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We perform large-scale event-driven molecular dynamics (MD) simulations for granular gases of particles
interacting with the impact-velocity-dependent restitution coefficient ε(vimp). We use ε(vimp) as it follows from
the simplest first-principles collision model of viscoelastic spheres. Both cases of force-free and uniformly heated
gases are studied. We formulate a simplified model of an effective constant restitution coefficient εeff , which
depends on a current granular temperature, and we compute εeff using the kinetic theory. We develop a theory of
the velocity distribution function for driven gases of viscoelastic particles and analyze the evolution of granular
temperature and of the Sonine coefficients, which characterize the form of the velocity distribution function. We
observe that for not large dissipation the simulation results are in an excellent agreement with the theory for both
the homogeneous cooling state and uniformly heated gases. At the same time, a noticeable discrepancy between
the theory and MD results for the Sonine coefficients is detected for large dissipation. We analyze the accuracy
of the simplified model based on the effective restitution coefficient εeff , and we conclude that this model can
accurately describe granular temperature. It provides also an acceptable accuracy for the velocity distribution
function for small dissipation, but it fails when dissipation is large.
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I. INTRODUCTION

Granular materials are abundant in nature; possible exam-
ples range from sands and powders on Earth [1–5] to more
dilute systems, termed as granular gases [6–9], in space. As-
trophysical objects, such as planetary rings or dust clouds, are
typical examples of granular gases [6,10]. Depending on the
average kinetic energy of individual grains, granular systems
can be in a solid, liquid, or gaseous state. In the present study,
we address a low-density granular gas—a system comprised
of a macroscopically large number of macroscopic grains that
move ballistically between inelastic pairwise collisions. The
inelastic nature of interparticle collisions is the main feature
which distinguishes a granular gas from a molecular gas
and gives rise to many astonishing properties of dissipative
gases. If no external forces act on the system, it evolves
freely and permanently cools down. During the first stage of
a granular gas evolution, its density remains uniform and no
macroscopic fluxes are present. This state, which is called a
homogeneous cooling state (HCS) [8,11], is, however, unstable
with respect to fluctuations and in later times clusters and
vortices develop. The system then continues to lose its energy
in the inhomogeneous cooling state (ICS) [12–19].

If energy is injected into a granular gas to compensate
for its losses in dissipative collisions, the system settles into
a nonequilibrium steady state [20,21]. There are different
ways to put energy into the system: via shearing [22],
vibration [23,24] or rotating [25,26] of the walls of a container,
applying electrostatic [27] or magnetic [28] forces, etc. In
planetary rings, the energy losses due to particle collisions are
replenished by gravitational interactions [29,30]. To describe
theoretically the injection of energy into a system, a few
types of thermostat, which mimic an action of external forces,
have been proposed [20]. Here we exploit a white-noise

thermostat [31], where all particles are heated uniformly and
independently (see the next sections for more details).

Energy dissipation in a pairwise collision is quantified by
the restitution coefficient ε,

ε =
∣∣∣∣ (v ′

12 · e)

(v12 · e)

∣∣∣∣ , (1)

where v ′
12 = v ′

2 − v ′
1 and v12 = v2 − v1 are the relative ve-

locities of two particles after and before a collision, and e is a
unit vector connecting their centers at the collision instant. The
postcollision velocities are related to the precollision velocities
v1 and v2 as follows [8]:

v ′
1/2 = v1/2 ∓ 1 + ε

2
(v12 · e)e. (2)

To date, most studies of the HCS and ICS have focused on
the case of a constant restitution coefficient [11–19]. This
assumption contradicts, however, experimental observations
[32–34] along with basic mechanical laws [35,36], which
indicate that ε does depend on the impact velocity [34,36–39].
This dependence may be obtained by solving the equations
of motion for colliding particles with explicit account of the
dissipative forces acting between the grains. The simplest first-
principles model of inelastic collisions assumes viscoelastic
properties of particle material, which results in viscoelastic
interparticle force [37] and finally in the restitution coefficient
[36,39]:

ε = 1 − C1Aκ2/5|v12 · e|1/5 + C2A
2κ4/5|v12 · e|2/5 + · · · .

(3)
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Here, the numerical coefficients are C1 � 1.15 and C2 �
0.798. The elastic constant

κ =
(

3

2

)3/2
Y

√
σ

m(1 − ν2)
(4)

is a function of Young’s modulus Y , Poisson ratio ν, mass
m, and diameter σ of the particles; the constant A quantifies
the viscous properties of the particle material. While the last
equation is valid for not very large inelasticity, in the recent
work of Schwager and Poschel [40] an expression for ε, which
is valid for high inelasticity and accounts for the delayed
recovery of the shape of colliding particles, has been derived:

ε = 1 +
Nε∑
k=1

hkδ
k/2 [2u (t)]k/20 |(c12 · e)|k/10 , (5)

where h1 = 0, h2 = −C1, h3 = 0, h4 = C2, and other numer-
ical coefficients up to Nε = 20 are given in Ref. [40]. In the
latter equation, u(t) = T (t)/T0 [T0 = T (0)], with the usual
definition of temperature T (t),

3

2
nT (t) =

∫
dv

mv 2

2
f (v,t). (6)

Here n is the number density of the gas, v is a particle velocity,
f (v,t) is the time-dependent velocity distribution function,
and c12 is the dimensionless relative velocity, defined as c12 =
v12/vT , where vT (t) = √

2T (t)/m is the thermal velocity. The
dissipation constant δ in Eq. (5) reads

δ = Aκ2/5

(
T0

m

)1/10

, (7)

so that the first few terms in Eq. (5) are identical to those
in Eq. (3). Note that δ = 0 corresponds to an elastic system,
ε = 1, and dissipation in the system increases with increasing
δ. Furthermore, the restitution coefficient for all collisions
increases and tends to unity, ε → 1, when the (reduced)
temperature decreases, that is, when a granular gas cools down.

