compensation of
the above magnetic force and the force of viscous friction,
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−3ηdh(dR/dt), in the form

dR

dt
= −4πImR2

mMs

3ηdh

1

R3

(
1 + Is

2πχcIm

R2

R2
m

)−1

. (11)

Here η stands for the liquid viscosity; dh is the particle effective
(hydrodynamic) diameter.

Equation (11) is integrable in explicit form, and its solution
with the initial condition R|t=0 = R0 can be presented as
follows:

t = ηdh

16πI 2
mχcR4

mVc

(
R6

0 − R6
) + 3ηdh

16ImR2
mIsVc

(
R4

0 − R4
)
.

(12)

It determines the time interval t it takes the particle to
move along the radial direction from the distance R0 to the
distance R (from the magnet axis). A special case arises when
the magnetic field is large enough to magnetically saturate the
magnetic carrier over the entire volume of the container. In
this case, the bracketed term in Eq. (11) is unity, and instead
of Eq. (12) we arrive at

t = 3ηdh

16ImR2
mIsVc

(
R4

0 − R4) . (13)

Equation (12) allows simple calculation of the performance
characteristics of batch magnetic separation systems with all
physical and geometrical properties accounted for, with the
exception of the finite length of magnets in real systems. The
relevance of the obtained simple solution as to the real systems
could be studied numerically. But we choose a more illustrative
experimental method.

B. Experimental: Particle motion near the finite-length magnet

In experiments we used a cylindrical diametrically po-
larized NdFeB (N45) magnet with the length L = 80 mm,
the radius Rm = 7.5 mm, and the remanent magnetization
Im = 1070 emu/cm3. The single spherical magnetic particle
of rather large diameter (d = 2.3 mm) was used, made by
hand from a plasticine of density 1.05 g/sm3 with dispersed
superparamagnetic (∼10 nm) magnetite particles, obtained
by evaporation of a stable magnetic fluid. The magnetization
law of the used particle material, measured by a homemade
vibrating sample magnetometer and approximated by Eq. (8),
is presented in Fig. 1.

From these data we find the saturation magnetization Is =
8.62 emu/cm3, and the initial magnetic susceptibility χ =
0.016. The initial magnetic susceptibility of the particle, χc =
0.015, was calculated with account for the demagnetizing field
of sphere from the relation χc = χ (1 + 4πχ/3)−1.

The particle was placed in the middle of the 10-mm-thick
layer of a very viscous (η = 660 P) polymethylsiloxane liquid
put in a cylindrical container. The particle motion occurring on
bringing the container in contact with the magnet was recorded
by a video camera. The motion was investigated starting from
three different vertical positions, z = 0,L/4,L/2 (along the
magnet axis), and three different azimuthal positions, ϕ =
0,π/4,π/2 (with respect to the magnet polarization direction),
as depicted in Fig. 2.

First of all, it should be noted that in all cases we did not
observe any azimuthal motion of the particle, which traveled

FIG. 2. The particle motion in liquid was recorded from above,
starting from three different vertical positions z = L/2, L/4, and 0
along the magnet axis and three different azimuthal positions ϕ = 0,
π/4, and π/2 with respect to the magnet polarization direction e.

straight to the magnet axis. At the same time, some elevation
of the particle, on approaching the magnet, was registered in
experiments at the magnet lower end. The set of time-varying
positions of the moving particle for each case was established
by handling the set of successive video frames. The results
of measurements are dotted in Fig. 3 in the form of function
t(R0), relating the particle travel time t to the final position
at the inner wall of the container (R = 0.965 cm) with its
initial position R0 (from the magnet axis). Solid curves in
Figs. 3(a)–3(c) depict the analytical function

t = 3η

8π2I 2
mχcR4

md2

(
R6

0 − R6
) + 9η

8πImR2
mIsd2

(
R4

0 − R4
)
,

(14)

which follows from Eq. (12) in the considered case of the
particle with the hydrodynamic diameter equal to the physical
diameter d, and Vc = πd3/6.

