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We explore the consequences of a deterministic microscopic thermostat-reservoir contact mechanism. With
different temperature reservoirs at each end of a two-dimensional system, a heat current is produced and the
system has an anomalous thermal conductivity. The microscopic form for the local heat flux vector is derived
and both the kinetic and potential contributions are calculated. The total heat flux vector is shown to satisfy
the continuity equation. The properties of this nonequilibrium steady state are studied as functions of system
size and temperature gradient, identifying key scaling relations for the local fluid properties and separating bulk
and boundary effects. The local entropy density calculated from the local equilibrium distribution is shown to
be a very good approximation to the entropy density calculated directly from the velocity distribution even for
systems that are far from equilibrium. The dissipation and kinetic entropy production and flux are compared
quantitatively and the differing mechanisms discussed within the Bhatnagar-Gross-Krook approximation. For
equal-temperature reservoirs the entropy production near the reservoir walls is shown to be proportional to the
local phase space contraction calculated from the tangent space dynamics. However, for unequal temperatures,
the connection between local entropy production and local phase space contraction is more complicated.
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I. INTRODUCTION

The study of heat conduction in low-dimensional systems
has concentrated on one-dimensional lattices [1–4] and simpli-
fied Hamiltonian models that are amenable to solution [5–7].
The Hamiltonian models often consist of energy storage
devices which couple to each other through the motion of
tracer particles that carry the energy. Exceptions to this have
been rare, but one of these is the study of particle-based systems
using hard disks by Deutsch and Narayan [8], and others [9].
The other common features of these model systems are that
the thermal reservoirs are stochastic and are thus sources of
particles with velocities chosen from some distribution and
the reservoir is not mechanically coupled to the system. This
element of randomness has limited the approaches that could
be used to study heat conduction as a dynamical system [10].

In 2007 a new deterministic thermal reservoir was in-
troduced that coupled the quasi-one-dimensional system of
hard disks to temperature reservoirs by changing the collision
rule at the reservoir boundary [11]. For a collision with a
reservoir boundary the tangential y component of momentum
is unchanged but the normal x component after collision
becomes

p′
x = εpres − (1 − ε)px, (1)

where pres is a reservoir momentum related to the reservoir
temperature by pres = √

2Tres and ε is a reservoir coupling
parameter. As ε → 0 the system decouples from the reservoir
and the boundary becomes a hard wall, and as ε → 1 the
incoming momentum is replaced by the reservoir momentum.
A recent study of this system in contact with two reservoirs
of the same temperature [12] has shown that the active
mechanical coupling leads to entropy production near each
reservoir which then flows into the reservoir. These effects are
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local and involve a limited number of boundary layer particles
regardless of the system size.

Molecular dynamics simulations have proved a very effec-
tive means of testing theoretical approaches to the study of
fluids both in equilibrium, and in nonequilibrium steady states
[13]. Given a particular atomic pair interaction, the results
are free of approximations, with an accuracy limited only by
statistical considerations. It is usual to use the equipartition
theorem to define the kinetic temperature, so in a system of
N particles in d spatial dimensions the translational kinetic
energy is kT

2 per degree of freedom. We define instantaneous
local temperatures for each particle so that in two spatial
dimensions Ti,x = p2

i,x/m and Ti,y = p2
i,y/m, and then the

instantaneous system temperature is

T = 1

2N

N∑
i=1

(Ti,x + Ti,y) = 1

N

N∑
i=1

p2
i

2m
. (2)

In the absence of a temperature gradient the average 〈T 〉
gives the system temperature, but when there is a temperature
gradient the local time averages 〈Ti,x〉 and 〈Ti,y〉 give the
local temperatures which will be used to determine the
temperature profile inside the system. The difference between
the local components of the local temperature can be used to
give a measure of the deviation from local thermodynamic
equilibrium. We use Ti,x and Ti,y to define a local operational
temperature for a nonequilibrium system, but it is more usual
to attempt to connect the average local kinetic temperature
and the local thermodynamic temperature. The relationship
between this kinetic and the thermodynamic temperature is
only beginning to be explored [14–17].

For a quasi-one-dimensional (QOD) system we can extend
the idea of a kinetic temperature for a single atom to define
the local kinetic temperature in the average volume element
occupied by the particle, as the order of the particles is fixed.
Then we extend this idea to define other local thermodynamic
properties using the properties of the particle that occupies the
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volume element. In particular the velocity distribution of the
particle can be used to define the velocity distribution of the
volume element and then the thermodynamic properties that
are derived from it.

For equilibrium systems we expect a well-defined ther-
modynamic limit so that average properties converge with
increase of the system size. However, for nonequilibrium
systems a thermodynamic limit is not useful. If the temper-
atures of the two reservoirs are fixed and the system size is
increased then the temperature gradient goes to zero. If the
gradient is fixed then it is usual to observe a hydrodynamic
instability at some threshold system size where the system
behavior abruptly changes. Given this difficultly we consider
sequences of equivalent nonequilibrium systems of different
sizes or different gradients to obtain scaling relations which
remain correct in the regime before the onset of hydrodynamic
instability.

II. THE MODEL SYSTEM

In this section we introduce a simple deterministic micro-
scopic model for thermal coupling of a system of hard disks
to a reservoir which can be used with either an equilibrium
system or a nonequilibrium steady state, to supply or remove
heat. As this microscopic model couples mechanically and
deterministically to the system it may be probed as would be a
standard dynamical system, and energy and kinetic entropy
flows calculated numerically without approximations. The
mechanism has been introduced previously [11], and studied
by computer simulation and kinetic theory [18,19].

A. System dynamics

The quasi-one-dimensional system introduced in [20] can
be modified to interact with an idealized heat reservoir in a
deterministic and reversible way, to study both heat conduction
in low-dimensional systems [3] and the Lyapunov spectra
and mode structure. The deterministic reservoir allows the
calculation of the usual dynamical system properties as well
as the thermodynamic properties. This system contains hard
disks of diameter σ (which we set equal to 1) in a narrow
channel that does not allow the disks to change their positional
order; see Fig. 1. Therefore any property of particle i can be
associated with the same local property in the volume element
Vi = Ly(〈xi+1 − xi−1〉)/2, centered at the average position of
particle i, 〈xi〉; thus, for example, the local density is the inverse
of the average volume occupied by the particle, ρi = 1/Vi .