Note that although we address here dry granular particles,
they still can stick in collisions with a very small impact
velocity. Namely, if the normal component of the relative
velocity |v12 · e| is smaller than the sticking threshold,

gst =
√

4q0(π5γ 5D2)1/3

mε2

(σ

4

)4/3
,

where D = 3(1 − ν2)/2Y , q0 � 1.45, and γ is the adhesion
coefficient, the colliding particles cling together [42,43]; in
this case, the restitution coefficient drops to zero. In the present
study, we neglect these processes.

The velocity distribution function in granular gases usually
deviates from a Maxwellian distribution [18,19,21,44,45] and
may be described by the Sonine-polynomial expansion [8]:

f (v,t) = n

v3
T

f̃ (c,t),

(8)

f̃ (c,t) = π−3/2 exp(−c2)

⎡
⎣1+

∞∑
p=1

ap(t)Sp(c2)

⎤
⎦ ,

where c = v/vT and the Sonine polynomials read for d = 3

Sp(c2) =
p∑

k=0

(−1)k(1/2 + p)!

(1/2 + k)!(p − k)!k!
c2k. (9)

Hence the evolution of f (v,t) is completely determined by
the time dependence of the Sonine coefficients ap(t). The first
Sonine coefficient is trivial, a1 = 0, as it follows from the
definition of temperature, e.g., [8]; in the elastic limit, that is,
for a Maxwellian distribution, all Sonine coefficients are zero,
ap = 0. The Sonine coefficients characterize the successive
moments 〈c2k〉 of the velocity distribution function (8), so that
the first few moments read

〈c2〉 = 3

2
,

〈c4〉 = 15

4
(1 + a2), (10)

〈c6〉 = 105

8
(1 + 3a2 − a3).

It has been shown recently that for a granular gas with a
constant ε, the expansion (8) converges for small and moderate
dissipation, up to ε � 0.6, but breaks down otherwise [46]. For
a moderate dissipation, it is sufficient to consider only the first
two nontrivial coefficients a2 and a3, which have been studied
both analytically [21,44,46,47] and by means of computer
simulations [15,18,19,46–49].

The theory developed for a granular gas with a constant ε

in a homogeneous cooling state predicts a rapid relaxation
of ap to steady-state values, which depend on ε [21,46].
After a certain time, spatial structures, such as vortices and
clusters, spontaneously arise in such a granular gas [12–19].
The velocity distribution function becomes effectively Gaus-
sian, which happens due to an averaging over a large number
of independent clusters, where particle velocities are approx-
imately parallel; ap, however, shows very strong fluctuations
around zero mean values [18,19]. In a granular gas, comprised
of viscoelastic particles, clusters and vortices appear only
as transient phenomena [50]; moreover, cluster formation is
completely suppressed in a granular gas, orbiting a massive
body in its gravitational potential—a typical example of such
systems is a Kepler disk in astrophysics [29].

In contrast to the case of a constant ε, the evolution of the
velocity distribution function in a gas of viscoelastic particles
demonstrates a complicated nonmonotonous time dependence
[51,52]. Typically, the magnitudes of the Sonine coefficients
first increase with time, reach maximal values, and finally tend
to zero, so that asymptotically the Maxwellian distribution
is recovered [51,52]. This simply follows from the fact that
the collisions become more and more elastic as temperature
decreases. Although the time dependence of a2(t) and a3(t)
in a force-free granular gas of viscoelastic particles has been
studied theoretically in [52], the respective analysis for heated
gases is still lacking. Moreover, the evolution of the velocity
distribution function and its properties in such gases have been
never studied numerically by means of MD either for force-free
or for driven systems. Hence, it is still not known how accurate
the theory is for the velocity distribution function in this case
and what is the range of convergence of the Sonine series with
respect to the dissipation parameter δ.
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Another interesting question refers to the possibility of
a simplified description of a granular gas of viscoelastic
particles using an effective constant restitution coefficient:
While it is known that the model of a constant ε fails
qualitatively to describe a complicated evolution of such
gas in a homogeneous cooling state [50], it is still not
clear how accurate could be the respective description for
the case of a driven system. Also, it would be interesting
to check whether a model of a “quasiconstant” restitution
coefficient, where ε does not depend on an impact velocity but
depends on current temperature, may be used for a force-free
gas.

In the present study, we perform thorough large-scale event-
driven MD simulations of the velocity distribution function
in a gas of viscoelastic particles, both in a homogeneous
cooling state and under a uniform heating. We develop a
theory for f (v,t) for driven gases and observe that our MD
results for a2(t) and a3(t) are in excellent agreement with
theoretical predictions of [52] for the HCS and of the novel
theory for driven systems. We report simulation results for
the high-order Sonine coefficients a4 and a5, which can
barely be obtained from the kinetic theory. The analysis of
these coefficients allows us to assess the convergence of the
Sonine series. We also analyze the model of a “quasiconstant”
restitution coefficient εeff and show that it can be used for
an accurate description of a granular gas if dissipation is not
large.

The paper is organized as follows. In Sec. II we develop
a theory for the velocity distribution function for uniformly
heated gases, that is, we compute time-dependent Sonine
coefficients a2(t) and a3(t). In Sec. III we derive an effective
“quasiconstant” restitution coefficient εeff . In Sec. IV we report
our MD results for a force-free and heated gas of viscoelastic
particles. In Sec. V the theoretical predictions are compared
with simulation results and the accuracy of the theory, based
on εeff , is scrutinized. Finally, in Sec. VI we summarize our
findings.