It can be seen that in the near-magnet zone (within the
distance from the magnet surface equal to one and a half of the
magnet radius) the measured time of the particle separation
practically does not depend on the particle’s both vertical
and azimuthal positions and is closely fitted by the calculated
function (14). Moreover, a significant increment [as compared
to the function (14)] of the separation time is registered only
at the direction normal to the magnet polarization direction
at the magnet end. It seems that the model of infinite-length
magnet may serve as the reasonable instrument for practical
calculations within cylindrical volume at one diameter distance
from the magnet ends and one diameter distance from the
magnet lateral surface.

In conclusion of this section let us support the compliance
of the above experimental conditions with the hydrodynamic
model assumptions. The inertial forces can be neglected
indeed, as far as the Reynolds number, Re = ρvd/η, at the pick
registered particle velocity v ≈ 0.1 cm/s (near the magnet)
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FIG. 3. The time of the particle magnetophoretic transition from
relative distance R0/Rm (with respect to the magnet axis) down to
the container wall measured at different sites around the cylindrical
magnet (see Fig. 2). (a), (b), and (c) correspond to different vertical
positions: z = L/2, L/4, and 0 respectively; points 1, 2, and 3, to
different azimuthal positions, ϕ = 0, π/4, and π/2, respectively.

in the liquid with density ρ = 0.96 g/cm3, and viscosity
η = 660 P is of the order 10−5. The velocity of the gravitational
motion of the particle with density 1.12 g/cm3 (with account
of the dispersed magnetite) in the used liquid is estimated as
∼8 × 10−7 cm/s, so that the biggest gravitational drift in the
longest of the performed experiments (t = 120 s) is of about
10−3 mm.

III. APPLICATION TO ANALYZE A BATCH
MAGNETIC COLUMN PERFORMANCE

Consider a widespread scheme of immunomagnetic sep-
aration, namely, precipitation of labeled cells on the lateral
surface of a vertical test tube in the nonuniform magnetic
field created by a transversally magnetized rodlike permanent

magnet positioned right up against the tube. The first practical
implication of our studies is that in the case of a cylindrical
magnet, it is possible to use several tubes set regularly around
the magnet. Let us apply the developed theory to find the
optimal radius of the magnet when the radius of the tubes,
Rc, is chosen. By “optimum” we mean such a magnet which
ensures the minimum separation time in a given tube. Quite
realistically, we can disregard the tube wall thickness and
accept this time as equal to the pass time of a labeled cell
between the farthermost, R0 = Rm + 2Rc, and the nearest,
R = Rm, points of the tube. Consider first the limiting case
of magnetically saturated beads. Proceeding from Eq. (13) we
write the corresponding separation time in the form

Ts = 3ηdh

2MsIm

[
RcRm + 3R2

c + 4
R3

c

Rm

+ 2
R4

c

R2
m

]
. (15)

For the optimum magnet radius, from condition ∂Ts/∂Rm = 0,
we find the equation

1 − 4 (Rc/Rm)2 − 4 (Rc/Rm)3 = 0.

Kordano’s solution of this equation gives Rm ≈ 2.38Rc.
Therefore, in the magnetically saturated system, the fastest
separation occurs when the magnet is almost two and a half
times bigger in diameter than the container, and the separation
time at this condition is given by the relation

T min
s = 11.1ηdhR

2
c

MsIm

. (16)

In the general case, from Eq. (12), the separation time is given
by the relation

T = 3ηdhR
2
c

2MsIm

×
[

3 + 5k + (k + 1)

(
Rc

Rm

)−1

+
(

40

3
k + 4

)
Rc

Rm

+ (20k + 2)

(
Rc

Rm

)2

+ 16k

(
Rc

Rm

)3

+ 16

3
k

(
Rc

Rm

)6
]

. (17)