1 2 NTL TR

FIG. 1. (Color online) Schematic presentation of an N -hard-disk
quasi-one-dimensional system. The height Ly is sufficiently small
that the disks cannot pass one another. We choose the coordinate
origin to be located at the bottom left corner of the system, and the
periodic upper and lower system boundaries at y = 0,Ly are denoted
by dashed lines. The boundaries at x = 0 and x = Lx are the hard
walls of the reservoirs so this is an (H,P) QOD system.

The equations of motion connecting the QOD system to
the two reservoirs, one on the left-hand (LH) side at x = 0
and the other on the right-hand (RH) side at x = Lx define the
thermal contact so when a particle collides with a reservoir
wall the normal component of the momentum of the particle
px is changed as given in Eq. (1). For the LH reservoir
pres = pL is the fixed value of the reservoir momentum and
for the RH reservoir pres = −pR (note that the reservoir
momentum is always directed into the system). The reservoir
coupling parameter ε represents the strength of the coupling
of the reservoir to the system. If ε = 0 there is no interaction
with the reservoir, and if ε = 1 the incoming momentum is
completely replaced by the reservoir momentum. Here we use
an intermediate value of ε = 0.5 which provides an effective
mix of the incoming momentum with the reservoir momentum.
The system has a volume V = LxLy with a fixed width of
Ly = 1.15σ , and then Lx varies with the number of particles
N to give the desired density ρ = Nσ 2/(LxLy). As the QOD
system is narrow enough to prevent particles interchanging
their positions, Ly < 2σ , the order of the particles remains
fixed (both σ and the mass m are set to 1). The temperature
profile is determined from the average components of the
kinetic temperature of each particle [the average of Eq. (2)].

To produce a nonequilibrium steady state it is sufficient to
have reservoirs of different temperatures on each side of the
QOD system. The energy entering the system from a boundary
with reservoir momentum pres during a collision with a particle
of incoming momentum px is given by

�eI = 1

2

(
p′2

x − p2
x

)

= ε

2

[
εp2

res + 2(ε − 1)prespx + (ε − 2)p2
x

]
. (3)

The time average of this quantity gives the flux of energy into
the system so for a total system energy balance �eL must be
equal in magnitude but opposite in sign to �eR . The energy
flux is controlled by both pres and the value of ε, going to
zero as ε → 0 and the reservoirs become disconnected from
the system.

We choose the temperatures of the two reservoirs inde-
pendently, so the temperature of the left-hand-side reservoir
is TL > 2 and varies, and the temperature of the right-hand-
side reservoir is kept constant at TR = 2. This produces a
temperature gradient of ∇T = (TR − TL)/Lx so heat will flow
from the left-hand reservoir to the right-hand reservoir. An
overview of simulation state points is given in Table I.

B. Tangent space dynamics

The tangent space dynamics changes due to the changed
collision rule at each boundary [21] so that for a particular

TABLE I. The simulation state points. For each density ρ a small
and a large temperature gradient are considered. Generally, TR = 2
and groups of simulations are carried out with either ∇T fixed and
varying N (or equivalently ρ) or N fixed and varying ∇T .

ρ Small ∇T Large ∇T

0.03 −0.000431 −0.01380
0.8 −0.01150 −0.3680
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reservoir we have

δx ′ =
(

ε
pres

px

+ (ε − 1)

)
δx, (4)

δp′
x = (ε − 1)δpx, (5)

where pres is the value of the reservoir momentum. Notice
that both pL/px1 and pR/pxN are negative so the sign of δx ′
is opposite that of δx.

The time evolution of the QOD system in tangent space is an
infinite product of pairs of tangent matrices for a free flight Fi

and a collision Ci . The tangent space dynamics for an arbitrary
tangent vector δ�(0) can be written as δ�(t) = M(t)δ�(0)
where M(t) is a product of F and C matrices and the Lyapunov
exponents are the logarithms of the eigenvalues of

� = lim
t→∞[M(t)T M(t)]1/2t . (6)

For any free flight or particle-particle collision the tangent
matrix has a determinant that is equal to one. Only wall-particle
collision matrices have a determinant that depends upon ε

and differs from 1 so the dynamics becomes dissipative. The
dissipation from a single collision with a reservoir dI is given
by the determinant of the wall collision matrix CW

I as

dI = det CW
I = (ε − 1)

(
(ε − 1) + ε

pres

px

)
, (7)

where px is the incoming momentum of the colliding particle.
Note that the determinant approaches 1 as ε → 0, or as the
wall becomes purely reflective, and as pres/px is negative,
both terms in Eq. (7) are negative (0 � ε < 1), so their product
dI > 0. Combining Eqs. (6) and (7), the sum of the Lyapunov
exponents for the system becomes

2dN∑
j=1

λj = ln[det(�)] = νL〈dL〉 + νR〈dR〉, (8)

where νI is the collision frequency for reservoir I . As det CW
I

depends on px for both reservoirs, the angular brackets
represent an average over the incoming distribution of px

which in itself depends on the values of pres . Further, we can
calculate separately the components of dissipation associated
with each reservoir, and this gives more local information than
is available from the sum of Lyapunov exponents.

