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Reentrant miscibility in two-dimensional symmetrical mixtures
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The Monte Carlo simulation method in the grand canonical ensemble is used to study the phase behavior of
two-dimensional symmetrical binary mixtures of Lennard-Jones particles with negative nonadditivity and the
weaker interaction between the pairs of unlike than between the pairs of like particles. We have determined the
evolution of the phase diagram topology when the parameters describing the interaction between unlike particles
vary. It has been found that such systems may exhibit reentrant miscibility in the liquid and the solid phases.
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I. INTRODUCTION

Demixing transitions and miscibility gaps are very common
in multicomponent systems. Demixing transitions may be
driven by cohesive forces or by entropy [1]. The first situation
usually occurs in simple systems containing components of
comparable size, while entropy-driven demixing occurs when
the components considerably differ in size. The simplest model
system exhibiting entropy-driven phase separation is a binary
nonadditive hard sphere mixture [2–4]. Here, we are rather
interested in the systems that undergo demixing transitions
due to interplay of entropic and energetic effects. Therefore,
we consider the a simple model of nonadditive symmetrical
mixture involving repulsive and attractive interactions. The
pure components exhibit the existence of gas, liquid, and solid
phases, so that the mixture may also form such phases.

A model of symmetrical binary mixture (SBM) assumes
that interactions between like particles (A-A and B-B) are the
same, while the interaction between unlike particles (A-B)
is different [1]. Uniform, three- and two-dimensional SBMs
have been studied using different theoretical approaches and
computer simulation methods [5–25]. It has been demonstrated
that this simple model exhibits surprisingly rich phase behavior
and leads to different phase diagram topologies [10,25], pri-
marily depending on the interaction between unlike particles.
In particular, the liquid phase has been found to phase separate
when the interaction between the unlike pairs is weaker than
the interaction between the like pairs. Usually, the demixing
transition is of first order at low temperatures, when the
demixed liquid coexists with a dilute vapor, and continuous at
high temperatures. The onset of continuous phase separation
may occur at the tricritical point (Ttrc), which replaces the
gas-liquid critical point, or at the critical end point (Tcep) at the
liquid side of the gas-liquid coexistence below the gas-liquid
critical point. At the temperatures above Ttrc or Tcep, the
demixing transition occurs along the line of consolute points
Tλ(ρ) (ρ being the total density of the fluid), i.e., along the
so-called λ-line.

It has recently been shown [24,25] that in the case of two-
dimensional SBMs of Lennard-Jones particles, the slope of λ

line [δλ,ρ = dTλ(ρ)/dρ] strongly depends on the geometrical
nonadditivity s = 2σAB/(σAA + σBB) − 1 and leads to quite
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complex phase behavior when one takes into account the
liquid-solid transition. In particular, it has been demonstrated
that when s is considerably larger than zero (e.g., s = 0.24), the
slope δλ,ρ is larger than the slope of the freezing line, i.e., the
density derivative of the liquid-solid coexistence temperature
at the liquid side (δf ). In such cases, the λ line does not
meet the liquid-solid coexistence and the solid is demixed
up to high temperatures. On the other hand, it has been found
that for s = 0, the slope δλ,ρ is lower than δf and the λ line,
which starts at the tricritical point or at the lower critical end
point (Tl,cep), meets the liquid-solid coexistence at the upper
critical end point (Tu,cep), leading to the phase diagram as that
depicted in Fig. 4 of Ref. [25]. In such cases, the solid phase is
demixed at low temperatures and mixed at high temperatures.
The demixing transition in the solid begins at the critical end
point located at the solid side of the liquid-solid coexistence
(Tcep,sol) at the temperature above the upper critical end point
of the liquid demixing transition. These different scenarios are
closely related to the packing effects and the changes of the
liquid phase structure when the parameter s changes.

Another interesting problem involves the possibility of
closed-loop immiscibility in mixtures with spherical interac-
tions. It has been commonly accepted for a long time that
this sort of behavior results from the presence of strong
orientational interactions [26–28]. Some time ago, Lopes [29]
performed computer simulation that demonstrated closed-loop
immiscibility in the mixtures with isotropic interactions, if the
range of interaction between unlike particles is shorter than
the interaction between like species. Then, Almarza et al. [30]
showed that the SBMs with the square well pair potential and
negative nonadditivity (s < 0) also exhibited a closed-loop
immiscibility, so that the phase diagram of class VI [31], not
obtainable within the framework of van der Waals theory,
appeared. Their results, based on the perturbation theory of
Barker and Henderson [32] and Monte Carlo simulation in
the semigrand canonical ensemble [33], have demonstrated
that reentrant miscibility occurs over a certain range of s < 0
and again only when the AB attractive interaction (εAB) is of
shorter range and stronger than the attraction between the pairs
of like particles (εAA = εBB).

