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Frustrated colloidal ordering and fully packed loops in arrays of optical traps
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We propose that a system of colloidal particles interacting with a honeycomb array of optical traps that each
contain three wells can be used to realize a fully packed loop model. One of the phases in this system can be
mapped to Baxter’s three-coloring problem, offering an easily accessible physical realization of this problem.
As a function of temperature and interaction strength, we find a series of phases, including long range ordered
loop or stripe states, stripes with sliding symmetries, random packed loop states, and disordered states in which
the loops break apart. Our geometry could be constructed using ion trap arrays, BEC vortices in optical traps, or
magnetic vortices in nanostructured superconductors.
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I. INTRODUCTION

There has recently been tremendous growth in the area of
creating idealized systems in which certain types of statistical
mechanics models with and without geometric frustration can
be physically realized, such as in nanomagnets [1–3] and soft
matter systems [4–14]. The key advantage of these systems is
that they allow direct experimental access to the microscopic
degrees of freedom. One of the most active of these areas
has been artificial spin ices created using nanomagnetic arrays
with square [1] or hexagonal ordering [2,3], where ordered or
frustrated states can occur that mimic real spin ice systems
[15]. Here, various types of excitations such as monopoles
can arise, and the dynamics can be studied under an external
field [3]. There are many other statistical mechanics models
that exhibit frustration effects, including loop models such as
the famous Baxter’s three-coloring model [16], where only
very limited work has been performed on proposed physical
realizations, all of which involve atomic degrees of freedom
[17–20]. The nanomagnetic systems have certain constraints,
such as relatively high levels of disorder and the lack of
temperature-like fluctuations, that make it very difficult to
realize many other types of statistical mechanics models of
interest.

Here we propose that a system of colloidal particles
interacting with optical trap arrays can be used to realize fully
packed loop models, and show that one of the resulting phases
can be mapped to the three-coloring model. Loop models have
been applied to a wide variety of physical systems, ranging
from polymer physics [21,22] and turbulence [23] to optics
[24] and magnetism [25–27], and a physical realization of an
idealized loop model would be a major step in this field. Using
a colloidal system provides direct experimental access to the
microscopic degrees of freedom of such models; in addition,
the realization of a three-color model that we describe can not
be achieved in magnetic systems due to their intrinsic time-
reversal symmetry. Colloidal systems interacting with periodic
optical arrays have been experimentally realized [4,5,8–10,28]
and shown to exhibit novel types of orderings depending on the
nature of the substrate [4,8,9,13]. Beyond these static states, it
is also possible to study a variety of dynamical processes such
as the motion of kinks and antikinks [10,12]. Highly tailored
optical trap arrays can be created where the colloidal particles

can sit in multiple positions in a single trapping site [5,28,29],
so that arrays where colloidal particles can occupy one of three
possible positions in a trap are well within current experimental
capabilities.

II. MODEL

We consider a 2D array of N triangular-shaped traps that
each contain three potential minima, as illustrated in Fig. 1(a).
These traps are similar to those created experimentally in
Ref. [4]. The traps form a honeycomb lattice with triangles of
opposite orientations occupying the two different sublattices,
as shown in Figs. 1(b) and 1(c). When each trap contains one
colloidal particle, the system provides a natural realization
of the three-state Potts model on the honeycomb lattice.
We introduce a Potts variable σi = 1, 2, or 3 to denote the
potential well occupied by the particle in the ith trap. In
order to characterize the colloidal ordering, we also introduce
three unit vectors for each Potts state: ê1 = (0,1), and ê2, 3 =
(±√

3/2, − 1/2). The particle in the ith trap is located at
ri = Ri + dσi

, where Ri is the center of the trap and the
displacement dσ = ±δ êσ , with the plus (minus) sign for up
(down) triangles. δ denotes the linear size of the trap.