II. VELOCITY DISTRIBUTION FUNCTION FOR
UNIFORMLY HEATED GAS

Assuming the molecular chaos, which is an adequate
hypothesis for dilute granular gases addressed here, e.g.,
[8], we can write the Boltzmann-Enskog (BE) equation,
supplemented by the diffusive Fokker-Planck term, which
mimics a uniform heating [21],

∂f (v,t)

∂t
= g2(σ )I (f,f ) + ξ 2

0

2

∂2

∂v2
f (v,t). (11)

Here I (f,f ) is the collision integral and g2(σ ) is the contact
value of the pair correlation function that takes into account
the excluded volume effects [8]. For the scaling distribution
function f̃ (c,t) [cf. Eq. (8)], the above equation reads

∂f̃

∂t
− 1

vT

dvT

dt
(3f̃ + c

∂f̃

∂c
) = g2σ

2nvT Ĩ + 1

v2
T

ξ 2
0

2

∂2

∂c2
f̃ ,

(12)

where Ĩ (f̃ ,f̃ ) = σ−2n−2v2
T I (f,f ) is the dimensionless colli-

sion integral, defined as

Ĩ (f̃ ,f̃ ) =
∫

dc2

∫
de �(−c12 · e )| − c12 · e |

× [χf̃ (c ′′
1 ,t)f̃ (c ′′

2 ,t) − f̃ (c1,t)f̃ (c2,t)], (13)

with c ′′
1 and c ′′

2 being the (reduced) precollision velocities in
the so-called inverse collision, resulting in the postcollision
velocities c1 and c2 [8]. The Heaviside function �(−c12 · e )
selects the approaching particles and the factor χ equals the
product of the Jacobian of the transformation (c ′′

1 , c ′′
2 ) →

(c1, c2) and the ratio of the lengths of the collision cylinders
of the inverse and the direct collisions [8]:

χ ≡ |c ′′
12|

|c12|
D(c ′′

1 ,c ′′
2 )

D (c1,c2)
. (14)

Now we substitute the Sonine-polynomial expansion for
f̃ (c,t) [Eq. (8)] into Eq. (12) and neglect all terms with p > 3.
Multiplying the resulting equation with c2

1, c4
1, and c6

1, and
integrating over c1, we obtain

∂〈c2〉
∂t

+ 1

T

dT

dt
〈c2〉 = −

√
2T

m
g2(σ )σ 2nμ2 + 3

mξ 2
0

2T
,

∂〈c4〉
∂t

+ 2

T

dT

dt
〈c4〉 = −

√
2T

m
g2(σ )σ 2nμ4 + 10〈c2〉mξ 2

0

2T
,

∂〈c6〉
∂t

+ 3

T

dT

dt
〈c6〉 = −

√
2T

m
g2(σ )σ 2nμ6 + 24〈c4〉mξ 2

0

2T

. (15)

Here,

μp = −
∫

dc cpĨ (f̃ ,f̃ ) (16)

is the pth moment of the dimensionless collision integral.
The moments μp can be calculated analytically up to O(δ10)
using a formula manipulation program as explained in detail
in Ref. [8]. They can be written as follows:

μp =
20∑

k=0

(
M

(p, 0)
k + M

(p, 2)
k a2 + M

(p, 3)
k a3

+M
(p, 22)
k a2

2 + M
(p, 33)
k a2

3 + M
(p, 23)
k a2a3

)
δk/2(2u)k/20.

(17)

The numerical values of the coefficients M
(p, i)
k for μp with

p = 2,4,6 are given in the Appendix, Tables II–IV.
Let us define the dimensionless time τ = t/τc(0), where

τ−1
c (t) = 4

√
πg2(σ )σ 2n

√
T (t)

m
. (18)

Using Eqs. (10), which express the moments of the reduced
velocity 〈c2k〉 in terms of the Sonine coefficients ak , we recast
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Eqs. (15) into the following form:

du

dτ
= −

√
2μ2

6
√

π
u

3
2 + K

4
,

da2

dτ
=

√
2
√

u

3
√

π
μ2 (1 + a2) −

√
2

15
√

π
μ4

√
u − Ka2

2u
, (19)

da3

dτ
=

√
u√

2π
μ2(1 − a2 + a3)

−
√

2

5
√

π
μ4

√
u + 2

√
2u

105
√

π
μ6 − 3a3K

4u
,

where the moments μp, p = 2, 4, 6 are the functions of
the Sonine coefficients a2,a3 and known numerical constants
M

(p, i)
k , Eq. (17). The constant K reads

K = m3/2ξ 2
0√

πg2(σ )σ 2nT
3/2

0

. (20)

Equations (19) describe the evolution of temperature
and the velocity distribution function for a heated gas of
viscoelastic particles. For K = 0, that is, for ξ 2

0 = 0, Eqs. (19)
reduce to corresponding equations of Ref. [52], which describe
evolution of a2 and a3 in a force-free gas.

When a heated gas settles in a steady state, the granular
temperature and the velocity distribution function become
time-independent. Then Eqs. (19) yield the algebraic equa-
tions for the steady-state temperature and moments μp,
p = 2,4,6:

Ts.s. =
[

3

2
√

2

ξ 2
0 m3/2

μ2g2(σ )σ 2n

]2/3

, (21)

μ4 = 5μ2, (22)

μ6 = 105

4
μ2(1 + a2). (23)

Solving this system in the linear approximation with respect to
the dissipation parameter δ, we obtain the steady-state Sonine
coefficients,

as.s.
2 = −A2δ, A2 = 21/5 157

500
�

(
21

10

)
C1 � 0.435, (24)

as.s.
3 = −A3δ, A3 = 21/5 28

500
�

(
21

10

)
C1 � 0.078. (25)

The above expressions for a2 and a3, together with Eq. (17)
for μ2, yield the corresponding analytical expression for the
steady-state temperature Ts.s..

