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Exact solution and high-temperature series expansion study of the one-fifth-depleted
square-lattice Ising model
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The critical behavior of the one-fifth-depleted square-lattice Ising model with nearest-neighbor ferromagnetic
interaction has been investigated by means of both an exact solution and a high-temperature series expansion
study of the zero-field susceptibility. For the exact solution we employ a decoration transformation followed
by a mapping to a staggered eight-vertex model. This yields a quartic equation for the critical coupling giving
Kc(≡βJc) = 0.695. The series expansion for the susceptibility, to O(K18), when analyzed via standard Padé
approximant methods gives an estimate of Kc, consistent with the exact solution result to at least four significant
figures. The series expansion is also analyzed for the leading amplitude and subdominant terms.
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I. INTRODUCTION

Exact solutions of lattice models play an important role
in the study of phase transition and critical phenomena. In
his seminal work, Onsager solved the two-dimensional (2D)
square-lattice Ising model (2D-Ising) exactly [1]. Solutions
have been obtained for other regular 2D lattices [2]. A
number of complex configurations such as the Union Jack,
the bathroom tile (or 4-8), the 4-6, and the one-ninth-depleted
lattice models have also been investigated [3–10]. The one-
fifth-depleted antiferromagnetic S = 1/2 Heisenberg model
has been an earlier topic of investigation [11]. In this article
we obtain the critical point of a one-fifth-depleted Ising model
on a square lattice using both an exact solution by mapping to
a staggered eight-vertex model and a high-temperature series
expansion (HTSE). The vacancies form a

√
5 × √

5 lattice.
The Ising model Hamiltonian is given by

H = −J
∑
〈i,j〉

sisj − h
∑

i

si , (1)

where si is the classical dimensionless Ising variable at site i

taking the values ±1. J > 0 (ferromagnetic interaction) and h

(magnetic field) denote constant parameters with dimensions
of energy. The structure of the depleted lattice with every fifth
missing site is shown in Fig. 1.

In principle, all planar Ising models (i.e., with noncrossing
bonds) are solvable by the Pfaffian method [2]. The method
has been utilized to solve a variety of lattice models including
the eight-vertex model. The eight-vertex model has been
investigated both for translationally invariant and staggered
vertex weight [12,13]. In the staggered model the vertex
weights are allowed to vary taking different values on the
staggered plaquettes of the square lattice. The relevance of
the staggered model lies in its relationship to a number of
important models in statistical mechanics: the percolation
model [14], the Potts model [15], and the Ashkin-Teller model
[16,17].
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We compute the partition sum to obtain the critical point
of the one-fifth-depleted Ising model with two methods.
First, we carry out an exact solution by using a decoration
transformation [18] followed by a mapping to a staggered
eight-vertex model [12,13]. Second, we obtain the HTSE
for the zero-field susceptibility upto O(K18) where K = βJ

(β = 1/kBT ). T is the temperature and kB the Boltzmann
constant. Using Padé approximants (PA) we analyze the series
for its leading amplitude and subdominant terms.

This paper is organized as follows. In Sec. I we introduce the
one-fifth-depleted lattice Ising model. In Sec. II we obtain the
exact solution. In Sec. III we compute the HTSE for the zero-
field susceptibility and display the series coefficient results. In
Sec. IV we analyze the leading and subleading amplitudes of
our series expansion result. Finally in Sec. V we summarize
and conclude the main results of the paper.

II. EXACT SOLUTION

We carry out a two-step procedure to obtain the exact
solution. In the first step a decoration transformation is
performed. A new spin σ (the filled yellow squares in Fig. 1)
is introduced in the original lattice placed at the midpoint of
bonds which do not lie in the small square (see Fig. 1). The
interactions on these bonds are replaced by new interactions
with the σ spins to obtain the relation between the spins (s) in
the original lattice and the decorated lattice (σ ) [18,19]. The
scaled interactions K and K

′
are defined by

eKs1s2 = A
∑
{σ }

eK
′
σs1eK

′
σs2 , (2)

where A is a yet-undetermined overall constant. Carrying out
the summation we obtain

eKs1s2 = 2A cosh K
′
(s1 + s2). (3)

Utilizing the fact that s1 or s2 spins can take on a value of ±1,
we obtain an expression for A and eventually the following
relation between K and K

′

e2K = cosh(2K
′
). (4)
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FIG. 1. (Color online) One-fifth-depleted lattice Ising model.
Filled red circles denote points on the original lattice. Yellow squares
denote points on the decorated lattice. Solid blue lines denote bonds
on the original lattice. Dashed black lines denote bonds on the
decorated lattice. A and B represent the two types of plaquettes created
after the decoration transformation. The transformed lattice has a
staggered configuration of A and B plaquettes.