The colloidal particles interact with each other via a repul-
sive screened Coulomb or Yukawa potential given by V (rij ) =
V0 q2 exp(−κrij )/rij . Here rij is the distance between two
particles, V0 = Z∗2/(4πεε0), Z∗ is the unit of charge, ε is
the solvent dielectric constant, q is the dimensionless colloid
charge, and 1/κ is the screening length. The Hamiltonian of
the model system reads

H = 1

2

∑

i,j

V (|Rij + dσi
− dσj

|), (1)

where the summation runs over all pairs of triangular traps
i,j . Since the particles are always confined to one of the
three potential wells in each trap, we can identify the first
few neighboring interaction terms of the colloidal potential
V (rij ) as summarized in Fig. 2. The dominant U0 interaction is
between two particles at the closest corners of two neighboring
triangles shown in Fig. 2(a). Since these two potential wells are
specified by the same Potts state in the respective traps, the U0

term essentially introduces an anisotropic antiferromagnetic
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FIG. 1. (Color online) (a) Schematic diagram of the basic unit
cell with two triple well traps each containing one colloidal particle.
(b) and (c) are snapshots of a small portion of the system. The green
triangles represent the traps and the red dots denote the particles.
(b) shows a random distribution of particles at high temperatures. U0

pairs are circled and U1 pairs are boxed. (c) shows an example of
a particle configuration that can be mapped to random fully packed
loops in the hexagonal lattice, as illustrated in (d). The broad yellow
contour in (d) corresponds to a flippable type-II loop.

interaction between the Potts variables:

H0 = U0

∑

〈ij〉
δαij ,σi

δαij ,σj
, (2)

where 〈ij 〉 denotes two nearest-neighbor traps, and αij =
1,2,3 specifies the relevant Potts state of the adjacent wells
of the 〈ij 〉 pair. Such U0 pairs of particles [circled in
Fig. 1(b)] are energetically unfavorable and will be suppressed
at temperatures T � U0. It is worth noting that the interactions
in Eq. (2) are frustrated and there exist extensively degenerate
Potts states (colloidal configurations without U0 pairs) that
minimize H0.

(a)

(b)

(c) (d)

FIG. 2. (Color online) Various interaction terms arising from the
screened-Coulomb or Yukawa potential V (rij ) between a pair of
colloids in the optical traps.

By attaching an arrow to each particle pointing from
the center of the triangular trap to the corner occupied by
the particle, the colloidal configuration can be mapped to
a collection of directed strings. Since the triangles form a
honeycomb lattice, a similar mapping can be established
by extending the arrow onto the corresponding bond [see
Figs. 1(c) and 1(d)]. As each trap contains exactly one particle,
there is always an outgoing arrow for each vertex of the
honeycomb lattice; however, the number of incoming arrows
for individual vertices can be 0, 1, or 2. The number of vertices
with no incoming arrow must equal the number of vertices
with two incoming arrows since these are the sources and
sinks (or end points) of the directed strings. The second and
most relevant U1 term of the interaction, shown in Fig. 2(b),
prevents the fusion of two strings by penalizing vertices with
two incoming arrows. Examples of U1 pairs are highlighted by
square boxes in Fig. 1(b). The number of end point vertices is
suppressed at temperatures T � U1, where for systems with
periodic boundary conditions (BC) it becomes energetically
more favorable for strings to form closed loops as shown
in Figs. 1(c) and 1(d) [30,31]. For finite lattices with open
BC, the end points of the strings reside at the boundaries
of the system. The further-neighbor interactions U2 and U3

shown in Figs. 2(c) and 2(d) induce long-range ordering of
particles at very low temperatures. In particular, the U2b term
favors alignment of particles in two different alternating Potts
states along one of the C3 symmetry directions, effectively
introducing a bending stiffness to the strings.