Here the dimensionless value

k = Is

2πχcIm

(18)

is introduced composed of the magnetic characteristics of the
beads and the magnet. Note that Eq. (15) is the limiting form of
Eq. (17) given k → 0. So parameter k represents the effect of
incomplete magnetization of beads. For the optimum magnet
radius from Eq. (17) it follows

k + 1 −
(

40

3
k + 4

)(
Rc

Rm

)2

− (40k + 4)

(
Rc

Rm

)3

− 48k

(
Rc

Rm

)4

− 64

3
k

(
Rc

Rm

)5

= 0. (19)

Equation (19) determines the optimum ratio Rm/Rc as a
function of the beads’ magnetic unsaturation parameter k.
Numerically found, this function is depicted in Fig. 4. For
the system used in the above experiments (the NdFeB magnet
with remanent magnetization Im = 1070 emu/cm3 and the
superparamagnetic filler of beads with Is/χc = 575 emu/cm3)
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FIG. 4. The optimum magnet to container radii ratio vs the
magnetic unsaturation parameter.

Eq. (18) yields k = 0.085, and from Fig. 4 the optimum magnet
radius Rm = 2.78Rc. In such a case, the most distant position
of separated particles from the magnet axis (R = Rm + 2Rc =
1.72Rm) is inside the area where our model works well (Fig. 3).

It is worth noticing that for beads with superparamagnetic
filler, the ratio Is/χc, and hence parameter k, should depend
on the filler volume fraction just slightly, increasing due to
the filler particles’ magnetic interactions and the bead demag-
netizing field. Neglecting these factors, from the Langevin
magnetization law of filler we have Is/χ = 3kBθ/m, and
hence k = 3kBθ/(2πmIm), kB being the Boltzmann constant,
θ the temperature, and m the magnetic moment of the super-
paramagnetic nanoparticles of the filler. That is, the magnetic
moment m is the only characteristic of the magnetic filler
involved with the magnetic unsaturation parameter k. Consider
now how the deviations of the system from the magnetic
saturation and from the optimum ratio Rm/Rc influence the
separation time. As it follows from Eqs. (16) and (17), and
is illustrated in Fig. 5, the relative separation time, T/T min

s ,
depends on just two nondimensional system parameters, the
relative magnet radius, Rm/Rc, and the magnetic unsaturation
parameter k. As seen, with the magnet radius increment over

FIG. 5. The relative separation time vs the relative magnet radius
for different magnetic unsaturation parameters: k = 0, 0.05, 0.1, and
0.2.

its optimum (minimizing the separation time for a given k)
value, the separation time grows slowly. With the decrease of
the magnet radius, the separation time grows rapidly. From the
data of Fig. 5 we can conclude, that for systems with k < 0.1,
the magnet diameter should not be smaller than that of the
container.

Now let us consider the properties of magnetic beads
for the batch immunomagnetic cell separation. Under proper
conditions, the separation time, as follows from Eq. (16),
is inversely proportional to the total magnetic moment of
conjugated beads. With the other involved parameters being
more or less restricted, and the separation time of a reasonable
value, Eq. (16) allows simple estimation of the minimum
necessary magnetic moment Mmin

s . Given the test tube radius
Rc = 0.5 cm, the cell hydrodynamic diameter dh = 10 μm,
the magnet magnetization Im = 1000 emu/cm3, the liquid
viscosity η = 0.01 P, and the desirable separation time T min

S =
600 s, Eq. (16) yields Mmin

s = 4.63 × 10−11 emu. Due to the
high cost of antibodies, it is best if a cell can be extracted
by a single bead, as small as possible. The latter suggests, by
the way, that the beads preferably should be monodisperse.
The minimum diameter dmin of such a bead is defined by the
relation Mmin

s = (π/6)Ispmcspmd3
min where cspm is the volume

content of superparamagnetic material in beads, and Ispm is its
saturation magnetization. The above estimate of Mmin

s implies
that the diameter of beads for the batch immunomagnetic
separation of cells cannot be too small. Even for the hypothetic
content cspm = 1 of the typical magnetic material (magnetite,
Ispm = 500 emu/cm3) we find dmin = 0.56 μm. More realistic
content cspm = 0.5 gives dmin = 0.71 μm, more typical cspm =
0.1 requires dmin = 1.2 μm, and poor 1% content suggests
dmin = 2.6 μm.