We map this configuration to a staggered eight-vertex model.
This transforms the one-fifth-depleted Ising model to a square
lattice with more complex interactions with nearest-neighbor
coupling K̃ , a diagonal next-nearest-neighbour coupling L̃,
and a four-spin coupling M̃ [20]. The decoration process
introduces two different types of plaquettes A and B as shown
in Fig. 2. The transformed Z is

Z(σ1,σ2,σ3,σ4) =
∑
{s}

exp[K
′
(s1σ1 + s2σ2 + s3σ3 + s4σ4)]

× exp[K(s1s2 + s2s3 + s3s4 + s4s1)]. (5)

Enumerating the summation over the original lattice spins
si(i = 1,2,3,4), we can write

Z(σ1,σ2,σ3,σ4) = �(K) exp[K̃(σ1σ2 + σ2σ3 + σ3σ4 +,σ1σ4)]

× exp[L̃(σ1σ3 + σ2σ4)] exp[M̃(σ1σ2σ3σ4)],

(6)

with

�e4K̃+2L̃+M̃ = 4e−2K
′ + 4e2K

′ + e4K−4K
′

+ e4K
′ +4K + 2e−4K + 4 = P1(K), (7)

Σ1 Σ2

Σ3Σ4 s4 s3

s2s1

B A

FIG. 2. (Color online) Ising spins on the original lattice are
denoted by si , i = 1,2,3,4 (filled red circles). Spins on the trans-
formed decorated lattice are given by σi , i = 1,2,3,4 (yellow squares).
Interactions between s spins are given by K. Interactions between s

and σ spins are given by K
′
.

�e−4K̃+2L̃+M̃ = 4e−2K
′ + 4e2K

′ + e−4K
′ −4K

+ e4K
′ −4K + 2e4K + 4 = P2(K), (8)

�e−2L̃+M̃ = e−4K
′ + 4e−2K

′ + 4e2K
′ + e4K

′

+ 2e−4K + 2e4K + 2 = P3(K), (9)

�e−M̃ = e−4K
′ + 2e−2K

′ + 2e2K
′ + e4K

′ + e−2K
′ −4K

+ e4K−2K
′ + e2K

′ −4K + e2K
′ +4K + 6 = P4(K).

(10)

The vertex weights satisfy the free fermion condition [13].
Using Eqs. (13) and (21) from Ref. [13] the condition for the
critical point for our model is

P1(K) + P2(K) − 2P3(K) − 4P4(K) = 0. (11)

The above equation can be written in terms of the variable
x = e2K as

x4 − 4x3 − 1 = 0. (12)

We obtain the exact solution of the physical root as

xc = 1 + 1√
2

+
√

1

2
(5 + 4

√
2). (13)

Numerically xc = 4.015 445, yielding a critical coupling value
of Kc = 0.695 074. In terms of the variable v = tanh(K)
Eq. (12) takes the form

v4 + 4v3 − 1 = 0, (14)

giving vc = 0.601 232 as the solution of the critical point.

III. HIGH-TEMPERATURE SERIES

The HTSE technique is one of the most effective approaches
to study critical phenomena [21]. Much work has been devoted
to the HTSE of the Ising model [22–24]. Thermodynamic
properties are derivable from the partition function

Z =
∑

s

exp(−βH), (15)

=
∑

s

exp

⎛
⎝K

∑
〈i,j〉

sisj + βh
∑

i

si

⎞
⎠ . (16)

The zero-field susceptibility χ is given by

χ (v) = β−1 lim
h→0

∂2

∂h2

(
1

N
lnZ

)
. (17)

Using the identity below for both the regular and the field
terms

exp(Ksisj ) = cosh K(1 + vsisj ), (18)

we can construct a graphical expansion. Each bond carries a
factor of vsisj and, in addition, each site has a factor of either
1 or τsk . Only those graphs with precisely two factors of τsk

contribute to the above equations. As a result, the graphs which
contribute are those with precisely two vertices of odd degree,
those to be compensated by the two τsk factors. We then obtain
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TABLE I. High-temperature series expansion coefficients ar of
the zero-field susceptibility for the one-fifth-depleted Ising model.
Square brackets denote power of ten. The expansion parameter is v =
tanh(βJ).

Order Coefficient

1 0.300000000000[+01]
2 0.600000000000[+01]
3 0.120000000000[+02]
4 0.220000000000[+02]
5 0.400000000000[+02]
6 0.740000000000[+02]
7 0.136000000000[+03]
8 0.246000000000[+03]
9 0.444000000000[+03]

10 0.782000000000[+03]
11 0.137200000000[+04]
12 0.240600000000[+04]
13 0.420800000000[+04]
14 0.738600000000[+04]
15 0.129240000000[+05]
16 0.223940000000[+05]
17 0.387280000000[+05]
18 0.667820000000[+05]

the following result

Z
(cosh K)2N (cosh βh)N

=
∑
{s}

∏
〈ij〉

(1 + vsisj )
∏
k

(1 + τsk),

(19)

where v = tanh βJ and τ = tanh βh. The high-temperature
susceptibility can be expanded in the form

β−1χ (v) = 1 +
∞∑

r=1

arv
r . (20)

The coefficients ar can be related to the graph counting
problem and evaluated exactly [21]. The computed series
expansion coefficients for the zero-field susceptibility of the
one-fifth-depleted Ising model are listed in Table I.