In this paper, we show that in the case of SBMs with
the Lennard-Jones pair potential the reentrant miscibility
also occurs in the systems with negative additivity, but only
when the interaction between unlike pairs is weaker than the
interaction between like pairs.
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The paper is organized as follows. In the next section, we
define our model and briefly discuss the simulation methods.
Then, in Sec. III we present and discuss our results. Finally,
we summarize our findings in Sec. IV.

II. THE MODEL AND MONTE CARLO METHODS

We consider strictly two-dimensional symmetrical mixtures
consisting of atoms A and B, which interact via the truncated
(12,6) Lennard-Jones potential

uij (r) =
{

4εij [(σij /r)12 − (σij /r)6] r � rmax

0 r > rmax,
(1)

where r is the distance between a pair of atoms, i and j

mark the species A and B, and the potential is cut at the
distance rmax = 3.0σij . In the case of symmetrical mixtures,
the potential parameters describing the interaction between
like particles are the same; i.e., σAA = σBB = σ and εAA =
εBB = ε. The corresponding potential parameters for a pair of
unlike atoms are given by

σAB = (s + 1)σ and εAB = eε, (2)

and σ and ε are taken as the units of length and energy,
respectively. Thus, the temperature is given in the units of
ε/k and the chemical potentials of both species μi (i = A, B)
and the other energy-like quantities are given in the units of ε.

The model has been studied using Monte Carlo simulation
method in the grand canonical ensemble [34–36] under the
condition of equality of the chemical potentials of both species
(μA = μB = μ). Calculations have been carried out using the
simulation cells of the size L × L, with L = 20 and 30 and
with the standard periodic boundary conditions.

The quantities recorded included the average numbers of
particles A (NA) and B (NB), the order parameter

m = (NA − NB)/(NA + NB), (3)

the average potential energy 〈e〉, and the radial distribution
functions, gi−j (r), for i − j = A − A,A − B, and B − B.

We have also calculated the probability distributions of
the order parameter [p(m)] of the densities of individual
components p(ρA) and p(ρB) as well as the probability
distribution of the total density [p(ρ)]. Calculations of these

distribution functions have been carried out using hyperparallel
tempering method [36].

III. RESULTS AND DISCUSSION

The calculations have been carried out for several systems
characterized by the values of the parameter s ranging between
−0.26 and 0.0 and with the parameter e ranging between 0.5
and 0.8. In all cases, the potential well for like pairs is deeper
and, apart from the system with s = 0, of longer range than
for unlike pairs.

We shall demonstrate that the shorter range of the in-
teraction between unlike particles as compared to the like
particles considerably affects the phase behavior and may lead
to the reentrant miscibility in the liquid phase. It will also be
demonstrated that different solid phases appear in the systems
considered here.

To begin with, we consider a series of systems characterized
by the fixed value of the parameter e = 0.8. From the results
of our earlier study [25], it follows that in the case of s = 0 the
liquid does not phase separate and demixing transition occurs
only in the solid phase. The onset of the demixing transition
is located at the temperature below the triple point Ttr,vlmsm,h

≈
0.373. At the triple point, the vapor (v) coexists with a mixed
liquid (lm) and with also mixed solid of hexagonal symmetry
(sm,h). The same qualitative results have been obtained for the
system with s = −0.05. The phase diagram topology for these
systems is similar to one shown in part g of Fig. 9 of Ref. [25].