C. Microscopic heat flux vector

For a system of spherical particles the microscopic repre-
sentation for the instantaneous local heat flux vector at position
r and at time t is given by [13,22]

JQ(r,t) =
N∑

i=1

Uiviδ(r − ri)

− 1

2

N∑
i,j

rij Fij · [vi + u(ri) − u(r)]

×
∫ 1

0
dλδ(r − ri − λrij ), (9)

where Ui = 1
2m[vi − u(r)]2 is the internal energy of particle

i, u(r) is the local streaming velocity at r, and u(ri) is the

local streaming velocity at the position of particle i. For
this system the local streaming velocity is zero everywhere.
We define the vectors rij = rj − ri and pij = pj − pi . For
hard core particles the interaction force is an impulse Fij =
(r̂ij · vij )r̂ij δ(t − tij ), where tij is the time at which a collision
occurs between particles i and j , and r̂ij is the unit vector in
the direction of rij ; therefore Eq. (9) becomes

JQ(r,t) =
N∑

i=1

Uiviδ(r − ri)

− 1

2

N∑
i,j

r̂ij (r̂ij · vij )r̂ij · (vi + vj )δ(t − tij )

×
∫ 1

0
dλδ(r − ri − λrij ). (10)

Notice that if vi + vj = 0 there is no collisional energy transfer
so the transfer of energy is correlated with the fluctuations of
the pair momentum away from zero. In the integral, the δ

function moves along a line from the position of particle i, ri ,
to the position of particle j , rj , as λ goes from 0 to 1, so a
reasonable proposition is to assign half the potential contribu-
tion to each particle. This is analogous with assigning half the
potential energy of interaction to each particle. We can make
this more solid by considering the one-strip approximation to
the integral, that is, 1

2�[δ(r − ri) + δ(r − rj )] where the strip
width is � = ||r̂ij || = 1. Then Eq. (10) becomes

JQ(r,t) =
N∑

i=1

Uiviδ(r − ri)

− 1

4

N∑
i,j

r̂ij (r̂ij · vij )r̂ij · (vi + vj )δ(t − tij )

× [δ(r − ri) + δ(r − rj )]. (11)

In this form it is clear how the individual contributions are
assigned to each particle. The kinetic contribution is at ri

while there are two potential contributions, one at ri and the
other at rj .

We will be interested in the total heat flux JQ(t) obtained
as the volume integral of Eq. (11), and the local heat current
JQ(ri ,t) obtained from the integral over the volume assigned
to particle i, that is, the integral over Vi . For the total heat flux
all δ functions are contained within the integration region so

JQ(t)V =
N∑

i=1

Uivi − 1

2

N∑
i,j

r̂ij (r̂ij · vij )r̂ij

· (vi + vj )δ(t − tij ). (12)

For the QOD system the local heat flux has potential contri-
butions from two sources, either from a collision of particles
i and i + 1 or from a collision of particles i − 1 and i. The
result is

JQ(ri ,t)Vi = Uivi − 1

4

N∑
j∈{i−1,i+1}

r̂ij (r̂ij · vij )r̂ij

· (vi + vj )δ(t − tij ). (13)
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Clearly the time averages of these two heat currents are the
physically important quantities as the heat current must satisfy
a continuity equation. But the continuity equation states that for
the QOD system, on average, the same amount of heat passes
through any vertical line regardless of its position. Returning
to the heat current density in Eq. (9), we can define the heat
current at some arbitrary x value. Instantaneously, there is
only a kinetic contribution if a particle has its coordinate xi =
x, and there is only a potential contribution if two particles
collide where for one xi < x and for the other xj > x, so that
the line of δ functions in Eq. (10) has 1 at position x. The
time average of this instantaneous quantity must satisfy the
continuity equation.

It is easy to see that summing the RHS of Eq. (13) over all
particles i gives the RHS of Eq. (12), and therefore

JQ(r,t)V =
N∑

i=1

JQ(ri ,t)Vi, (14)

so that the total heat flux JQ(r,t) is the weighted sum of local
contributions with weights Vi/V . Taking the time average of
both sides of Eq. (14) to obtain 〈JQ(r)〉t and 〈JQ(ri)〉t , which
must by the continuity equation be equal, Eq. (14) reduces to
a trivial equality.

III. THE GENERALIZED GIBBS RELATION:
KINETIC THEORY

The kinetic theory basis for nonequilibrium thermodynam-
ics of the heat transport model in QOD systems has been
discussed recently [19]. The basic ingredient is the kinetic
contribution to the Boltzmann entropy S(t) which is defined,
up to a constant, to be

S(t) =
∫

drs(r,t)

= −
∫

dr
∫

dvf (r,v,t) ln f (r,v,t), (15)

where s(r,t) is the entropy density at position r at time t . We
have set Boltzmann’s constant to unity (kB = 1). In kinetic
theory the time evolution of the distribution function f (r,v,t)
can be obtained from the Boltzmann equation which, without
external forces, takes the following form:

∂f

∂t
+ v · ∂f

∂r
= J [f ], (16)

where J [f ] is the collision integral. The distribution function
is normalized as ∫

dvf (r,v,t) = n(r,t), (17)

where n(r,t) is the local number density of the system.
The local entropy-balance equation can then be derived

theoretically by substituting the time derivative of f from the
Boltzmann equation (16) into the derivative of the Boltzmann
entropy, Eq. (15). The result is expressed as

∂s

∂t
+ ∇ · js = σ, (18)

where σ is the entropy production. In the above the entropy
flux js is given exactly by

js(r,t) = −
∫

dvvf ln f, (19)

but the Bhatnagar-Gross-Krook (BGK) approximation for the
collision integral [23] is needed to obtain a computable form
for the entropy production per unit volume σ , given by

σ (r,t) = −
∫

dvJ [f ] ln f

= ν(r)k
∫

dv{f (v) − floc(v)} ln f (v). (20)

The term ν(r) is essentially a parameter that is related to the
local collision frequency given by ν0n(r)

√
T (r) (where ν0 is

a constant that depends on dimensionality). According to the
H theorem [24] the local entropy production σ (r,t) must be
non-negative everywhere in the system. All the local quantities
associated with the entropy-balance equation (18) have been
defined through the Boltzmann equation and their definitions
are exact within the validity of the Boltzmann equation and
are not restricted to the linear regime.