III. EFFECTIVE RESTITUTION COEFFICIENT

The expression (5) for the restitution coefficient gives this
quantity for a collision with a particular impact velocity. A
natural question arises: Is it possible to define an average value
of ε, which characterizes the whole ensemble and may be
exploited as an effective constant restitution coefficient εeff

for all impacts? This, however, should depend on the current
temperature of a granular gas; see Eq. (5). Since εeff describes
the collisions, it is natural to define this as a “collision average,”
e.g. [41],

εeff =
∫

dv1dv2def1f2 |v12 · e| � (−v12 · e) ε (|v12 · e|)∫
dv1dv2def1f2 |v12 · e| � (−v12 · e)

,

where the velocity distribution functions f1 = f (v1,t) and
f2 = f (v2,t) are given by Eq. (8). The integral in the above
equation can be calculated up to O(δ10) using a formula
manipulation program as explained in detail in Ref. [8].
Neglecting in the Sonine expansion (8) for f1 and f2 the
high-order coefficients ap with p � 4, we obtain

εeff(t) = 1 +
Nε∑
k=1

[
δk/2(2u)k/20 Bk + B

(2)
k a2 + B

(3)
k a3 + B

(22)
k a2

2 +B
(33)
k a2

3 + B
(23)
k a2a3

1 + B
(2)
0 a2+B

(3)
0 a3 + B

(22)
0 a2

2 + B
(33)
0 a2

3 + B
(23)
0 a2a3

]
(26)

with the numerical coefficients Bk and B
(i)
k given in the

Appendix, Table I. The above expression, although general,
is rather involved. If we neglect the dependence of εeff on the
Sonine coefficients (that is, perform the collision averaging of
ε with a Maxwellian distribution), Eq. (26) reduces to

εeff(t) = 1 +
Nε∑
k=1

Bk δk/2 [2T (t)/T0]k/20 , (27)

where the above coefficients Bk may also be written in a
compact analytical form,

Bk = hk

21+ k
20

2 + k
10

�

[
2 + k

20

]
. (28)

Here �(x) is the Gamma function. We wish to stress again
that in contrast to the impact-velocity-dependent coefficient ε,
Eq. (5), the above restitution coefficient εeff is the same for
all collisions. Its dependence on the dissipation parameter δ

is shown in Fig. 1 for different Nε. As it follows from this
figure, the series (27) demonstrates an excellent convergence
for δ � 0.5. In what follows, we will use the number of terms
in the expansion (27) equal to Nε = 20, which guarantees an
accurate description of the effective restitution coefficient εeff

for the dissipative parameter δ up to δ � 0.5, that is, for a
rather large dissipation.

The system of equations, Eqs. (19), may also be used
for a constant restitution coefficient, or, equally for the
quasiconstant coefficient εeff , Eq. (26), provided the respective
moments μp are expressed in terms of a2, a3, and εeff , as it
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follows for the case of a constant ε [46]. We write these in the
following form:

μ2 = 1

16384

√
2π

(
1 − ε2

eff

)(
35a2

3 + 144a2
2

+ 120a2a3 + 3072a2 + 256a3 + 16 384
)
,

μ4 = 1

32768

√
2π (1 + εeff)

3∑
k=0

(
N

(4, 0)
k + N

(4, 2)
k a2

+N
(4, 3)
k a3 + N

(4, 22)
k a2

2 + N
(4, 33)
k a2

3 + N
(4, 23)
k a2a3

)
εk

eff,

μ6 = − 3

262 144

√
2π (1 + εeff)

5∑
k=0

(
N

(6, 0)
k + N

(6, 2)
k a2

+N
(6, 3)
k a3 + N

(6, 22)
k a2

2 + N
(6, 33)
k a2

3 + N
(6, 23)
k a2a3

)
εk

eff

(29)

with the coefficients N
(p, i)
k for p = 4,6 listed in the Appendix,

Table V.
Using Eqs. (19) and Eqs. (29) together with Eq. (26), one

can find the temperature of a gas and the Sonine coefficients
a2 and a3. Ultimately, εeff as a function of current temperature,
as it follows from Eq. (26), may be found. This, however, is
very close to the simplified form (27), so that the difference
between the results, obtained with the use of the complete
expression (26) and the simplified one, (27), can hardly be
distinguished in the figures (see Fig. 2). Hence, for practical
purposes one can safely use the simple expression (27) for the
effective quasiconstant restitution coefficient.

IV. EVENT-DRIVEN SIMULATIONS

A. Force-free gas

We perform event-driven MD simulations [53] of a granular
gas of smooth viscoelastic particles with the restitution
coefficient (5). The grains are modeled as identical hard
spheres of mass m = 1 and diameter σ = 1. In event-driven
simulations, particles move freely between pairwise collisions,
where the velocities of the grains are updated according to
Eq. (2). We use the system of N = 2.048 × 106 particles
placed in a three-dimensional cubic box with the edge L =
418, which corresponds to the number density of n = 0.028.

FIG. 1. An effective normal restitution coefficient εeff , obtained as
a “collision average” for T = T0 and different values of Nε [Eq. (27)].

FIG. 2. Evolution of the average normal restitution coefficient,
obtained in the MD simulations (symbols), and of the effective
“quasiconstant” restitution coefficient εeff , given by Eq. (26) (gray
lines) and Eq. (27) (black lines). The difference between solutions
of Eqs. (26) and (27) is shown in the inset (for heated case) and is
not visible in the main plot. The dissipation constant δ = 0.3. The
dimensionless time τ = t/τc(0) is expressed in terms of the initial
mean collision time τc(0), Eq. (18). Note that the restitution coefficient
tends to unity in the homogeneous cooling state and to a steady-state
value for the heated gas.

This number density is rather small, which safely allows us to
approximate the contact value of the correlation function by
unity, g2(σ ) � 1. Periodic boundary conditions are applied in
all three directions.