Upon the decrease of s to −0.1, the tendency toward
demixing appears to increase and we have found that
the demixing transition occurs at the temperatures above the
triple point, i.e., already in the liquid phase. Figure 1 shows
the phase diagram obtained for this system. One notes that
the λ line originates at the lower critical end point at the
liquid side of the vapor-liquid coexistence at Tl,cep ≈ 0.388
and ends at the upper critical end point at the liquid side of the
liquid-solid coexistence at Tu,cep ≈ 0.382. The locations of the
demixing transition have been estimated using the distribution
functions of the order parameter m [p(m)] and of the system
density ρ [p(ρ)] obtained for the systems of different size
of the simulation cell. The examples of these distributions
are shown in the inset to Fig. 1(b). It should be emphasized
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FIG. 1. The phase diagram for the system

with e = 0.8 and s = −0.1. Part a (b) shows
the T − μ (T − ρ) projection. The inset to
part b shows the probability distributions of
the order parameter m obtained for μ = −1.77
and at different temperatures equal to (0.38,
solid line; 0.384, dotted line; 0.388, dash-dotted
line; and 0.39, short-dashed lines) using the
simulation cell with L = 20. The long-dashed
line represents the distribution obtained at
T = 0.39 and L = 30.
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FIG. 2. The T − μ projection of the phase diagram for the system
with e = 0.8 and s = −0.13.

that the order parameter distributions obtained for rather small
simulation cell with L = 20 show very large finite-size effects
being responsible for the bimodal distributions p(m) even
at the temperatures above the demixing transition. When a
larger simulation cell with L = 30 is used, the distribution
p(m) recorded above the temperature of demixing transition
does not show the bimodal shape as the inset to Fig. 1(b)
illustrates. The distribution recorded at T = 0.38 also shows
small contributions due to demixed solid. This is caused by the
proximity of the thermodynamic state, determined by T and
μ, to the liquid-solid coexistence.

An interesting feature of this system is that the λ line
has a negative slope with respect to the chemical potential
δλ,μ = dTλ(μ)/dμ. Therefore, the lower critical end point
occurs at the temperature (slightly) higher than the upper
critical end point. Of course, also the slope δλ,ρ is negative.
In consequence, the compression of a demixed liquid leads to
reentrant mixing.

The solid phase has been found to be demixed at the temper-
atures below the upper critical end point and mixed at higher
temperatures. We have not performed calculations suitable
to locate the transition temperature. A direct examination
of configurations and the calculations of radial distribution
functions have shown that both demixed and mixed solid
phases have a hexagonal symmetry, as in the case of s = 0.

In the case of lower s equal to −0.13 (and also when
s = −0.15), the phase diagram exhibits new features (see
Fig. 2). The λ line starts at the lower critical end point
at the liquid side of the vapor-liquid coexistence and also
has negative slopes δλ,ρ and δλ,μ, and it ends at the upper
critical end point. At this point, a demixed solid of hexagonal
symmetry coexists with two critical (mixed and demixed)
liquid phases. It appears that the mixed liquid remains stable at
the temperatures below the upper critical end point, down to the
triple-point temperature, Ttr,sd,hlmsm,sq , at which the two demixed
solid and mixed liquid coexist with a mixed solid phase. At
the temperatures above Ttr,sd,hlmsm,sq, the mixed liquid freezes
into a mixed solid at sufficiently high density. Unlike in the

FIG. 3. The snapshot recorded for the system with e = 0.8 and
s = −0.13 at T = 0.2 and μ = 0.0.

system with s = −0.1, the mixed solid has a different structure
and shows a quite well developed square symmetry. In this
phase, each A (B) particle has four B (A) nearest neighbors
(see Fig. 3). At the temperatures below Ttr,sd,hlmsm,sq , a first-order
transition between the two solid phases takes place. Although it
is not straightforward to find the ground-state properties of the
system considered here, we have estimated the locations of the
gas-demixed solid and demixed solid-mixed solid transition
points and found that the former occurs at μ of about −3.35,
while the latter is located at the considerably higher chemical
potential of about −0.85. The ground-state calculation has
been performed assuming that the demixed solid is a perfectly
ordered hexagonal array of only one type of particle and that
the mixed solid is a perfect square lattice in which each A (B)
particle has only B (A) nearest neighbors. We have constructed
appropriate configurations and then minimized the energy with
respect to nearest-neighbor distance. Of course, at nonzero
temperatures, the demixed solid is bound to contain some
small amount of the second component, just the same as it
occurs in the demixed liquid phase.

The above presented results suggest that for s between
−0.1 and −0.13 there should be a crossover from the region
in which the mixed solid has a hexagonal symmetry (large s

regime) to the region favoring square ordering in the mixed
solid phase (small s regime). At this point, it is appropriate to
recall that the Monte Carlo studies of Vlot et al. [20,37,38],
performed in the NPT ensemble, have demonstrated that at
sufficiently low temperatures the two-dimensional SBM with
s = −0.13 and e = 1.0 forms a solid of square symmetry and
its three-dimensional counterpart forms a body-centered cubic
crystal.