We consider a steady system with a temperature gradient
along the x direction where the average total momentum
is zero, to provide a concrete theoretical description of
the well-adapted linear irreversible thermodynamics for our
system. In the Chapman-Enskog expansion solution to first
order in the gradient (that is, Navier-Stokes order [25]) the
distribution function is given by f = floc(1 + �) where floc

is the normalized local equilibrium distribution function.
The deviation from local equilibrium is obtained at the first

Sonine approximation explicitly as [26,27]

�(x,v) = −m

2

κ

p

(
mv2

2kT
− 2

)
vx

d ln T

dx
, (21)

in which p is the hydrostatic pressure and κ is the thermal
conductivity. Note that the spatial dependence of the solution
occurs only through the hydrodynamic fields, in particular T ,
which is a well-known characteristic of a normal solution to
the Boltzmann equation [28], and it follows that any velocity
moments will possess similar dependence. Since the local
energy balance in the steady state implies that ∇ · jQ(x) = 0,
the heat flux must be uniform, in contrast to the entropy
balance, in which the entropy flux is nonuniform but satisfies
∇ · js = σ .

The entropy flux is given to Navier-Stokes order [29] as

js(x) 	 −kB

∫
dvv� ln floc = −κT −1 dT

dx
x̂. (22)

Assuming Fourier’s law, one can cast the expression for the
entropy flux into the form js(x) = jQ(x)/T , and the entropy
production in the the steady state can be calculated from

σ (x) = ∇ ·
(

jQ
T

)
	 κ

∣∣∣∣d ln T

dx

∣∣∣∣
2

, (23)

which is clearly positive. The relation between the entropy flux
and the heat flux may also be viewed as a generalized version
of the equilibrium Clausius relation d-Q = T dS extended to
steady states. Whether this remains an equality, or becomes
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an inequality, is central to extending thermodynamics to
nonequilibrium steady states.

IV. EQUILIBRIUM

A. Dissipation and entropy production

In a previous study [12] it was shown that an energy
balance is achieved for a QOD system with reservoirs of
equal temperature, but that entropy is produced near each
reservoir which then flows from the system to the reservoir.
The observation that a system designed to be “in equilibrium”
is actually dissipative is somewhat surprising, but in a sense
this effect is restricted to a small region near each boundary
and the bulk of the system can be regarded as in equilibrium.
The entropy production is calculated from the numerically
generated momentum distributions in the BGK approximation
[23] and is strictly a kinetic contribution, ignoring possible
configurational contributions. In Sec. II B, a dissipation is
calculated from the tangent space dynamics of the system
which is not limited to the kinetic regime but is rather the
decrease in phase volume which leads to a negative sum of
Lyapunov exponents. This dissipation is again a boundary
effect as it arises from the tangent space dynamics of the
collision between the reservoir and its neighboring particle.
All other collision events in the dynamics give no contribution
to the dissipation.

The two-dimensional momentum distributions for each
particle are calculated numerically on a grid M × M with M =
301 typically, and a resolution of 0.05. The entropy, entropy
flux, and entropy production are all calculated numerically by
integrating this distribution using Eqs. (15), (19), and (26) with
an error of the order of the square of the resolution, that is,
0.0025. The entropy flux and production are defined through
the momentum distributions for particles and are expected to
be good representations at low density in the kinetic regime
where ρ < 0.1, but would neglect other potential contributions
at higher density. The expression for the kinetic entropy flux
is formally exact whereas the kinetic entropy production is
determined in the BGK approximation.

Both the dissipation and entropy production in the system
with equal reservoirs are intensive, and so largely independent
of the system size, and involving only properties of the particles
that are in contact with the reservoirs. The dissipation involves
the collisions between the closest particle and the wall while
the entropy production depends on the distribution of velocities
for particles near the wall. The numerical convergence of these
two quantities is quite different: the dissipation converges
quite quickly with random fluctuations; the entropy production
converges with the smoothness of the distributions increasing
slowly and monotonically at disks 1 and N until a steady
value is reached. Statistically, the distribution function needs
to be sampled sufficiently to obtain a reliable value over
the whole two-dimensional space (vx,vy) and the conver-
gence of the local equilibrium distribution also depends
on the convergence to the local properties n(x), Tx(x), and
Ty(x). For N = 40 and ρ = 0.03 the majority of the entropy
production (60%) comes from particles 1 and N with 40%
from the other particles (principally 2 and N − 1). At higher
density, ρ = 0.8, the relationship is very similar.

FIG. 2. (Color online) The entropy production of particles 1 and
N plotted as a function of the dissipation at the left-hand reservoir (red
dots) and right-hand reservoir (green crosses) for an equilibrium QOD
system of 40 hard disks with TL = TR = 2 and ρ = 0.03. The curve
is parametrized by the reservoir coupling parameter ε with values
of ε = 0,0.1,0.3,0.5,0.6,0.7,0.8,0.9. At ε = 0 the system is isolated
from the reservoir and both the dissipation and entropy production
are zero. As the system is symmetric the same result follows for
the right-hand reservoir. All results are obtained from averages over
1 × 108 collisions per particle and the results for σ are lower bounds
on the correct result.

As this system with equal reservoir temperatures shows
both dissipation and entropy production and both properties
appear to be intensive, we look at both as functions of ε, the
strength of the coupling of the system to the reservoir. From
Fig. 2, although these properties are of opposite signs, they
appear to be proportional when parametrized by ε.

V. NONEQUILIBRIUM SYSTEMS

We begin the study of nonequilibrium QOD systems by
considering a system of 320 hard disks at two different
densities: a low-density state of ρ = 0.03 and a high-density
state of ρ = 0.8. The temperature of the cold reservoir on
the right-hand side is kept constant at TR = 2, and different
values of the temperature of the left-hand reservoir TL are
used. The temperature gradient changes with the value of
TL and the number of disks, so we consider both systems
with constant temperature gradient and systems with constant
N . Our purpose here is to identify approximate (or possibly
exact) scaling relations for the properties of the system as
functions of system size N and temperature gradient ∇T , with
a view to separating bulk properties from surface properties
(or boundary effects).

A. Temperature profiles

We consider a nonequilibrium QOD system with TL =
130 and TR = 2 in both the low- and high-density states.
Changing density, with fixed values of TL and TR , changes
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FIG. 3. (Color online) The temperature profiles (Tx) for nonequi-
librium QOD systems of 320 hard disks at densities of ρ = 0.03
and ρ = 0.8. In both cases the boundary temperatures are TL = 130
and TR = 2. The red dots are the low-density state ρ = 0.03 and the
blue crosses are the high-density state ρ = 0.8. Plotted as functions
of particle number, the profiles appear almost indistinguishable, and
thus imply that the profile is largely independent of density.

the temperature gradient. The two temperature profiles for
Tx shown in Fig. 3 are surprisingly similar when plotted as
functions of particle number, but we see in Fig. 4 that there are
systematic small differences between these two profiles.

