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Heat conduction of symmetric lattices
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Heat conduction of symmetric Frenkel-Kontorova (FK) lattices with a coupling displacement was investigated.
Through simplifying the model, we derived analytical expression of thermal current of the system in the
overdamped case. By means of numerical calculations, the results indicate that: (i) As the coupling displacement
d equals to zero, temperature oscillations of the heat baths linked with the lattices can control magnitude and
direction of the thermal current; (ii) Whether there is a temperature bias or not, the thermal current oscillates
periodically with d , whose amplitudes become greater and greater; (iii) As d is not equal to zero, the thermal
current monotonically both increases and decreases with temperature oscillation amplitude of the heat baths,
dependent on values of d; (iv) The coupling displacement also induces nonmonotonic behaviors of the thermal
current vs spring constant of the lattice and coupling strength of the lattices; (v) These dynamical behaviors come
from interaction of the coupling displacement with periodic potential of the FK lattices. Our results have the
implication that the coupling displacement plays a crucial role in the control of heat current.
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I. INTRODUCTION

Understanding heat conduction at a molecular level is of
fundamental and practical importance [1]. In recent years,
much attention has been paid to heat conduction of nonlinear
lattice [2] for two reasons. One is that various thermal devices
controlling heat flow, such as thermal diodes [3,4], thermal
transistors [5], thermal logic gates [6], thermal memories [7],
and so on, can be designed theoretically. The other is how
these thermal devices may be realized experimentally. The first
realization of solid-state thermal diode has been put forward
with help of asymmetric nanotubes [8]. Single-photon heat
conduction between two resistors coupled weakly to a single
superconducting microwave cavity should be experimentally
observable [9]. Phonons, as carriers of heat conduction, are
by far more difficult to control than electrons and photons.
Thus understanding further behavior of phonon and intrinsic
mechanism of heat transfer at the molecular level is still an
underlying challenge for mankind.

According to the thermodynamic second law, heat cannot
spontaneously flow from a subsystem at lower temperature
to another coupled subsystem at higher temperature. Thus, in
order to get a steady heat flow against thermal bias, we must let
the system operate away from thermal equilibrium by means of
some effective measures. A typical situation is that rocking pe-
riodically temperature of one heat bath can direct a steady heat
flux from cold bath to hot bath against a nonzero thermal bias
in nonlinear lattice junctions [10]. Three necessary conditions
for emergence and control of heat current are nonequilibrium
source, symmetry breaking, and nonlinearity [11,12]. It is
pronounced that thermal rectifying results from symmetry
breaking of system. The authors of Ref. [13] studied heat con-
duction in anharmonic lattices with mass gradient, and found
phenomena of negative differential thermal resistance (NDTR)
[14] and thermal rectification [15–18]. In fact, a steady heat
current against thermal bias also occurs in symmetric systems.
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In this paper, we will investigate analytically the heat
conduction via two segments of symmetric coupled Frenkel-
Kontorova (FK) nonlinear lattices that are sandwiched between
two heat baths, and consider effect of coupling displacement
between them on heat current. It will be seen that the coupling
displacement plays a crucial role in determining magnitude
and direction of the heat current. The paper is constructed
as follows: First, model and theoretical analysis of heat con-
duction of the symmetric system are presented. An analytical
expression of heat current will be derived. Then results and
discussions are provided. Finally conclusions are made.

II. MODEL AND THEORETICAL ANALYSIS

Here we study the heat conduction of two segments of
coupled Frenkel-Kontorova lattices [19,20] with a coupling
displacement, and their two ends contact with two heat baths,
respectively. The nonlinear lattices’ Hamiltonian reads

H =
N1∑
i=1

[
p2

i

2m
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(1)

where pi is the momentum for the ith atom, m is the atom
mass, the qi = xi − ia denotes the displacement from the
equilibrium position ia for the ith atom, a is the lattice period,
kL and kR are the spring constants, VL and VR are the on-site
potentials a of the FK lattices, kint is the coupling strength
between the two segments of FK Lattices, and d is the coupling
displacement. The coupling displacement may be formed in
the coupling process between the two segments of FK lattices.
Depending on the sign of d, the system will tend to bend to
left or right. Another physical motivation is based on design
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of devices similar to the structure ABA (e.g., the Josephson
junction), and d is the thickness of layer B.

The first atom and the N th atom are assumed to be put into
contact with two Langevin heat baths possessing temperature
TL and TR , respectively. The two heat baths are two Gaussian
white noises, satisfying the following statistical properties:

〈ξL/R(t)〉 = 0, 〈ξL/R(t)ξL/R(t ′)〉 = 2kBηTL/Rδ(t − t ′), (2)

where kB is the Boltzmann constant, and η denotes the
coupling strength between system and heat bath. Let the
temperatures of the two heat baths oscillate periodically at
angular frequencies ω and ω1 with driving strengths A and A1,
respectively. This yields

TL(t) = T0[1 + � + A sin(ωt)],
(3)

TR(t) = T0[1 − � + A1 sin(ω1t)],

where T0 = [TL(t) + TR(t)]/2 is the temporally averaged
environmental reference temperature, and � =

[TL(t) − TR(t)]/T0 represents the normalized temperature
difference.