The system with a lower value of s = −0.16 has shown
that demixing transition in the liquid occurs over very narrow
region of T , between about 0.363 and 0.37 (see Fig. 4). The
probability distributions of the order parameter m recorded
at T = 0.365 and for the chemical potentials slightly above
the vapor-liquid coexistence have clearly demonstrated the
presence of the transition between the demixed and mixed
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FIG. 4. The T − μ projection of the phase diagram for the system
with e = 0.8 and s = −0.16.

liquid phases upon the increase of the chemical potential and,
hence, of the density. On the other hand, the distributions
recorded at T = 0.37 have shown that the vapor condenses
into an already mixed liquid.

Comparing the phase diagrams depicted in Figs. 2 and 4,
one readily notes that at sufficiently low temperatures, also
the region of chemical potential over which the demixed
solid is stable becomes narrower when s becomes smaller.
This suggests that for still lower values of s we should not
observe the demixed liquid and solid phases at all. Indeed, the
calculations performed for the systems with s = −0.18, −0.2,
and −0.22 have shown that only mixed liquid and solid of
square symmetry appear. The phase diagrams for these three
systems are given in Fig. 5. Two important effects should
be noted. The triple point temperature shows a rather sharp
increase upon the lowering of s. The critical temperature
increases also, but not so sharply. The reason is that the
stability of a solid phase of square symmetry increases due
to a better fit of AB pairs and the decrease of the second
nearest neighbors, which are of the same kind and exhibit
stronger attraction. Therefore, the potential energy becomes
lower while the entropic effects are not much affected by
rather small changes in interatomic distances. Similarly, the
potential energy contribution in the liquid becomes more
and more important when the parameter s is lower. The
radial distribution functions have demonstrated that the mixed
liquid is locally ordered. The upper panel of Fig. 6 presents
a comparison of the radial distribution functions gA−A(r)
and gA−B(r) obtained for the system with s = −0.2 at the
temperature T = 0.42, i.e., above the triple point and for two
values of the chemical potential in the regions of stability of a
liquid (μ = −1.8) and of a solid (μ = −1.7) phase. The first
peak at gA−A(r) corresponds to the second nearest neighbors.
In the perfectly ordered solid, the maximum of this peak should
occur at r = √

2rNN , where rNN is the first nearest-neighbor
distance, specified by the location of the first maximum at
gA−B(r). Of course, at the temperature above the triple point,
the solid is not perfectly ordered and slightly expanded, so
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FIG. 5. The T − μ projections of the phase diagrams for the
systems with e = 0.8 and different values of s = −0.18 (part a),
− 0.20 (part b), and − 0.22 (part c).

that this peak is broader and its maximum is located at larger
distance than

√
2rNN . The lower panel of Fig. 6 shows the

radial distribution functions gA−A(r) and gA−B(r) recorded
at T = 0.32. The first maximum of gA−B(r) is located at
rNN ≈ 0.86, while the first maximum of gA−A occurs for
r = 1.218, very close to the value of 1.216 predicted for a
perfectly ordered mixed solid.
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FIG. 6. The upper panel shows the radial distribution functions
gA−A(r) and gA−B (r) for the liquid (μ = −1.80) and the solid (μ =
−1.70) obtained for the system with e = 0.8 and s = −0.2 at T =
0.42. Note that the radial distribution functions of the solid are shifted
upwards by three units. The lower panel gives gA−A(r) and gA−B (r)
for the solid phase at T = 0.32.
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FIG. 7. The changes in the phase diagram topology with s for the
systems with e = 0.80.

The summary of our findings for the above discussed
systems with e = 0.8 is given in Fig. 7, which presents the
changes of the temperatures at critical points, tricritical points,
triple points, and critical end points versus the parameter s.
Our results have allowed the five different regions of s to be
singled out. In each of them, the phase diagrams have different
topology.

In the region 1, the liquid does not undergo demixing
transition at all, and only the solid exhibits a continuous
transition between the low-temperature demixed and high-
temperature mixed phases. The onset of this transition occurs
in the critical end point, located at the solid side of the
liquid-solid coexistence. When s decreases from 0 to about

FIG. 8. Schematic representation of the phase diagram [T − μ

(T − ρ) projection] for the systems characterized by e = 0.8 and the
parameter s between 0 and −0.05. The regions labeled with v, lm, ld ,
sd,h, and sm,h correspond to the vapor, mixed liquid, demixed liquid,
demixed solid of hexagonal symmetry, and mixed solid of hexagonal
symmetry, respectively.
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FIG. 9. The T − μ (part a) and T − ρ (part b) projections of the
phase diagram for the system with e = 0.8 and s = −0.24.