One more remark is about the possible influence that
magnetic interaction between thus big magnetic beads exerts
on the extraction of labeled cells. There exist numerous studies
of magnetic structuring of both nanosized and micron-sized
magnetic particles in relation to magnetic and magnetorheo-
logical fluids. Recently, as was mentioned in the Introduction,
this problem attracted attention in magnetic separation studies
as well. In this regard we should say that there is not quite ap-
preciated fundamental difference between separation systems
and those considered in magnetic fluids. Namely, a magnetic
separation system never exists in stationary conditions. It is
known [68], that given enough time, non-Brownian magnetic
particles would build chains of any length. This is valid for the
above considered beads for immunomagnetic separation. To
estimate the possibility of chaining to influence the considered
separation it would be not appropriate to apply either the
recently proposed criterion [88] or the much older statistical
results [53,54], as far as they have been obtained for stationary
Brownian systems. The proper criterion can be derived by
answering the question whether or not magnetic chains appear
before the separation is completed. A simple but quite reliable
answer may be found by comparing the above calculated
separation time with the characteristic initiation time of the
chaining. The latter can be estimated as the approaching time
of two labeled cells, the initial distance between the centers of
the cells being equal to the characteristic distance r0 = n−1/3

determined by the concentration number n of target cells. In
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the conditions most favorable for chaining (the pair of beads
is aligned along the vector of magnetic field) the approaching
of cells is governed by the equation [89]

dr

dt
= − 4M2

s

r4πηdh

, (20)

which represents the balance of the magnetic dipole force, and
that of viscous friction. From Eq. (20) it is easy to find that the
time interval it takes the cells to come into contact is given by
the relation

tP = πηdh

20M2
s

(
n−5/3 − d5

h

) ≈ πηdh

20M2
s

n−5/3. (21)

Now, the dynamic criterion allowing us to neglect the chaining
effects in the magnetic separation column can be written in the
form of the following relation:

tp

T min
s

= 0.014Im

MsRcn5/3
> 1. (22)

Note that both the cell size and the liquid viscosity are
not involved in the chaining-imposed limitation (22), so this
result can also be applied for any batch magnetic separation,
say, in relation with chemical and biochemical reactors. As for
the above considered optimum immunomagnetic separation
system, it follows from Eq. (22) that the effect of chaining can
be neglected up to the target cell concentration n = 1.14 ×
107 s m−3. It is quite an appreciable number concentration
for extraction of rare cells. We expect that the relation (22),

obtained disregarding the different-velocity motion of particles
towards the magnet, in fact overrates the role of chaining.

IV. CONCLUSION

In this study, under reasonable simplifications, an ana-
lytical solution is derived describing noncooperative magne-
tophoretic separation of soft magnetic (including superparam-
agnetic) particles from liquid in the field of a diametrically
polarized permanent cylindrical magnet of infinite length.
Experiments with a finite-length magnet demonstrated that
this solution is applicable to analyze real systems apart from
the magnet ends. Our application of the model as to the
magnetic separation column consisting of a cylindrical magnet
and adjacent cylindrical container(s) has disclosed the relation
of the main performance characteristic of the system, the total
separation time, with all the relevant geometrical and physical
parameters, including characteristics of superparamagnetic
particles dispersed in immunomagnetic beads. We propose a
dynamic criterion of the model limitation due to magnetic
aggregation of particles, which is based upon comparing
the time of full separation with the initiation time of the
particle chaining. We believe that our findings are of utility for
analyzing and designing batch systems with different shape of
magnets, as well as a starting point for studying complications
connected with the magnetic interaction of particles and with
the hydrodynamic drag of unlabeled cells by the moving
labeled cells [90].
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