In order to open out analytically intrinsic mechanism
of the heat conduction, we simplify the system, and think
that it only consists of two atoms coupled by a spring.
Thus, in the overdamped case and under fixed boundary
conditions, the Langevin equations describing the system are
given by

q̇1 = −kLq1 − kint(q1 − q2 + d) + f (q1) + ξL(t), (4)

q̇2 = −kRq2 + kint(q1 − q2 + d) + f (q2) + ξR(t), (5)

where the periodic force f (qi) = − V0
2πa

sin( 2πqi

a
), (i = 1,2,

VL = VR = V0). As kL = kR = k, the system is symmetric.
Applying adiabatic approximation to Eqs. (4) and (5), the

following Langevin equation with one variable can be obtained

ẋ = H (x) + g1(x)ξL(t) + g2(x)ξR(t), (6)

where

x = q1 + q2

2
, H (x) = −kx + F (x) +

[
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with
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2
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2
,
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2
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′
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2
.

As the time scales of ω−1 and ω−1
1 of the temperature manipulation of the heat baths are assumed to vary much slower than

the time scale to reach local thermal equilibrium, the Fokker-Planck equation corresponding to Eqs. (2) and (6) can be written
into [21]

∂P (x,t)

∂t
= − ∂

∂x
{[H (x) + g(x)g′(x)]P (x,t)} + ∂2

∂x2
[g2(x)P (x,t)], (8)

where g(x) =
√

g2
1(x)TL(t) + g2

2(x)TR(t), and dimensionless parameters are used, with kB = 1, η = 1.
In the steady state, the stationary probability distribution function of the system is easily given by

pst (x) = ℵe−U (x), (9)

where ℵ is the normalization constant, and the generalized potential U (x) = − ∫ x H (x)−g(x)g′(x)
g2(x) dx.

In terms of Eq. (9), ensemble averages of some functions about the system’s state variable x can be calculated. According to
definition of thermal current and using Novikov’s theorem [22,23], therefore, we can derive the analytical expression of thermal
current of the system
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, (10)

with
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]
g1(x) − H (x)
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N3(x) = − g1(x)

2kint + k − R(x)
, N4(x) = g2(x)

2kint + k − R(x)
,

where the sign 〈〉 represents the ensemble average.
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After taking the average of Eq. (10) about t over one period
of 2π/ω, we obtain the final analytical expression of the
thermal current

J = ω

2π

∫ 2π
ω

0
J (t)dt. (11)

III. RESULTS AND DISCUSSIONS

From Eqs. (9)–(11), we can calculate numerically the
thermal current as functions of the system’s parameters, and
the results were plotted in Figs. 1–7.

First, let us discuss the case of d = 0, i.e., without
the coupling displacement between the two atoms. The
system only possesses one kind of lattice. But modulating
the temperature amplitudes A and/or A1 of oscillations
of the two heat baths can control magnitude and direction of
the thermal current. The thermal current J as functions of
A and A1 at different values of normalized temperature
differences were plotted in Figs. 1 and 2, respectively. Figure 1
indicates that the thermal current gradually decreases with A

increasing as the other parameters are unchanged. In other
words, the periodic oscillation of temperature of the heat
bath with higher temperature will generate the impact that
the heat goes from the lower-temperature heat bath to the
higher-temperature heat bath through the lattices. The higher
the temperature difference � and the greater the oscillation
amplitude of the lower-temperature heat bath A1, the
greater the temperature oscillation amplitude of the higher-
temperature heat bath that forms negative thermal currents.
But with the increment of A1, the thermal current gradually
increases, see Fig. 2. This means that the temperature oscilla-
tion of the lower-temperature heat bath will induce heat to flow
from the lower-temperature heat bath to the higher-temperature
heat bath through the lattices. So it is deduced easily that as
the temperature difference is equal to zero, the direction of the
heat conduction is completely determined by the oscillation
amplitudes of temperatures of the two heat baths, namely,
J < 0 for A > A1, while J > 0 for A < A1. The ratchet

FIG. 1. The thermal current J vs higher temperature oscillation
amplitude A for different normalized temperature differences: � =
0,0.02 and different lower temperature amplitudes: A1 = 0,0.2. The
other parameters are d = 0, k = 1, kint = 0.2, a = 1, V0 = 0.5, T0 =
0.09, ω = ω1 = 2π × 0.001.