−0.075, the critical end-point temperature gradually increases.
In this region, the phase diagram topology is like that shown
in Fig. 8.

When s drops below about −0.075, the situation changes
and we enter region 2, in which the liquid undergoes a
demixing transition. This transition starts at the lower critical
end point and ends at the upper critical end point. Our results
obtained for e = 0.8 have demonstrated that the slope δλ,μ of
the λ line is negative, and hence Tl,cep > Tu,cep. In this region,
the two solid phases (mixed and demixed) are hexagonally
ordered and the phase diagrams are similar to the one shown
in Fig. 8.
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system with s = −0.13 and e = 0.75.
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Upon the decrease of s below about −0.11, the behavior
changes and one enters region 3. Similarly as in region 2, the
liquid also undergoes demixing transition, which starts at the
lower critical end point and ends at the upper critical end point.
The difference between regions 2 and 3 is that in the former
the mixed solid also has a hexagonal symmetry, while in the
latter it is square ordered. In this region, the phase diagrams
like those shown in Figs. 2 and 4 are found. It should be noted
that the triple-point temperature, at which the two solid phases
coexist with a mixed liquid, decreases when the parameter s

increases, and one expects that it drops down to zero when s

reaches the value at the boundary between regions 2 and 3.
When s becomes lower that about −0.165, we enter region

4, in which only mixed liquid and solid phases are present. In
this region, the phase diagrams like those given in Fig. 5 appear.
The critical temperature of the vapor-liquid condensation
shows a rather large increase with the lowering of s. Also, the

triple-point temperature increases even more sharply, when
parameter s decreases.

The data given in Fig. 7 shows that for the value of s equal to
about −0.227, the critical and triple points should merge and
we enter region 5, in which one expects to find a swan-neck
type of phase diagram. Indeed, the calculations carried out
for the system with s = −0.24 have confirmed that prediction
very well and have led to the phase diagram given in Fig. 9.

Now, we turn to the presentation of results for the systems
with smaller values of the parameters e, i.e., for the systems
exhibiting higher tendency toward demixing, and consider the
behavior of SBMs with s < 0. The results for the systems
with s = 0, given in Ref. [25], have demonstrated that for e

greater than about 0.76, the liquid does not phase separate
at all while the solid is demixed at low temperatures and
undergoes a transition to a mixed phase at sufficiently high
temperatures. Both demixed and mixed solid phases have
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hexagonal symmetry as expected for the system without
nonadditivity effects of the parameters σij . The continuous
transition between the demixed and mixed solid phases occurs
along the line of consolute points and starts at the critical end
point, located at the solid side of the fluid-solid coexistence. It
has been verified that this transition belongs to the universality
class of the Ising model, just the same as the demixing
transition in the liquid [10,25]. Of course, the critical end
point travels along the coexistence toward higher temperatures
when the parameter e becomes lower. As soon as e drops
below 0.76, the liquid also exhibits a demixing transition
over a certain range of temperatures either between the lower
and upper critical end points (when e is greater than about
0.66) or between the tricritical point and the upper critical
end point (e < 0.66). The schematic representation of the
phase diagrams for these systems has been shown in Fig. 9
of Ref. [25].