IV. SUSCEPTIBILITY ANALYSIS

The universality hypothesis in critical phenomena implies
that thermodynamic quantities are not sensitive to the micro-
scopic details of a system near a critical point [25,26]. It is
known from earlier work that near the transition point the
high-temperature susceptibility χ (v) of the 2D-Ising model
on all 2D lattices has an asymptotic form. For our model we
can express the susceptibility as

χ (v) = Ao

(
1 − v

vc

)−7/4

+ A1

(
1 − v

vc

)−3/4

+ · · · , (21)

with vc = 0.601 232. To analyze the χ (v) series for its pole
and its leading and subleading amplitude we first consider
constructing the series

f1(v) = [χ (v)]4/7 ∼ A4/7
o (1 − v/vc)−1 + · · · . (22)

Direct PA’s to f1(v) give a consistent pole at vc ∼ 0.6015 ±
0.0002. This result is close to the exact solution value of

TABLE II. Padé approximation analysis of the high-temperature
series expansion coefficients of the zero-field susceptibility for the
one-fifth-depleted Ising model. The critical coupling constant and
the leading amplitude are listed below.

(N,D) vc A0 A1

(10,8) 0.601461 0.686077 0.707575
(9,9) 0.601405 0.686598 0.707919
(8,10) 0.601437 0.686265 0.707625
(9,8) 0.601554 0.686771 0.707614
(8,9) 0.600934 0.686810 0.707385

vc = 0.601 232. The residues, which are estimates of A
4/7
o vc

are all in the range 0.486–0.490. Considering the value to be
0.488 we obtain Ao ∼ 0.694. A more consistent set of results
can be obtained by constructing the series

f2(v) = (1 − v/vc)7/4χ (v),

∼ Ao + terms which vanish at vc, (23)

and forming PA’s to f2(v). Evaluating these at vc = 0.601 232
gives Ao ∼ 0.687 ± 0.001. To obtain the subdominant contri-
bution we analyze the function

f3(v) = (1 − v/vc)3/4[χ (v) − 0.686(1 − v/vc)−7/4],

∼ A1 + terms which vanish at vc. (24)

PA’s of f3(v) computed at vc = 0.601 232 provide a consistent
set of estimates for A1 ∼ 0.708 ± 0.001. Critical coupling
constant and the leading amplitude from the PA analysis are
listed in Table II.

The above analysis can be repeated with the HTSE χ series
expressed in the K variable

χ (K) = Co

(
1 − K

Kc

)−7/4

+ C1

(
1 − K

Kc

)−3/4

+ · · · .
(25)

To obtain a consistent set of critical coupling value Kc, we
perform the PA analysis on a χ4/7 series. The leading amplitude
Co can be computed by investigating the PA analysis of
(1 − K/Kc)7/4 χ . However, such an analysis does not lead
to a consistent set of values for C1. We therefore obtain both
C0 and C1 from A0 and A1. To do so we expand the χ (v) series
in a Taylor series in 1 − K/Kc up to second order to obtain
the following

Kc = 0.695 ± 0.001, (26)

C0 = 1.167 ± 0.001, C1 = 0.036 ± 0.001. (27)

The agreement of the series estimate of Kc with our result from
Eq. (12) provides confirmation that our analysis in Sec. II is
correct.

V. CONCLUSION

We have obtained the critical point exactly, and the esti-
mated values of the leading two amplitudes of the asymptotic
form of the zero-field susceptibility for the Ising model on
an unusual lattice obtained by regularly removing one-fifth
of the sites of a square lattice. It is worth noting, however,
that the familiar honeycomb and kagome lattices result from
particular one-third and one-fourth depletions of the triangular
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lattice. The one-fifth-depleted square lattice, considered here,
is in fact realized in the material CaV4O9, but not as an Ising
system.

To obtain the critical point, we relate the partition function
of the model to that of a staggered eight-vertex model and
use established results for that model. The vertex weights
satisfy a “free fermion” condition, confirming that the model
lies in the normal Ising universality class. We note that in
the one-fifth-depleted lattice there are two classes of nearest-
neighbor bonds. While we have only considered the case of
equal strengths, our transformation method applies equally
well to the more general case of different couplings J , J

′
.