The system was initialized by randomly placing particles
in the box. For initial particle velocities, randomly directed
vectors of the same length have been assigned. The initial
total momentum

∑
i mvi(0) was in this case with a high

accuracy zero. We start with ε = 1, which corresponds to
elastic collisions, and allow the system to relax to a Maxwellian
velocity distribution, which used to happen in a few collisions
per particle. Hence, a homogeneous system with a Maxwellian
distribution was an initial condition for each MD run; then
we evolve the system with a velocity-dependent restitution
coefficient (5). In simulations we used the initial granular
temperature T (0) = 400/3 with the corresponding initial
mean collision time τc(0) = 0.436. All statistical quantities
presented here have been obtained as averages over 25
independent runs. We have confirmed that the system remains
approximately homogeneous during our simulations and that
the molecular chaos hypothesis holds true with a high
degree of accuracy, as it used to be in dilute gases; see,
e.g., [54].

In Fig. 2, we plot the time dependence of the current average
of the restitution coefficient; this was obtained averaging ε over
(N/20) successive particles collisions. As it follows from the
figure, the average restitution coefficient is in good agreement
with the theoretical prediction for the effective “quasiconstant”
coefficient εeff , Eq. (27), for both freely evolving and heated
granular gases.

In Fig. 3, we present simulation results for the time
dependence of the reduced granular temperature u(τ ) on the di-
mensionless time τ = t/τc(0), expressed in terms of the initial
mean collision time τc(0), Eq. (18). In a HCS, temperature de-
cays asymptotically as the power law u(τ ) ∼ τ−5/3 [8,51,52],
while in a heated gas it relaxes to a steady-state value.
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FIG. 3. Evolution of the reduced granular temperature u(τ ) =
T (τ )/T (0) for the force-free and heated granular gases. The dis-
sipation parameter δ = 0.3. The symbols denote simulation results
and thin black lines denote theory [numerical solution of Eqs. (19),
where μp are given by Eqs. (17)]. For τ � 1, T/T (0) ∼ τ−5/3 for a
force-free gas and T → Ts.s. for a heated gas. Thick gray lines depict
the theoretical predictions for temperature of a granular gas with a
“quasiconstant” restitution coefficient εeff (t) [numerical solution of
Eqs. (19), where μp are given by Eqs. (29) and εeff (t) by Eq. (27)].

Next, we analyze the evolution of the velocity distribution
function, characterized by the time-dependent Sonine coeffi-
cients [cf. Eq. (8)]. To calculate a2 and a3 numerically, we
compute the moments of the velocity distribution function
〈c2k〉 and use Eqs. (10). In Fig. 4, we show the evolution
of a2 and a3 for a force-free gas for δ = 0.15, while in
Fig. 5 the respective simulation data for the Sonine coefficients
a2, a3, a4, and a5 for δ = 0.1 and 0.3 are given.

B. Uniformly heated gas

The equation of motion for the ith particle in a white-
noise thermostat, that is, for the gas under a uniform heating,
reads

m
dvi

dt
= Fcoll

i + Fext
i . (30)

FIG. 4. Evolution of a2 and a3 for the force-free and heated
granular gases with δ = 0.15. The symbols correspond to simulation
results, the lines to our theory [numerical solution of Eqs. (19), where
μp are given by Eqs. (17)].

Here Fcoll
i is the force acting on the ith particle only in a

pairwise collision with another gas particle, while Fext
i is

the external force acting from the thermostat. Since we use
the event-driven simulations [53], we do not need to solve
explicitly the equation of motion for colliding particles with
the forces Fcoll. Instead, we directly apply the collision rules
(2) and write the after-collision velocities, expressed in terms
of the precollision ones with the restitution coefficient ε,
Eq. (5) [8,53]. For the external force Fext we use the model of
a Gaussian white noise:〈

Fext
i (t)

〉 = 0,
〈
F ext

i,α (t)F ext
j,β(t ′)

〉 = m2ξ 2
0 δij δαβδ(t − t ′),

(31)

where α,β = x,y,z, and ξ 2
0 characterizes the magnitude of the

stochastic force.
We apply the algorithm suggested in Ref. [31] (see also

[20,55]): During the event-driven simulations, we heat the
system after a time step dt by adding to the velocity of each
ith particle a random increment, which mimics the heating by
noise,

vi,α(t + dt) = vi,α(t) + √
r
√

dtϕ, (32)

where α = x,y,z. The random number ϕ is uniformely dis-
tributed within the interval [−0.5, 0.5], and r is the amplitude
of the noise, r = 12ξ 2

0 . After the change in velocities, the
system is transferred to the center-of-mass frame,

vi = vi − 1

N

N∑
i=1

vi ,

to ensure the conservation of the momentum. In simulations
we used r = 0.1 and dt = 0.1, which implies that the random
kicking interval is small as compared to the mean free time.
The number of particles and the system size were the same as in
the force-free simulations; the initial conditions have also been
prepared as in the force-free case. All statistical quantities were
obtained as averages over 10 independent runs. The results are
presented in Figs. 2–5, in which we show evolution of the
average restitution coefficient (Fig. 2), of temperature (Fig. 3),
and of the Sonine coefficients (Figs. 4 and 5).