FIG. 2. J vs A1 for different values of � and A. The other
parameters are the same as in Fig. 1.

effects come from asymmetries of the rocking heat baths. In
the process of numerical calculation, we also found that the
magnitude and direction of the thermal current are independent
of oscillation frequencies of temperature. This is due to the
application of the adiabatic approximation to Eqs. (4) and (5),
in which the modulation frequency is much slower than the
system’s oscillation frequency.

As the coupling displacement d is not equal to zero, we
equally calculated the thermal current J as a function of
d at different values of normalized temperature differences
via Eqs. (9)–(11), and the results were displayed in Fig. 3.
Figure 3 shows that as the coupling displacement is increased,
the thermal current makes a periodic oscillation, whose
amplitude also becomes greater and greater. This means that an
optimal coupling displacement can make the thermal current
maximal. The point is very similar to reflection-enhancing
(or suppressing) coatings in optics. In addition, it tells us
that as the temperature difference � is comparatively smaller,
e.g., � = 0, 0.1, the greater coupling displacement can induce
negative thermal currents. It can be seen from the Langevin
Eq. (6) that the periodically oscillatory behavior of the

FIG. 3. The dependence of J on the coupling displacement d for
different values of �, with A = 0.2, A1 = 0. The other parameters
are the same as in Fig. 1.

062142-3



NIE, YU, ZHENG, AND SHU PHYSICAL REVIEW E 87, 062142 (2013)

FIG. 4. J vs A at different values of d , (a) for d = 0.5,1,1.5,2,4;
(b) for d = 2.5,3,3.5,4.5. The other parameters are A1 = 0, � =
0.02, k = 1, kint = 0.2, a = 1, V0 = 0.5, T0 = 0.09, ω = ω1 = 2π ×
0.001.

thermal current comes from the periodic part of the potential
of the FK lattices. So the dynamical behavior only occurs
in the lattice system with a periodic potential. Of course,
oscillatory period of the thermal current with respect to
d depends on the potential’s period. The increment of the
thermal current’s amplitude with d is due to the interaction
between the coupling displacement and the periodic potential
of the FK lattices, which can be incarnated through the
term 1

2kdG(x)/[2kint + k − R(x)] of Eq. (7). Noting that its
amplitude is modulated by d, and G(x) and R(x) are two
periodic functions concerned with d, so the term can take both
positive and negative values. As the term is smaller than zero,
the potential corresponding to this force is greater than zero.
This is equivalent to the case that another potential is added to
the system to enhance the interaction between the two atoms,
and make the thermal current magnified. Contrariwise, the
thermal current is reduced. Essentially, the ratchet effect in
Fig. 3 also comes from symmetry breaking caused by the
coupling displacement. From Eq. (1), it can be easily seen that
the nonzero d destroys the reflection symmetry between the
two segments of FK lattices. For d = 0, the atoms of lattice
have the same zero equilibrium displacement with qi = 0.

FIG. 5. J vs the spring constant k at different values of d:
0,0.5,1,1.5 and 2, with A = 0.2, A1 = 0. The other parameters are
the same as in Fig. 4.

But for nonzero d, the equilibrium displacement for qi will
deviate from zero, depending on the sign of d. If the bracket
of the term kint

2 (qN1+1 − qN1 + d)2 in Eq. (1) is open, we will
obtain a standard interaction kint

2 (qN1+1 − qN1 )2 and a linear
term kint(qN1+1 − qN1 )d. The linear term means that a force
kintd exerts on the system, and makes the system’s symmetry
broken. The two atoms along the link spring bend the most
and induce strong asymmetry. But the asymmetry effect will
decrease as more and more atoms are considered.

Now let us discuss the effect of temperature manipulation
on the thermal current in the case of d �= 0. As the normalized
temperature difference remains at a lower level of � = 0.02,
modulating the temperature oscillation amplitude of one end
can cause some interesting dynamical behaviors. Figure 4
is the dependence of the thermal current on A at different
values of d for A1 = 0. It can be seen from Fig. 4 that:
(i) As A = 0, the coupling displacement d can induce certain
thermal current, even negative current for some values of d

(e.g., d = 1.5,3,4.5). The emergence of the negative thermal

FIG. 6. J vs the coupling strength kint at different values of d:
0,0.5,1,1.5 and 2, with k = 1. The other parameters are the same as
in Fig. 5.
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FIG. 7. J vs � at different values of d: 0,0.5,1.5,2.5,3.5,4.5,
with A = A1 = 0. The other parameters are the same as in Fig. 4.

current in the positive temperature bias is also brought about
by the interaction between the coupling displacement and
the periodic potential of the FK lattices. (ii) The thermal
current can both increase and decrease monotonically with
A increasing, dependent on d. As appropriate values of d are
taken, modulating the temperature oscillation amplitude A can
induce reversal of the thermal current. Of course, the change
of the thermal current with A1 also relies on d.