In the systems with s lower than zero and e < 0.8, the
tendency toward demixing also increases. Thus, the lower
critical end point, being the onset of the demixing transition
in the liquid, moves toward higher temperatures. Besides, the
slope of the λ line is expected to decrease when s becomes
lower, as in the previously discussed case of e = 0.8 (cf.
Figs. 1 and 2). It has already been shown that for s � −0.1 and
e = 0.8, the slope δλ,μ is negative and leads to the transition
from a demixed to a mixed liquid when density increases.
For lower values of e, the temperature range over which the
reentrant miscibility occurs becomes wider. Figure 10 shows
the phase diagram for the system with e = 0.75 and s =
−0.13, which demonstrates that reentrant miscibility occurs
over a considerably wider temperature range than observed
in the case of e = 0.8 (cf. Fig. 2). This scenario holds as
long as the λ line begins in the lower critical end point at the
liquid side of the vapor liquid coexistence below the critical
point. When, however, the parameter e becomes low enough,
the λ line begins rather in the tricritical point than in the
critical end point. In such cases, the λ line forms a loop and
reentrant miscibility is observed also above the tricritical point.
In Fig. 11, we have presented two phase diagrams obtained
for the systems with s = −0.13 and two lower values of e,
equal to 0.7 and 0.6. In both cases, the λ line forms a loop
beginning at the tricritical point, passing through a maximum
at a certain temperature Tmax and ending at the upper critical
end point, in which two critical liquid phases coexist with
a demixed solid phase, Tu,cep. The same qualitative results
have been found for other values of s between −0.1 and
−0.22 and for e = 0.7 and 0.6. The mechanism leading to
such behavior is the following. The attraction between the like
particles is considerably stronger and of longer range than
in the case of the unlike particles, and this favors demixing.
On the other hand, the ideal contribution to the entropy of
mixing Sm = −kN [x log x + (1 − x) log(1 − x)] decreases if
phase separation takes place and hence favors mixing. For
sufficiently small e and at moderate densities, the attraction
between like particles wins over the entropic effects and a
phase separation takes place. Upon the increase of density,
the attraction between the like particles lowers due to the
decrease of average distance between nearest neighbors, while
the attraction between the unlike particles increases. This,
together with the entropic contributions, leads to the recovery

0 2 4 6 8 10
r
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4
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10

g i-j
(r

)

mixed solid 

high density mixed liquid

μ=1.2

μ=0.9

demixed solid μ=−1.4

demixed liquid μ = −1.6

A-A
A-B

FIG. 12. The radial distribution functions gA−A(r) and gA−B (r)
calculated for the system with s = −0.15 and e = 0.6 at the temper-
ature T = 0.42 and for different values of the chemical potential
corresponding to the regions of stability of different condensed
phases. For clarity, the radial distribution functions for μ = 0.9, −1.4,
and −1.6 have been shifted upward by 2, 4, and 6, respectively.

of miscibility. The calculations of radial distribution functions
have demonstrated that the high density mixed liquid is locally
ordered and exhibits a dominating contribution due to A-B
nearest neighbors. The locations of first maxima at gA−A(r)
and gA−B(r) indicate the presence of local square ordering.
In Fig. 12, we have given the examples of radial distribution
functions calculated for the system with s = −0.15 and e =
0.6 at T = 0.42 and for different values of μ corresponding to
the regions of stability of mixed and demixed solid and liquid
phases.

Figure 13 gives a sort of a global phase diagram for
the systems with s = −0.13, which shows the changes in the
phase diagram topology upon the variation of the parameter e.
In the region of e lower than about 0.735, the phase diagrams
are similar to the ones presented in Fig. 11, while for e

exceeding 0.735 they are similar to that given in Fig. 10. This
is just an example of results. Qualitatively the same behavior
have been found for s = −0.1 and −0.15.

From the results given in Fig. 13, it follows that the
temperature at the lower critical end point, Tl,cep, decreases
more rapidly than the triple point temperature Ttr,v,ld sd,h

, when
e becomes higher. Therefore, one expects that Tl,cep reaches
Ttr,v,ld sd,h

, when e is high enough. Our data suggest that it
should occur when e ≈ 0.86, so that for still higher values of
e the liquid does not phase separate at all.

In the case of systems belonging to region 4 in Fig. 7, the
lowering of e also increases the tendency toward demixing
in the liquid phase. We have found that when e = 0.7 the
system with s = −0.2 has the phase diagram topology like the
systems belonging to region 3 (see Fig. 11), while the system
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FIG. 13. The changes of the phase diagram topology with e for
the systems with s = −0.13. The vertical dotted line marks the value
of e delimiting the regimes with different phase diagram topology as
explained in the text.

with s = −0.22 is still qualitatively the same as the phase
diagrams shown in Fig. 5. Only a further lowering of e to 0.6
changes the phase diagram topology to that characteristic of
region 3.