Despite the small differences seen in Fig. 3, these two
profiles look quite different when plotted as functions of the
average particle position x. For ρ = 0.8 the density does not

FIG. 4. (Color online) The temperature difference profiles
Tdiff = Tx(0.03) − Tx(0.8) for a nonequilibrium QOD systems of
320 hard disks with TL = 130 and TR = 2. Despite the seeming
accuracy of Fig. 3 there are small systematic differences between
the two temperature profiles.

FIG. 5. (Color online) The temperature profiles Tx (red symbols)
and Ty (blue symbols) for ρ = 0.03 for a nonequilibrium QOD system
of 320 hard disks with TL = 130 and TR = 2 plotted as a function of
average particle position 〈x〉. This profile looks quite different from
that of the same system plotted as a function of particle number in
Fig. 3 and appears to be approximately a cubic polynomial in x.

change greatly through the system so the profile as a function
of particle number is very similar to the profile as a function
of average particle position. However, for ρ = 0.03 the profile
changes significantly, becoming closer to a polynomial in x.
Notice that in Fig. 5 there is no place in the system where
we could consider that the temperature profile is linear. We
find that T 3/2 is close to a linear function of x, except in a
region close to the left-hand reservoir. This behavior in the
bulk domain is consistent with the exact results derived from
the BGK model for hard spheres.

Eckmann and Young [5] derive an equation that the
temperature profile should satisfy given by

T ′′(x)T (x) = γ [T ′(x)]2. (24)

The parameter γ = α − 1 is equal to zero for a linear
temperature profile. Here for all cases considered T ′′(x) is so
small that we cannot determine a nonzero value of γ despite
the obvious nonlinearity of the temperature profiles.

Recently the temperature profile near the reservoirs has
been modeled as a discretized Levy random walk [30,31] and
this predicts a power law meniscus effect at the boundaries.
Here for a system of 320 disks at low density (ρ = 0.03)
the temperature profile has a power law behavior at the hot
reservoir where Tx(x) = Tx,Lxμ with Tx,L a constant and the
meniscus exponent μ ∼ −0.15. The constant Tx,L changes
with temperature gradient but the exponent μ is essentially
constant. As the temperate profile as a function of particle
number is independent of density (see Fig. 3), the meniscus
exponent should also be independent of density.

The temperature difference profile Tx(x) − Ty(x) to a
good approximation satisfies a strong scaling relation that is
independent of density and system size. To illustrate this we
use systems of 80, 160, and 320 disks at the same temperature
gradient and a different position scaling on the horizontal
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FIG. 6. (Color online) The temperature difference profile
[Tx(x) − Ty(x)]/Tx(x) as a function of scaled position X = (i −
1
2 )/N for nonequilibrium QOD systems of 80 (red filled circles),
160 (blue open circles), and 320 (green crosses) hard disks with the
same temperature gradient ∇T = −0.013 80 at ρ = 0.03. The same
graph for a density of ρ = 0.8 is almost identical, including its vertical
scale.

axis. We take the scaled particle position X = (i − 1
2 )/N

where i is the particle number on the horizontal axis, and
plot [Tx(x) − Ty(x)]/Tx(x) on the vertical axis. In Fig. 6 we
notice that in the central part of the graph all curves coincide
but at each end the curves change depending upon the system
size. The figure for the high-density case ρ = 0.8 is almost
identical, including the vertical scale.

B. Energy balance

The heat flux vector satisfies a continuity equation so
must be, on average, constant everywhere in the system. It
is composed of two parts: a kinetic part which dominates
at low density, and a potential part which dominates at high
density, Eq. (13). Regardless of the density, the total heat flux
vector must match the energy that enters or leaves through
the boundary (per unit length) by the collision mechanism
Eq. (1) as this is the only way energy can enter or leave the
system. As before we can calculate the energy flux through
the boundary in two different ways; first a direct calculation
using the collision rule at the boundary �eL/Ly or �eR/Ly

averaged over time, and second by calculating the average heat
flux JQ which has both kinetic and potential components. In
Table II we present the components of the heat flux vector and
show that the energy flow through the boundaries is consistent
with the heat flux calculated using Eq. (13).

C. Local energy flux

In Fig. 7 we present the components of the heat flux
vector for a QOD system of 320 disks at low density where
TL = 130 and TL = 2. Despite the large temperature gradient
in this low-density state the major contribution to the heat
flux comes from the kinetic term, but near the cold reservoir

TABLE II. The components of the heat flux vector JQx for QOD
systems of N = 320 disks at two different densities and different
left-hand temperatures TL with TR = 2. The superscripts K and �

signify the kinetic and potential components, respectively. For the
low-density state ρ = 0.03 the heat flux vector is almost completely
kinetic with a very small potential contribution. In the high-density
state ρ = 0.8 almost all of the heat flux vector is potential. Despite
these differences the match between the total heat flux vector and the
energy flow through the boundary is excellent.