It is worth noting that each fully packed loop (FPL)
configuration on the honeycomb can be further mapped to
a three-colored configuration on the same lattice. In Baxter’s
three-coloring model [16], each bond of the honeycomb lattice
is assigned a color R, G, or B, so that three different colors
meet at each vertex, and all such configurations are given
equal statistical weight. The R and B colored bonds thus form
a FPL configuration as illustrated in Fig. 1(d), and the two
different sequences RBRB · · · and BRBR · · · correspond to
the forward and backward propagating loops, respectively.
It is important to note that all three-colored configurations
are energetically degenerate if we retain interactions up to
the U1 terms only. Long-range orderings are induced by the
further-distance interactions in V (rij ).

To understand the various phases of the model system, we
perform Monte Carlo simulations on the effective three-state
Potts model described by Eq. (1). Our choice of algorithm
varies depending on the temperature. At high temperatures,
the standard single-site METROPOLIS updates are sufficient to
equilibrate the system; however, such local updates experience
a dynamical freezing at temperatures T � U1 due to the huge
energy cost of updating a single-site Potts state. Since the
effective degrees of freedom in this temperature regime are
the fully packed loops discussed above, we also implement
two types of non-local updates in our Monte Carlo simulations
similar to the loop algorithm introduced for the three-coloring
problem [32]. In the first type of loop update, we randomly
select a loop of head-to-tail arrows, or a RBRB · · · loop,
and flip all the arrows; this move is accepted according
to the standard METROPOLIS conditions with further-distance
interactions U2, U3, . . . taken into account. The type-II loops
consist of alternating bonds with and without arrows; they
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correspond to the GB or GR-colored loops in the three-color
scheme. An example type-II loop is shown in Fig. 1(d).

At very low temperatures, even the loop updates suffer
freezing problems. Unlike the loops in dimer or spin-ice
models [33,34], which can be constructed step by step from
numerous possible paths, the loops in the three-coloring prob-
lem are predetermined by the colors in a given configuration.
The so-called worm algorithm [35], in which detailed balance
is always satisfied when constructing the loop, cannot be
applied to our case. The freezing problem arises because
the acceptance rate of flipping a long loop in the standard
METROPOLIS criterion becomes exceedingly small at low T .
To overcome this problem, we employ the parallel tempering
algorithm [36] to simulate this low-temperature regime. By
simultaneously simulating 150 replicas covering a temperature
window 0 < T < 0.1U1, we are able to fully equilibrate a
system with periodic boundary conditions containing N =
2 × 6 × 12 particles; the results from a system with linear trap
size δ = 0.9 × (a/2

√
3) and screening length κ−1 = 0.06a,

where a is the lattice constant of the underlying honeycomb
lattice, are summarized in Fig. 3.

In Fig. 3(a) we plot the fraction Nv of honeycomb lattice
vertices of type v as a function of temperature in the
regime T � U0. Since the occurrence of U0 pairs is strongly
suppressed in this regime, there exist only three vertex types
Nd1, Nd2, and N3c, defined according to the ‘coloring’ of the
three bonds attached to the vertex, as illustrated in the insets
of Fig. 3(a). The three bonds meeting at the lowest-energy N3c

vertices always have different colors. In the language of loops,
these three-color vertices have exactly one incoming and one
outgoing arrow. There are two types, Nd1 and Nd2, of higher-
energy defect vertices that violate the three-color constraints;
they correspond to the sources and sinks of the open strings,
and always satisfy Nd1 = Nd2. In Fig. 3(a), as T decreases
the fraction of defect vertices Nd1 + Nd2 gradually decreases
before vanishing for T < T3c ≈ 0.1U1, while the fraction of
three-color vertices N3c saturates to 1 at low T . We define the
crossover temperature T3c as the point at which the fraction of
defect vertices drops below 0.1%. Below T3c, the system can be
mapped to a three-colored or fully packed loops configuration.
The particle-particle correlations in this disordered yet highly
constrained phase are expected to exhibit a quasi-power-law
decay [16]. We find that g(r) for our system in the three-
coloring regime approaches n̄ = 1/3 for large separations,
as shown in Fig. 4. The density-density correlation function
Cnn(r) = 〈n1(r)n1(0)〉 − n̄2 along one of the C3 axes follows a
power law decay at large r with an exponent of 4/3, as expected
for a three-colored configuration and as illustrated in the inset
of Fig. 4. Here n1(r) is the density of particles at a particular
potential well, such as well number 1, of an up triangular trap.