V. RESULTS AND DISCUSSION

Let us compare the results of the MD simulations with
the predictions of our theory. As we already mentioned, the
current average of the restitution coefficient, obtained by a
straightforward averaging of ε in successive collisions, is in
good agreement with the theoretical value of the effective
quasiconstant restitution coefficient εeff , found as a collision
average from the kinetic theory, Fig. 2. In Fig. 3, the evolution
of granular temperature is shown. As it follows from the
figure, during the early stages of cooling, the temperature
of a heated granular gas evolves in the same way as the
respective force-free gas with the same δ. However, while the
temperature of the heated gas settles at a steady-state value,
the force-free gas continues to cool down. The results of our
theory [numerical solution of a system of differential equations
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(a)

(b)

(c)

(d)

FIG. 5. Evolution of the Sonine coefficients ak (k = 2,3,4,5) for a force-free (a,b) and uniformly heated (c, d) granular gas with δ = 0.1
(a,c) and δ = 0.3 (b,d). The symbols correspond to the MD simulation results and the thin black lines to the theory [numerical solution of Eqs.
(19), where μp are given by Eqs. (17)]. Thick gray lines depict theoretical predictions [numerical solution of Eqs. (19), where μp are given by
Eqs. (29)] for a granular gas with a “quasiconstant” restitution coefficient εeff (t), Eq. (27).

(19), where moments of collisional integral μp are given by
Eqs. (17)] are in excellent agreement with the simulation
data for both the homogeneous cooling state and uniformly
heated gas. Moreover, the kinetic theory based on the effective
quasiconstant restitution coefficient εeff [numerical solution of
Eqs. (19), where μp are given by Eqs. (29)] yields almost the
same accuracy for the description of granular temperature as
the complete theory.

In Fig. 4, the evolution of the Sonine coefficients a2 and a3

is presented for the force-free and heated gas with δ = 0.15.
At the initial stage of evolution, for τ � 100, the values
of a2 and a3 in a heated and force-free gas are practically
indistinguishable. At later times, the Sonine coefficients for
the heated gas settle at the steady state [cf. Eqs. (24) and (25)].
For the freely evolving gas they continue to decay and evolve
as follows: Starting from zero, ak(0) = 0 (k = 1,2, . . .), which
corresponds to the initial Maxwellian distribution, a2 and a3

decrease, reach a minimum, and eventually return back to
zero; see Fig. 4. As the thermal velocity decreases during
the gas cooling, the behavior of the system tends to that of
a gas of elastic particles, that is, the velocity distribution
tends asymptotically to a Maxwellian distribution. For both
the force-free and heated gases, our theory agrees perfectly
with the computer simulations.

To investigate the convergence of the Sonine-polynomial
expansion (8), we analyze the high-order Sonine coefficients,

a4 and a5. In Fig. 5(a), the simulation data for the time depen-
dence of a2, a3, a4, a5 along with the analytical predictions
for a2 and a3 are shown. As it may be seen from Fig. 5(a),
a4 and a5 evolve in a similar fashion as a2 and a3, that is,
their magnitudes first increase, reach a maximum, and relax
back to zero. Certainly this is not surprising, since it is a
simple manifestation of the fact that the system starts from
a Maxwellian velocity distribution due to initial conditions
and returns to it later, when the collisions become elastic.
Furthermore, a4 is an order of magnitude smaller than a3,
while a5 is ∼102 times smaller than a2. This confirms the
convergence of the Sonine-polynomial expansion for the
velocity distribution, at least for these values of δ. In this
figure, we also show, in addition to the predictions of the
complete theory, theoretical results for the case of an effective
quasiconstant restitution coefficient εeff(t). Again we see that
the accuracy of the simplified theory, based on the effective
εeff(t), is surprisingly good.

In Fig. 5(b), the evolution of the Sonine coefficients for
the larger dissipation, δ = 0.3, is illustrated. The behavior of
the coefficients is qualitatively the same as for the smaller
δ. Moreover, the subsequent coefficients ak decrease by an
order of magnitude with increasing k, which again indicates
the convergence of the Sonine-polynomial expansion for this
dissipation. At the same time, a rather noticeable discrepancy
between the kinetic theory and the MD results is obvious. In the
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earlier work [52], two of us have reported that the expansion (5)
for ε with Nε = 20 does not yield an acceptable accuracy for
the Sonine coefficient a2 and a3 for δ � 0.3 (when the complete
theory is used). The discrepancy between the theoretical curves
and the simulation data, seen in Fig. 5(b), seemingly supports
this theoretical conclusion.

Figure 5(c) demonstrates the convergence of the Sonine-
polynomial expansion for heated granular gases. As in
Fig. 5(a), we plot here the dependence of a2, a3, a4, and a5

on τ for δ = 0.1. It may be seen that the successive Sonine
coefficients decrease by an order of magnitude, which clearly
indicates the convergence of this series. As has been already
mentioned in the discussion of Fig. 4, our complete theory is
in perfect agreement with the simulation data for the heated
gas, but here we also notice that the simplified model with a
quasiconstant restitution coefficient εeff gives a rather accurate
description of the evolution of a2 and a3 too.

Finally, in Fig. 5(d), we plot the time dependence of
a2, a3, a4, and a5 for a heated gas with relatively large
dissipation, δ = 0.3. In this case, one can again see a noticeable
discrepancy between our theory and the numerical results
[cf. Fig. 5(b) for the freely evolving gas]. Nevertheless, the
smallness of the high-order coefficients a4 and a5 seemingly
manifests the convergence of the Sonine series. Interestingly,
although the simulation data deviate from the theoretical
curves during the relaxation to the steady state, in the steady
state itself the numerical and theoretical values of the complete
theory for the Sonine coefficients a2 and a3 are very close; see
Fig. 5(d) for τ > 103. At the same time, the results of the
simplified model of the quasiconstant restitution coefficient
εeff do not agree well with the MD results at the steady state
for this dissipation.

VI. CONCLUSION

To date, most studies of granular gases have been focused
on systems with a constant restitution coefficient, although
the basic physics requires impact-velocity dependence of
ε. Here we studied numerically, by means of molecular
dynamics, and theoretically a granular gas of particles with
the impact-velocity-dependent restitution coefficient, as it
follows from the simplest first-principles model of viscoelastic
spheres. Since the impact-velocity dependence of ε signifi-
cantly complicates the description of a granular gas dynamics,
we tried to develop a simplified collision model. Namely,
we considered a model in which ε is the same for all
collisions but depends on the current value of the thermal
velocity of the gas, or, equally, on granular temperature. Using
the collision average of the kinetic theory, we obtained an
explicit expression for this quasiconstant restitution coefficient
εeff[T (t)].