ρ TL J K
Qx J �

Qx J T
Qx �eL/Ly

0.03 6 0.002917 0.000098 0.003015 0.003015
0.03 10 0.006991 0.000234 0.00723 0.007226
0.03 34 0.04604 0.001541 0.047581 0.047584
0.03 66 0.12404 0.004151 0.1282 0.1282
0.03 130 0.3398 0.01137 0.35117 0.35124
0.8 6 0.07574 0.407122 0.48286 0.48426
0.8 10 0.1828 0.9719 1.1547 1.158
0.8 34 1.2181 6.2552 7.4733 7.4951
0.8 66 3.2850 16.547 19.832 19.889
0.8 130 8.9787 44.469 53.4477 53.6009

where the local density is greatest there is a contribution
from the potential term that gives 25% of the total. The
total heat flux vector is close to constant throughout the
system, except for a small peak near the hot reservoir and
another small increase near the cold reservoir. Apart from
these boundary effects, the continuity of the local heat flux
vector is very good and changes in the kinetic contribution
are compensated for by changes in the potential contribution.
The local kinetic contribution is equal to the local temperature

FIG. 7. (Color online) The components of the local heat flux
vector for a QOD system of 320 disks at a density of ρ = 0.03 with
TL = 130 and TR = 2. The red symbols are the kinetic contribution to
the heat flux vector, the green symbols are the potential contribution,
and the brown symbols are the total heat flux vector which must
be constant throughout the system. The blue symbols are the local
entropy flux times the local temperature, which is equal to the kinetic
contribution to the heat flux vector almost everywhere.
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FIG. 8. (Color online) The components of the local heat flux
vector for a QOD system of 320 disks at a density of ρ = 0.8 with
TL = 130 and TR = 2. The red symbols are the kinetic contribution to
the heat flux vector, the green symbols are the potential contribution,
and the brown symbols are the total heat flux vector which must
be constant throughout the system. The blue symbols are the local
entropy flux times the local temperature, which is indistinguishable
from the kinetic contribution to the heat flux vector everywhere.

times the local entropy flux except in the region near the cold
reservoir. If the local velocity distribution is exactly Gaussian
at the local density and temperature then JQ(x) = T (x)js(x).
Here these two properties show systematic changes near the
cold reservoir where the numerical velocity distribution must
deviate sufficiently from the local equilibrium distribution.

For the higher-density state the situation is somewhat
different; see Fig. 8. Here the potential contribution to the
local heat flux vector dominates the kinetic contribution and
near the cold reservoir there is almost no kinetic contribution.
Again the local total heat flux vector is constant throughout,
apart from a small peak near the hot reservoir, and the local
kinetic contributions to JQ(x) and T (x)js(x) are indistinguish-
able everywhere. Indeed, the agreement between the kinetic
contributions is much better at high density than it is at low
density in the kinetic region.

D. Local collision frequency and entropy density

In the kinetic regime we need the BGK approximation to
obtain an estimate of the local entropy production and central
to this is the local collisional relaxation frequency ν(x). We can
test the proposition [32] that the BGK local collision relaxation
frequency for hard disks is given by ν(x) = ν0n(x)

√
T (x) in

the kinetic regime by plotting it against the local collision
frequency calculated directly. In Fig. 9, we present n(x)

√
T (x)

as a function of the numerical collision frequency Cf at
a density of 0.03 for three different system sizes (N =
80,160,320) each with the same temperature gradient. From
Fig. 9 the resulting curve is the same and approximately linear,
with deviations from linear greatest near the cold reservoir
where the density is highest and potential contributions are

FIG. 9. (Color online) The theoretical BGK collision frequency
n(x)

√
T (x) plotted as a function of the directly calculated local

collision frequency for systems of 80, 160, and 320 disks at a density
of 0.03 and temperature gradient of ∇T = −0.0138. In each case the
externally applied temperature gradient is the same. The labels H and
C signify the positions of the hot and cold reservoirs respectively.

larger. Similarly, if we keep the system size fixed at N = 320
and consider different values of TL, and thus different ∇T ,
the resulting curve is the same, and is the same as that shown
in Fig. 9. The results are consistent with a single functional
form n(x)

√
T (x) = 2

3Cf . If we equate the BGK relaxation
frequency ν(x) with the numerical collision frequency Cf

then we have ν(x) = 3
2n(x)

√
T (x) = Cf . While we might

expect that n(x)
√

T (x) is proportional to Cf , a universal linear
relation is surprising. At high densities this proportionality
breaks down completely and these properties are not related
in the same way.

In Sec. III, the local entropy-balance equation was derived
theoretically as Eq. (18), which equates the local change in
entropy density to the divergence of the entropy flux and the
entropy production σ . In a steady state the local entropy density
does not change so ∇ · js = σ . The kinetic entropy flux is
known exactly through Eq. (25) but the entropy production
involves an unknown local relaxation frequency ν(x) that is the
essential ingredient in the BGK approximation for the collision
integral. Using the numerical results for the entropy flux and
the entropy production [assuming that ν(x) = ν0n(x)

√
T (x)]

we can estimate ν0 as the slope of a best-fit line. The entropy-
balance equation can be written as

∂

∂x
jSx(x) = ν0n(x)

√
T (x)

∫
dv{f (v) − floc(v)} ln f (v),

(25)

where the left-hand side can be calculated, and all of the
right-hand side, except for ν0, can be calculated, so
the self-consistent ν0 value is the slope of the line. We exclude
the region nearest tho two reservoirs (approximately ten
particles on each side), and the resulting curve is approximately
linear with the slopes given in Table III for different values of
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TABLE III. The self-consistent estimate of the
value of ν0 from the local entropy flux and BGK
entropy production using QOD systems of 320 disks
at a density ρ = 0.03 with the right-hand reservoir
temperature of TR = 2 for a range of values of the
left-hand reservoir temperature TL.

TL ν0

18 0.295
34 0.232
66 0.229
130 0.218

the left-hand reservoir temperature TL. This is a direct test of
the accuracy of the BGK approximation, or a self-consistent
calculation of ν0. The results are similar for all temperatures
but different from the value obtained by relating ν(x) to the
numerical collision frequency.

Where there is the possibility of a difference between the
local values of Tx and Ty , we can use an appropriately modified
local equilibrium distribution function of the form

f M
loc(x,v) = mn

2π

(
1

TxTy

)1/2

exp

[
− m

2

(
v2

x

Tx

+ v2
y

Ty

)]
. (26)

Here n, Tx , and Ty are the local number density and x and
y components of the temperature, which are all functions of
position x. The entropy density obtained from this modified
local equilibrium distribution is

sM
loc(x) = n

[
1 − ln

(
mn

2π

)
+ 1

2
ln(TxTy)

]
, (27)

which is reminiscent of the equilibrium Sackur-Tetrode equa-
tion except that here the hydrodynamic fields are local. While
the exact momentum distributions for the particles cannot
be exactly Gaussian as this nonequilibrium system supports
an energy current, the deviations from Gaussian are at best
only subtle and the local entropy density calculated from the
numerical momentum distributions is almost indistinguishable
from the local entropy density calculated from the modified
local equilibrium distribution. The results in Fig. 10 illustrate
this for systems of 320 disks for a range of different
temperature gradients.