As discussed previously, the further-neighbor interactions
U2 and U3 induce long-range orderings of loops at lower tem-
peratures. In particular, the loops acquire a bending stiffness
due to the U2b interaction. As a result, the loops start to align
themselves with one of the three principle lattice symmetry
directions upon lowering the temperature. Since the dominant
Potts interaction U0 is antiferromagnetic, we consider a
Néel type order parameter: M = (2/

√
3N )

∑
i(−1)i êσi

, where
(−1)i = +1 for up triangles and −1 for down triangles. The
order parameter M = |M| indeed rises to its maximum at

FIG. 3. (Color online) (a) Nv , the fraction of vertices of type v, as
a function of temperature T/U1. Upper red line: N3c; lower blue line:
Nd1 + Nd2; dashed line: all other vertex types. Insets: schematics of
the three low-temperature vertex types Nd1, Nd2, and N3c. (b) Order
parameters M and S along with N3c as a function of temperature
T/U1. The parameter M characterizes a uniform long-range ordering
of particles in which all loops are directed in the same direction
and parallel to each other. The stripe order parameter S describes
a partially ordered phase in which loops are parallel to each other
but the direction of individual loops is disordered. (c) Phase diagram
of temperature T in units of V0q

2/a vs κa showing the regions in
which the ordered, smectic, three-coloring, and disordered states are
observed. Red circles: T3c; green squares: TS ; blue triangles: TN .

T � TN ≈ 0.003U1 as shown in Fig. 3(b), indicating a ground
state with long-range antiferromagnetic-Potts order. The phase
boundary TN shown in Fig. 3(c) is defined as the point at
which M reaches 99% of its maximum value. One of the
perfectly ordered states is illustrated in Fig. 5(a); there are a
total of six degenerate ground states related to the breaking of
Z2 sublattice (the arrows in the loops) and C3 rotational (the
orientation of the loops) symmetries.

Interestingly, for decreasing temperature the order param-
eter M shows an upturn at TS ≈ 0.034U1, above the onset
of long-range Potts order. Examination of the snapshots from
Monte Carlo simulations shows a partially ordered phase with
additional sliding symmetries [37]. In this phase, the loops
are either parallel or antiparallel to each other, hence breaking
the C3 lattice rotational symmetry. The directions of arrows
in individual loops remain disordered as shown in Fig. 5(b).
This partially ordered phase is characterized by a Z3 order
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FIG. 4. (Color online) Particle pair distribution function g(r)
in the three-coloring regime (T = 0.08U1 with κ−1 = 0.06a) ob-
tained from Monte Carlo simulations with loop algorithms on a
system with 2 × 1202 particles. At large separation g(r) → n̄ = 1/3.
The inset shows the density-density correlation function Cnn(r) =
〈n1(r)n1(0)〉 − n̄2 along one of the C3 axes. The correlation exhibits
a power-law r−4/3 decay at large r .

parameter indicating the overall orientation of loops and a
set of Ising variables {τ0,τ1, . . . ,τL} specifying the direction
of each loop. To characterize this stripe-like order, we first
compute the antiferromagnetic-Potts order on a 1D chain along
one of the C3 axes: mα(c) = (1/L)vα · ∑

n∈c(−1)nêσn
, where

n is a site index along the chain c; α = 1,2,3 specifying the
orientation of the chains; and vα = êβ − êγ , where (αβγ )
is a cyclic permutation of (123). The vector vα is used to
project the vector sum to the relevant Potts states along the
chain. Averaging over chains of the same orientation α gives
a quasi-1D order parameter: Mα = (1/L)

∑
c |mα(c)|, and

finally the stripe order parameter is defined as their maximum
S = maxα Mα . As shown in Fig. 3(b), the system enters the
partially ordered stripe phase at T � TS as the order parameter
S saturates to its maximum. The phase boundary TS shown
in Fig. 3(c) is determined by the crossing point of Binder’s
cumulants from 6 × 6, 6 × 9, 9 × 9, and 6 × 12 lattices.