We explored the evolution of granular temperature and the
velocity distribution function in large-scale MD simulations
of force-free and uniformly heated gases, and we developed
a theory of the velocity distribution function f (v,t) for the
case of driven gases. In the MD simulations, we found a few
first Sonine coefficients a2, a3, a4, and a5, which quantify
deviations of f (v,t) from a Maxwellian distribution, and we
noticed that the successive-order Sonine coefficients decrease
by an order of magnitude with respect to the preceding ones.

In other words, we observed that a3 is approximately 10 times
smaller than a2, a4 is 10 times smaller than a3, and a5 is 10
times smaller than a4. This implies the convergence of the
Sonine series for both heated and force-free gases in the range
of dissipation studied.

We obtained theoretical predictions for a2 and a3 using
the complete theory and the one based on an effective
quasiconstant restitution coefficient εeff . We found that the
results of our complete theory for granular temperature are
in very good agreement with the simulation data for both
force-free and heated gases. Furthermore, if dissipation is
not large, δ = 0.1 or 0.15, the dependence on time of the
Sonine coefficient, obtained in simulations, is also in excellent
agreement with the theoretical predictions of the complete
theory for a homogeneous cooling state (the previously
existing theory) as well as for a uniform heating (the novel
theory). At the same time for large dissipation, δ = 0.3, a
noticeable discrepancy between the theoretical and numerical
curves is observed, especially for the homogeneous cooling;
deviations for the uniform heating are also noticeable but
less pronounced. Moreover, the steady-state values of a2 and
a3 are given rather accurately by the new theory for heated
gases.

We also analyzed the accuracy of the simplified model
based on the effective quasiconstant restitution coefficient
εeff(t). We have observed that this model can accurately de-
scribe the evolution of temperature for all studied dissipations
and of the velocity distribution function, provided dissipation
is not large, for both, force-free and heated gases. However, for
large dissipation the simplified model allows only a qualitative
description of f (v,t) and fails to provide a quantitative one.
Still we wish to stress that the simple model, where εeff(t) is
determined by the granular temperature and material properties
of the grains, may be important for applications. Indeed, the
description of a granular gas dynamics for the case of a constant
restitution coefficient is significantly simpler than that of an
impact-velocity-dependent ε.
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APPENDIX: NUMERICAL COEFFICIENTS

The effective restitution coefficient εeff and moments of
the dimensionless collision integral μp = − ∫

dc cpĨ (f̃ ,f̃ ),
where p = 2,4,6, can be calculated using a formula manipu-
lation program as explained in detail in Ref. [8]. In Table I, we
present coefficients B

(i)
k which define εeff [Eqs. (27) and (26)].

In Tables II–IV, we give numerical values of the coefficients
M

(p,i)
k for μp(p = 2,4,6) [Eqs. (17)] in the case of a granular

gas of viscoelastic particles and in Table V–the coefficients
N

(p,i)
k for μp(p = 4,6) [Eqs. (29)] for a granular gas with a

constant restitution coefficient.
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TABLE I. Numerical coefficients Bk and B
(i)
k for calculation of the effective quasiconstant restitution coefficient εeff [Eqs. (26) and (27)].

k Bk B
(2)
k B

(3)
k B

(22)
k B

(33)
k B

(23)
k

0 −0.0625 −0.0156 −0.0146 −0.0064 −0.017
1 0 0 0 0 0 0
2 −1.176 0.07 0.016 0.0148 0.00616 0.0168
3 0 0 0 0 0 0
4 0.84 −0.044 −0.0096 −0.00826 −0.00326 −0.009
5 0.287 −0.0135 −0.0028 −0.00237 −0.00091 −0.0026
6 −0.578 0.0231 0.0046 0.0038 0.00142 0.0041
7 −0.524 0.0167 0.0032 0.00258 0.000937 0.0027
8 0.408 −0.00919 −0.00168 −0.00133 −0.00047 −0.0014
9 0.547 −0.0065 −0.0011 −0.00087 −0.0003 −0.00089
10 −0.184 0 0 0 0 0
11 −0.479 −0.0063 −0.00099 −0.000727 −0.000235 −0.00072
12 −0.0586 −0.00161 −0.00024 −0.00017 −0.000054 −0.00017
13 0.398 0.017 0.00243 0.00169 0.00051 0.0016
14 0.218 0.013 0.00175 0.00118 0.00035 0.0011
15 −0.277 −0.022 −0.0027 −0.00178 −0.00051 −0.0016
16 −0.289 −0.028 −0.00329 −0.002 −0.00058 −0.0019
17 0.112 0.0133 0.0014 0.00089 0.00024 0.00079
18 0.308 0.043 0.0043 0.00258 0.00067 0.0022
19 0.0478 0.0078 0.00071 0.00042 0.0001 0.00035
20 −0.276 −0.0517 −0.0043 −0.0024 −0.00059 −0.002

TABLE II. Numerical coefficients for μ2 for a gas of viscoelastic particles [Eqs. (17)].

k M
(2, 0)
k M

(2, 2)
k M

(2, 3)
k M

(2, 22)
k M

(2, 33)
k M

(2, 23)
k

0 0 0 0 0 0 0
1 0 0 0 0 0 0
2 6.49 1.56 0.10 0.054 0.012 0.044
3 0 0 0 0 0 0
4 −9.29 −2.76 −0.14 −0.067 −0.014 −0.052
5 −1.80 −0.59 −0.025 −0.012 −0.0023 −0.0087
6 10.40 3.74 0.12 0.056 0.011 0.041
7 5.91 2.32 0.058 0.025 0.0047 0.018
8 −10.44 −4.46 −0.074 −0.031 −0.0055 −0.021
9 −10.53 −4.88 −0.04 −0.016 −0.0028 −0.011
10 8.77 4.39 −6.28 × 10−8 1.57 × 10−7 −6.91 × 10−7 −1.10 × 10−6