E. Local-entropy production and flux

The entropy production for a nonequilibrium steady state
will be generated throughout the system wherever the particle
momentum distribution differs from the local equilibrium
distribution. The continuity of the heat flux vector throughout
the system ensures that there are deviations from the local
equilibrium momentum distribution at the position of each
particle, giving rise to local entropy production everywhere.
This ubiquitous entropy production leads to an associated
entropy flux towards the reservoirs, in addition to that observed
at equilibrium, which will bias and add nonequilibrium effects
to the equilibrium baseline. While the momentum distributions
for the particles are perturbed from Gaussian because of the
energy current, the deviations from Gaussian are small and at
best subtle. The numerical convergences of the integrations

FIG. 10. (Color online) The local entropy density s(x) calculated
from the numerical momentum distributions (blue symbols) and from
the local equilibrium distribution (red symbols) plotted as functions
of the particle number for systems of 320 disks at a density of 0.03.
The label on each curve is TL. For each temperature gradient the
agreement is excellent.

required for these two properties are quite different. The local
entropy flux converges very quickly while the local entropy
production, which is necessarily positive, is quite slow to
converge and can have negative regions which take a very
long time to decay to zero. Indeed, the dominant boundary
entropy production terms for particles 1 and N seem to increase
uniformly as they converge. In other regions, away from
the reservoirs, the local entropy production decreases as it
converges.

For a QOD system of 320 disks at density ρ = 0.03, shown
in Fig. 11, we see systematic changes in the local entropy
production σent/ν as the value of TL changes. For TL up to
values of about 10 the changes are restricted to a lift in the
baseline with a small positive slope. For larger values of TL

the changes are less systematic and at large values 66 and 130
a negative region appears near the hot reservoir. For the same
system the local entropy flux shown in Fig. 12 has systematic
changes for all values of TL up to the largest considered,
of 130. As before, the baseline is positive (away from the
reservoirs) and increases with increasing particle number and
with increasing TL. Clearly the fact that jS is positive implies
that the current of entropy is always directed to the right-hand
cold reservoir in the center and on the right-hand side but the
value of the entropy flux for particle 1 does not change with TL

despite the fact that this is the boundary where the temperature
changes. Similarly, the entropy production at this wall is
relatively constant with larger changes on the right-hand side.

All calculations of entropy, entropy flux, or entropy
production consider only the kinetic contributions. These
considerations are likely to be accurate for low-density systems
where we can assume that the potential contributions are small
so we consider the low-density QOD system with TR = 2
and a range of left-hand reservoir temperatures TL. As the
boundaries themselves, and the boundary layer, create entropy
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FIG. 11. (Color online) The local kinetic entropy production
divided by ν plotted as a function of particle number for QOD systems
of 320 disks at a density of 0.03 with the right-hand reservoir at
temperature TR = 2 for various values of temperature gradient (or
left-hand reservoir temperature TL).

production and flux we ignore boundary effects by considering
the bulk system to begin at N = 10 and end at N = 310, for
the 320-particle system. We know that the heat flux vector
is consistent with the heat flow across the boundaries so we
work from the heat flux to calculate entropy fluxes and compare
those with the ones calculated directly.

The first row of Table IV contains the numerical values of
the local temperature and kinetic entropy flux jS calculated
directly in the simulation. The local Clausius equality jS =
JQ/T suggests that the entropy flux can also be calculated from
the ratio of the heat flux vector JQ and the local temperature,
which are both accurately known in the simulation. If the

FIG. 12. (Color online) The local kinetic entropy flux for the same
systems as in Fig. 11.

TABLE IV. The local temperature, entropy, and energy flux for
a QOD system of 320 disks at low density 0.03 with reservoir
temperatures TR = 2 and a range of values of TL. We combine the
reservoir and the nearest 9–10 disks and consider the system explicitly
at particle 10 and particle N = 310.

TL T10 jS,10 JQ/T10 T310 jS,310 JQ/T310

10 7.4357 0.001059 0.000971 2.0555 0.003394 0.003513
18 13.062 0.00156 0.001394 2.3201 0.007353 0.007849
34 24.215 0.00214 0.001968 2.7333 0.015299 0.017433

Clausius equality holds then we expect that jS,10 = JQ/T10

and jS,310 = JQ/T310. We can see that at particle 10 near the
hot reservoir this is a slight underestimate of JQ/T10 and at
particle 310 the value of JQ/T310 is an overestimate, possibly
due to potential contributions, as the density is higher near the
cold reservoir. The results in Table IV show that at low density,
ignoring the boundary layer, the heat flux vector and the kinetic
entropy flux agree reasonably well. For higher densities, such
as ρ = 0.8, the potential contributions to the entropy flux that
are implied by the values of JQ/T suggest that the kinetic
entropy flux is only a small part of the total entropy flux and
we would not expect agreement.

F. Phase space contraction and entropy production

The system is in a nonequilibrium steady state with a
local entropy production that we can estimate using the BGK
approximation. The phase space contraction, as before for the
equal-reservoir case, can be calculated from the tangent space
dynamics and will contribute only at the collisions of particles
with the boundaries. Here the different reservoir temperatures
break the reflection symmetry and hence both the left- and
right-hand-side phase space contractions will be different, as
will the entropy productions for particles 1 and N . We might
imagine that the local entropy production and phase space
contraction at each boundary may match separately but this is
not what we observe. The phase space contraction calculated
from the tangent space dynamics of the particle nearest each
reservoir converges quite rapidly, and although the dissipation
will be an extensive quantity, the whole process takes places
at the boundaries, mostly at the cold reservoir. At the cold
reservoir the local density is highest and the collision frequency
is highest but the average particle velocity is smallest. At
the hot reservoir the local density is lowest and the collision
frequency lowest but the average particle velocity is highest.