Similarly, the systems with s = −0.24 and different values
of e have been found to exhibit phase diagrams of different
topology. In the case of e = 0.8, we have observed the
swan-neck type of phase diagram, and the same has been
found for e = 0.7. However, when e = 0.6, the vapor-liquid
condensation has been found to occur over a wide temper-
ature range (see Fig. 14). The liquid is demixed along the

0.38 0.40 0.42 0.44 0.46 0.48 0.50
T

-1.8

-1.6

-1.4

-1.2

v

ld

lm
sm,sq

sd,h

Tu,cep

Ttr,vldsd,h

Ttr,ldsd,hsm,sq

Tmax

Ttrc

FIG. 14. The T − μ projection of the phase diagram for the
system with s = −0.24 and e = 0.6.

vapor-liquid coexistence between the triple-point temperature,
equal to about 0.396, and the tricritical point, located at the
temperature of about 0.47 ± 0.01. At higher temperatures, the
demixing transition occurs along the λ line, which shows a
closed loop behavior, with Tmax ≈ 0.51, and terminates at the
upper critical end point (Tu,cep ≈ 0.462) at the liquid side
of the liquid-(mixed) solid coexistence. At the temperatures
below the upper critical end point and above the triple point
Ttr,sd,hsm,sq,ld ≈ 0.402, the demixed liquid freezes directly into
a mixed solid.

IV. SUMMARY AND FINAL REMARKS

We have used Monte Carlo simulations in the grand
canonical ensemble to investigate the phase behavior of
symmetrical binary mixtures with negative nonadditivity in
both the size and the potential well depth. We have studied the
evolution of the phase diagram topology when the parameters
determining the range (s) and strength (e) of interaction
between unlike pairs vary.

It has been demonstrated that when the nonadditivity
parameter s is negative and sufficiently low, the demixing
transition in the liquid occurs at low densities and then the
mixing is recovered at sufficiently high densities. As long as
the onset of the demixing transition is at the critical end point
below the vapor-liquid critical point, the slope of the λ line
with respect to the chemical potential, as well as with respect
to the total density, decreases when the parameter s lowers and
becomes negative for sufficiently low s. On the other hand,
when the interaction between unlike particles is sufficiently
weak to drive the onset of the λ line to the tricritical point, the
demixing transition in the liquid occurs at the temperatures
lower than a certain temperature Tmax and only at sufficiently
low densities. At high densities, a reentrant mixing occurs.

In general, the lowering of the range of interaction between
unlike particles, measured by the parameter s, enhances
the tendency toward mixing at high densities and leads to
the reentrant mixing in the liquid phase. On the other hand, the
lowering of the potential well depth of the interaction between
the unlike particles enhances demixing. These two competing
effects lead to the closed-loop behavior. In particular, in the
systems with sufficiently low e, the λ line starts at the tricritical
point and goes up to a certain maximum temperature and then
it terminates at the critical end point at the liquid-(mixed) solid
coexistence.

It has been also demonstrated that the structure of a
mixed solid phase is dominated by the packing effects. When
the system exhibits small negative nonadditivity (s � −0.1),
the mixed solid has a hexagonal symmetry, just the same as
the demixed solid. When, however, the effects of nonadditivity
become large enough and s drops below about −0.1, the mixed
solid has a square symmetry. These findings agree quite well
with the earlier studies of Vlot et al. [20].

At this point, we should recall the results obtained by
Almarza et al. [30] already mentioned in the Introduction.
These authors have also obtained a closed-loop fluid-fluid
immiscibility in (three-dimensional) symmetrical mixtures.
However, they have used the square-well potential and found
the closed-loop behavior when the interaction between the
unlike particles was of shorter range (s < 0) and stronger

062306-8



REENTRANT MISCIBILITY IN TWO-DIMENSIONAL . . . PHYSICAL REVIEW E 87, 062306 (2013)

(e > 1) than the interaction between the like pairs. At low
densities, a longer range of A-A than A-B attractive interaction
favors A-A neighbors and hence leads to demixing. In that
regime, the effective A-A attraction is stronger than A-B
attraction. At high densities, however, the packing effects
and strong attraction between A-B pairs lead to reentrant
mixing. We should also mention the recently published
results of Amore, Horbach, and Egry [39]. These authors
have considered symmetrical binary mixtures with s = 0

and Lennard-Jones-like interaction potentials with adjustable
attraction term and have demonstrated that in the systems
with purely repulsive interactions, demixing occurs only when
the repulsion is stronger for A-B than for A-A pairs, i.e.,
when e > 1. Of course, in the systems with attraction term
“turned-on,” the demixing transition occurs only when e < 1.
Our study has shown that the recovery of miscibility at high
densities, in both liquid and solid phases, is driven by packing
effects.
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