)b()a(

FIG. 5. (Color online) (a) A long-range ordered loop state
characterized by an antiferromagnetic-Potts order parameter M . The
parallel loops in this ordered state are directed in the same direction.
(b) A partially ordered loop state exhibiting a sliding symmetry. The
loops in this phase are parallel to each other but the direction of
individual loops remains disordered. This state is characterized by
the stripe order parameter S.

We summarize the sequence of thermodynamic transfor-
mations, illustrated in the phase diagram in Fig. 3(c), as
follows. As the temperature is lowered, the colloidal system
first undergoes a crossover into the three-color or random FPL
phase at T3c ∼ O(U1). A phase transition into the partially
ordered phase occurs at TS ∼ O(U2b) when the stripe-ordering
arises from the positive bending energy produced by the
U2b interaction. Finally, the system undergoes another phase
transition into the long-range antiferromagnetic-Potts ordered
ground state at TN . We note that for larger system sizes,
our Monte Carlo simulations combining local METROPOLIS,
loop updates, and parallel tempering are able to reach the
equilibrium three-color phase at T < T3c. However, since full
equilibration to the partially ordered striped phase as well as
the fully ordered ground state requires flipping system-size
loops, which costs too much energy for larger lattices, our
algorithm can only produce a multidomain stripe phase. It
is worth noting that in the thermodynamic limit, the system
cannot reach the true long-range order and stays in this
smectic-like phase due to the huge energy barrier separating
different stripe states. Our smectic phase is distinct from
a q = 0 phase with domains. Conventionally, domain walls
are topological defects that separate domains of (usually
exact) degenerate ground states of the Hamiltonian, where
the degeneracy usually arises from the symmetry of the
Hamiltonian. In our case, however, the different layered states
are almost degenerate mainly due to frustration and are
accidental, meaning that they are not protected by symmetry.
The system is unable to reach the true q = 0 ground state due
to dynamical freezing at low T from the large energy barriers
separating the layered states.

It is interesting to note that the highly degenerate kagome-
ice manifold [38,39] can be derived from the three-coloring
manifold by recoloring every G bond to B color; the number
of B bonds is thus twice the number of R bonds in the mapped
configuration. By identifying the R bonds as the minority
spins, e.g., the out-spin in a two-in-one-out triangle, the
recolored three-coloring state is mapped to a spin configuration
in kagome ice. This mapping can be physically realized in our
colloidal system by increasing the particle numbers such that
all 3c vertices are replaced by d1 defect vertices [see inset of
Fig. 3(a)]. Although correlation functions in both phases are
critical, the kagome-ice phase is described by a scalar Gaussian
field, while the effective field theory for the three-coloring
model requires a two-component vector field [40].

In summary, we have proposed that colloidal particles
interacting with a honeycomb array of optical traps that each
contain three wells can be used to realize a fully packed loop
model. We show that this system exhibits an ordered ground
state, a smectic-like stripe phase with a sliding symmetry, a
random fully packed loop state, and a disordered state with
broken loops. The random fully packed loop state can be
mapped to Baxter’s three-coloring problem, indicating that our
system could be used to create a physical realization of this
problem. We map out where these phases occur as a function
of temperature and interaction strength. Fully packed loops
on different lattices can be similarly realized with optical
arrays in which the number of potential wells in a trap site
is the same as its coordination number. Our results should
be generalizable to other systems of repulsively interacting
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particles in a similar array of three-well traps, such as for
vortices in BEC’s interacting with optical arrays, vortices in
nanostructured type-II superconductors, and ions in tailored
trap arrays.
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