Here we concentrate on a series of simulations at constant
N = 320 and ρ = 0.03 and ρ = 0.8 to identify the depen-
dence of the phase space contraction and boundary entropy
productions σ1 and σN on the temperature gradient. The results
for both densities are presented in Fig. 13 and the results
are complicated. We note that the phase-space contraction is
negative whereas the entropy production is positive.

Points to note about Fig. 13 are that when the reservoir
temperatures are symmetric, with, for example, TL = TR = 2,
neither the phase space contraction nor the entropy production
at 1 or N is zero, so this system is always dissipative.
Both of these effects are caused by the boundary condition
that is applied at each reservoir boundary. The phase space
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FIG. 13. (Color online) Phase space contraction ln[det(�)] and
entropy production σ at disk 1 (labelled L) and N (labeled R) for QOD
systems of 320 disks with the right-hand reservoir temperature fixed
at TR = 2 for a range of values of the left-hand reservoir temperature
2 � TL � 130. (a) is the result for a density ρ = 0.03 and (b) is for
a density ρ = 0.8. The filled symbols are values of the dissipation
ln[det(�)] and the empty symbols are values of σ . The red symbols
are for the left-hand reservoir and the green symbols are for the
right-hand reservoir.

contractions for both densities are essentially linear in the
reservoir temperatures TL and TR , and the slope (or magnitude)
is greatest at the cold reservoir where the collision rate is
largest. The ratio of the slopes TR/TL is also remarkably
independent of density.

The entropy productions at 1 and N are initially the same
for TL = 2 but thereafter change systematically with TL but
differently with density. At low density σ1 decreases while
σN increases quickly with increasing TL. Here it is tempting
to associate ln[det(�R)] and σN , but at the hot reservoir
ln[det(�L)] and σ1 change in different directions.

At high density both σ1 and σN decrease with increasing
TL. So the proportionality of ln[det(�R)] and σN observed for
equal reservoir temperatures disappears when the temperatures
differ, and is even more different at high density.

The results presented in Fig. 13 are for the phase space
contraction and entropy production as functions of TL or
equivalently the temperature gradient. We have also studied

TABLE V. The relationship between the slopes of linear fits to
the phase space contraction as functions of N and TL.

ρ αR/αL βR/βL αL/βL αR/βR

0.03 9.1 12.7 56 79
0.8 10.4 12.95 66.5 82.7

these properties as functions of system size N at fixed
temperature gradient and here the graphs are very similar
to those in Fig. 13. If we do a linear fit to the phase space
contraction as a function of N and find slopes αL and αR ,
respectively (for the L and R reservoirs), and then do a linear
fit to the phase space contraction as a function of TL and find
the slopes βL and βR , then we find the relations in Table V.

The graphs of the entropy production σ as functions of
N and TL are also very similar but as they are not linear
we cannot repeat the analysis above. However, we can deduce
from Table V that at ρ = 0.8 the functional form of ln[det(�L)]
as a function of TL can be obtained from the functional form
as a function of N by replacing N by 66.5TL. Similarly,
the functional form of σL(N ) gives the functional form as
a function of TL by replacing N by 43TL. These results are
qualitatively the same for the low density ρ = 0.03 with only
small changes in numerical factors.

G. Thermal conductivity

Lower-dimensional systems have long been shown to
exhibit anomalous thermal conductivity with typically a power

FIG. 14. (Color online) A log-log plot of the heat flux calculated
in three independent ways as a function of N for QOD systems at a
density of ρ = 0.8 and temperature gradient of ∇T = −0.368 for a
large range of system sizes. The right-hand reservoir temperature is
fixed at TR = 2 and TL varies such that ∇T remains fixed. The red
open circles are values of the heat flux into the system through the
left-hand boundary �eL/Ly , the green pluses are the values of the
heat flux out of the system through the right-hand boundary �eR/Ly ,
and the blue crosses are the values calculated from the heat flux vector
JQ (13). The line corresponds to �e = N1/2.
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law divergence of the form Nα where 0.33 < α � 1
2 . The

QOD system is a restricted two-dimensional system where
the average momentum is equal to zero, so we might expect
two-dimensional behavior, or perhaps marginally below two-
dimensional. In Fig. 14 we have a result that suggests that
α � 1

2 although extrapolation to large N is always problematic.
The numerical convergence of this system at fixed N suggests
that the initial value of the heat flux is high and then this
converges slowly to a smaller value. Ideally, we may try to
have the number of collisions per particle fixed for each system
size but this is difficult for larger systems as the total run
time increases at least as fast as N2. Therefore the accuracy
of the results decreases quickly for large system sizes. The
consistency of the different routes to the heat flux gives a good
indication of the convergence of the result, so the result for
N = 10 240 is the least reliable of those reported in Fig. 14.

VI. CONCLUSION

We have investigated the consequences of a particular
model microscopic coupling of a system to a reservoir. The
advantages of the model include its relative simplicity and
the fact that it is deterministic, which allows straightforward
application of dynamical system techniques. Clearly the fact
that the particles remain ordered from left to right, and that
this allows us to connect the properties of a volume element

with the properties of a single particle, is a virtue of the
quasi-one-dimensional system. In more realistic systems this
is not possible as particles enter and leave Eulerian volume
elements, but the generalization is a technical rather than a
conceptual difficulty.

The microscopic expression for the local heat flux vector
derived here has been shown to satisfy the expected continuity
equation for heat flow at both low density, where kinetic
contributions dominate, and high density, where potential
contributions dominate. The heat flux vector also agrees very
well with the amount of energy entering the system from the
left-hand reservoir and the amount of energy leaving via the
right-hand reservoir.

Strong scaling relations were obtained for the temperature
profile as a function of particle number and for local tempera-
ture differences. These results suggest that the system behaves
more simply than expected with regard to changes in density
and temperature gradient.

The entropy terms calculated here are all kinetic contri-
butions and would not be expected to match at high densities
although the kinetic contributions to the heat flux vector match
the temperature times the kinetic contribution to the entropy
flux. As potential contributions to the heat flux vector are large
at high densities we would expect large potential contributions
to the various entropy terms, including its production and flux,
to be present.
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