11 14.13 7.60 −0.063 −0.023 −0.0036 −0.015
12 −4.54 −2.62 0.044 0.015 0.0023 0.0093
13 −16.37 −10.12 0.25 0.080 0.012 0.050
14 −1.58 −1.04 0.035 0.010 0.0015 0.0063
15 16.74 11.77 −0.49 −0.14 −0.018 −0.08
16 8.09 6.05 −0.30 −0.079 −0.01 −0.045
17 −14.29 −11.33 0.66 0.16 0.02 0.089
18 −13.91 −11.69 0.779 0.175 0.02 0.0935
19 8.82 7.83 −0.59 −0.12 −0.013 −0.063
20 18.13 16.99 −1.42 −0.27 −0.028 −0.13
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TABLE III. Numerical coefficients for μ4 for a gas of viscoelastic particles [Eqs. (17)].

k M
(4, 0)
k M

(4, 2)
k M

(4, 3)
k M

(4, 22)
k M

(4, 33)
k M

(4, 23)
k

0 0 10.03 −2.51 0.31 0.049 0.16
1 0 0 0 0 0 0
2 36.32 46.85 −6.50 −0.29 −0.015 −0.14
3 0 0 0 0 0 0
4 −71.50 −100.66 16.09 0.59 0.029 0.25
5 −10.36 −15.39 2.66 0.077 0.0034 0.032
6 116.21 170.73 −29.24 −0.98 −0.054 −0.39
7 45.69 73.09 −13.997 −0.275 −0.012 −0.105
8 −169.5 −260.38 47.12 1.01 0.055 0.37
9 −117.70 −196.09 39.54 0.34 0.016 0.12
10 219.56 354.27 −67.36 9.42 × 10−7 −9.59 × 10−5 2.20 × 10−6

11 234.61 406.45 −85.03 0.94 0.042 0.30
12 −240.62 −406.38 79.92 −2.49 −0.11 −0.75
13 −398.72 −724.58 157.86 −6.21 −0.248 −1.76
14 198.27 345.6 −67.8 5.33 0.22 1.42
15 597.98 1147.26 −261.54 19.24 0.66 4.81
16 −57.49 −83.78 7.19 −3.89 −0.149 −0.91
17 −797.17 −1618.27 386.31 −43.42 −1.25 −9.41
18 −208.15 −471.79 132.09 −11.56 −0.26 −2.31
19 935.74 2010.21 −501.69 77.96 1.81 14.30
20 604.56 1387.68 −379.52 55.88 1.1 9.31

TABLE IV. Numerical coefficients for μ6 for a gas of viscoelastic particles [Eqs. (17)].

k M
(6, 0)
k M

(6, 2)
k M

(6, 3)
k M

(6, 22)
k M

(6, 33)
k M

(6, 23)
k

0 0 112.80 −84.60 −4.93 0.022 −0.82
1 0 0 0 0 0 0
2 209.94 633.78 −245.02 16.75 0.26 2.23
3 0 0 0 0 0 0
4 −525.04 −1718.36 717.54 −48.53 −0.45 −4.85
5 −61.21 −203.84 86.30 −7.2 −0.061 −0.60
6 1097.057 3731.6 −1607.5 133.88 0.64 8.93
7 338.22 1206.7 −544.06 46.04 0.18 2.3
8 −2042.4 −7140.7 3126.2 −347.5 −0.75 −11.58
9 −1116.58 −4131.0 1913.43 −196.42 −0.21 −3.27
10 3412.0 12219.7 −5395.76 806.66 −0.0022 −0.0012
11 2856.1 10832.9 −5076.7 683.4 −0.647 −11.39
12 −5055.2 −18485.3 8165.6 −1634.9 3.29 54.5
13 −6187.9 −24012.3 11320 −2006.6 5.40 100.33
14 6435.9 23886 −10417.0 2818.3 −10.83 −187.9
15 11807 46936.9 −22224.5 5062.8 −21.37 −421.9
16 −6433.2 −23805.0 9879.0 −3867.0 21.14 386.7
17 −20203.4 −82418.7 39185.8 −11160.6 60.27 1302.07
18 3203.3 10084 −2516.6 3251.2 −23.5 −433.49
19 31188.6 130743.0 −62400.8 21721.9 −133.14 −3258.3
20 5784.3 29433.95 −17812.7 2307.9 −6.45 −384.65
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TABLE V. Numerical coefficients for μ4 and μ6 for a gas with a constant restitution coefficient [Eqs. (29)].

k N
(4, 0)
k N

(4, 2)
k N

(4, 3)
k N

(4, 22)
k N

(4, 33)
k N

(4, 23)
k

0 147456 277504 −46336 2192 455 1096
1 −147456 −211968 29952 −144 −135 −72
2 32768 30720 −2560 −480 −50 −240
3 −32768 −30720 2560 480 50 240

k N
(6, 0)
k N

(6, 2)
k N

(6, 3)
k N

(6, 22)
k N

(6, 33)
k N

(6, 23)
k

0 −1884160 −8496128 4311296 26448 −3113 4408
1 1884160 7054336 −3229952 10416 1193 1736
2 −720896 −2920448 1401856 52032 2396 8672
3 720896 2396160 −1008640 −2880 −860 −480
4 −131072 −286720 71680 −13440 −280 −2240
5 131072 286720 −71680 13440 280 2240
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