After we had completed this work it was pointed out to us [27]
that the one-fifth-depleted lattice considered here is, in fact,
topologically equivalent to the “bathroom tile” lattice, and
indeed our result for the critical point is identical to that
obtained previously.

We have also derived an 18-term high-temperature series for
the zero-field susceptibility. Because of the low coordination
number and open structure of the lattice, the number of
graphs that contribute at a given order is much reduced. As
a consequence, the series is not as well behaved as that of the
parent square lattice. However, using standard PA methods,
we obtain an estimate of the critical temperature in good
agreement with the exact value. As explained in Sec. IV we
obtain a rather precise estimate of the leading two amplitudes

in the asymptotic form of χ (v) near the critical point and,
rather less precise, estimates of the amplitudes in the K

representation.
For the square lattice exact expressions of the spin-spin

correlation functions allow these amplitudes to be obtained,
essentially exactly, from the solution of a Painlevé equation
III [28]. In addition an exact result relating the coefficients
C0, C1, viz., C1/C0 = √

2Kc/8, has been proven. It is not
clear whether a similar calculation could be done for the
depleted lattice. However, the ratio C1/C0, in this case,
does not appear to satisfy a simple relationship of the
above type.

Finally, we remark that depletion of any regular lattice will
reduce the average coordination number and this leads to a
less rigid structure. Hence the ordered state will be less robust
to thermal fluctuations, and the critical temperature will be
lowered. This is seen in our study, with kBTc/J being reduced
by some 36%, from 2.2692 . . . to 1.4387 . . . .
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[9] J. Strečka, Physica A: Statistical Mechanics and its Applications

360, 379 (2006).
[10] A. Codello, J. Phys. A: Math. Theor. 43, 385002 (2010).
[11] Z. Weihong, M. P. Gelfand, R. R. P. Singh, J. Oitmaa, and C. J.

Hamer, Phys. Rev. B 55, 11377 (1997).
[12] F. Y. Wu and K. Y. Lin, Phys. Rev. B 12, 419 (1975).
[13] C. S. Hsue, K. Y. Lin, and F. Y. Wu, Phys. Rev. B 12, 429 (1975).
[14] H. N. V. Temperley and E. H. Lieb, Proc. R. Soc. Lond. A. 322,

251 (1971).
[15] R. J. Baxter, J. Phys. C 6, L445 (1973).

[16] F. J. Wegner, J. Phys. C 5, L131 (1972).
[17] F. Y. Wu and K. Y. Lin, J. Phys. C 7, L181 (1974).
[18] M. E. Fisher, Phys. Rev. 113, 969 (1959).
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[27] J. Strečka (private communication).
[28] E. Barouch, B. M. McCoy, and T. T. Wu, Phys. Rev. Lett. 31,

1409 (1973).

062143-4

http://dx.doi.org/10.1103/PhysRev.65.117
http://dx.doi.org/10.1016/0375-9601(87)90507-X
http://dx.doi.org/10.1016/0375-9601(87)90162-9
http://dx.doi.org/10.1143/PTP.6.907
http://dx.doi.org/10.1016/0375-9601(87)90495-6
http://dx.doi.org/10.1016/0375-9601(87)90495-6
http://dx.doi.org/10.1088/0305-4470/21/9/027
http://dx.doi.org/10.1088/0305-4470/21/9/027
http://dx.doi.org/10.1016/j.physa.2005.07.012
http://dx.doi.org/10.1016/j.physa.2005.07.012
http://dx.doi.org/10.1088/1751-8113/43/38/385002
http://dx.doi.org/10.1103/PhysRevB.55.11377
http://dx.doi.org/10.1103/PhysRevB.12.419
http://dx.doi.org/10.1103/PhysRevB.12.429
http://dx.doi.org/10.1098/rspa.1971.0067
http://dx.doi.org/10.1098/rspa.1971.0067
http://dx.doi.org/10.1088/0022-3719/6/23/005
http://dx.doi.org/10.1088/0022-3719/5/11/004
http://dx.doi.org/10.1088/0022-3719/7/9/002
http://dx.doi.org/10.1103/PhysRev.113.969
http://dx.doi.org/10.1088/0305-4470/35/16/103
http://dx.doi.org/10.1088/0305-4470/35/16/103
http://dx.doi.org/10.1103/PhysRevE.86.011139
http://dx.doi.org/10.1103/PhysRevB.65.144431
http://dx.doi.org/10.1103/PhysRevB.74.144201
http://dx.doi.org/10.1103/PhysRevB.74.144201
http://dx.doi.org/10.1103/PhysRevLett.86.4120
http://dx.doi.org/10.1103/PhysRevB.38.11688
http://dx.doi.org/10.1103/PhysRevB.38.11688
http://dx.doi.org/10.1103/PhysRevLett.31.1409
http://dx.doi.org/10.1103/PhysRevLett.31.1409