Figures 5 and 6 reflect the changes of the thermal current
with the spring constant k of lattice and the coupling strength
kint between the two kinds of lattices at various values of d,
respectively. Figure 5 indicates that the trend of the thermal
current with k also depends on d. As d = 0, the thermal current
first increases with k increasing then gradually approaches to
saturation, which is due to that the increment of k means
enhancement of the spring potential of lattice in a finite
coupling strength kint. But as d �= 0, the thermal current
as a function of k exhibits either monotonically decreasing
behavior (e.g., d = 0.5,1.5) or nonmonotonic behavior (e.g.,
a peak for d = 1,2). Additionally, the coupling displacement
d also affects the change of the thermal current J with kint,
see Fig. 6. As d = 0, the thermal current monotonically goes
up with kint. With the increment of d (e.g., d = 0.5), the
monotonic behavior gradually vanishes, and a peak appears.
As d is further increased, the system displays monotonically
decreasing behavior of J vs kint.

The dependence of the thermal current J on the normalized
temperature difference � at various values of d is drawn
in Fig. 7 as A = A1 = 0. From Fig. 7, we can see that
the thermal current is directly proportional to the temper-
ature difference, and slopes of these lines are affected by
the coupling displacement d. As d = 0, the change of J vs
� is a line through the origin. But for d �= 0, intercepts of

the lines are not equal to zero. Their slopes make periodic
oscillations with d. This means that heat conductivity of
the system exhibits oscillatory behavior with d because the
slopes reflect magnitudes of heat conductivity to some degree.
Because the heat conduction we considered here takes place in
the system of symmetric FK lattices, some phenomena (e.g.,
thermal rectification and NDTR) can not be observed.

IV. CONCLUSION

Until now, we have investigated the heat conduction of
the symmetric FK lattices with the coupling displacement.
Applying adiabatic approximation to the system, the analytical
expression of the thermal current were obtained. Although
the system was simplified in order to get analytical solution
of the thermal current, we can open out explicitly intrinsic
mechanism of the heat conduction. The Langevin Eq. (6)
shows clearly that the mass center of the two FK atoms
is acted on by two kinds of potentials (i.e., spring and
periodic potentials) and driven by two multiplicative noises.
The interaction of the coupling displacement with the periodic
potential makes the system display some interesting dynamical
behavior. Whether there is a temperature difference between
the two heat baths or not, the thermal current and the thermal
conductivity oscillate periodically with d. The coupling dis-
placement can induce a certain thermal current, even a negative
current for a lower normalized temperature difference. The
coupling displacement also can cause both increment and
decrement of the thermal current with temperature oscillation
amplitude, even for the appropriate values of d, modulating
the temperature oscillation amplitude can induce reversal of
the thermal current. In addition, the coupling displacement
can induce nonmonotonic behaviors of the thermal current as
functions of the spring constant of lattice and the coupling
strength.

From the above findings, we can further understand the
role that the coupling displacement plays in the process of
heat conduction. And it is concluded that as long as systems
of coupled lattices possess ingredients of periodic potential,
the coupling displacement must act with the periodic potential
and make dynamical properties of the systems more complex,
especially for the systems with asymmetric lattices. Because
dynamical behavior of heat conduction depends on potential
and dimension of lattices to some degree [24,25], devotion of
d to heat conduction of asymmetric lattices without periodic
potential will be also an important research topic.

ACKNOWLEDGMENTS

This work was supported by the Yunnan Provincial Foun-
dation (Grant No. 2009CD036), the Research Group of Non-
equilibrium Statistics, Kunming University of Science and
Technology, China.

[1] V. P. Carey et al., Nanoscale Microscale Thermophys. Eng. 12,
1 (2008).

[2] S. Lepria, R. Livib, and A. Politib, Phys. Rep. 377, 1 (2003).

[3] B. Li, L. Wang, and G. Casati, Phys. Rev. Lett. 93, 184301
(2004).

[4] T. S. Komatsu and N. Ito, Phys. Rev. E 81, 010103(R) (2010).

062142-5

http://dx.doi.org/10.1080/15567260801917520
http://dx.doi.org/10.1080/15567260801917520
http://dx.doi.org/10.1016/S0370-1573(02)00558-6
http://dx.doi.org/10.1103/PhysRevLett.93.184301
http://dx.doi.org/10.1103/PhysRevLett.93.184301
http://dx.doi.org/10.1103/PhysRevE.81.010103


NIE, YU, ZHENG, AND SHU PHYSICAL REVIEW E 87, 062142 (2013)

[5] B. Li, L. Wang, and G. Casati, Appl. Phys. Lett. 88, 143501
(2006).

[6] L. Wang and B. Li, Phys. Rev. Lett. 99, 177208 (2007).
[7] L. Wang and B. Li, Phys. Rev. Lett. 101, 267203 (2008).
[8] C. W. Chang, D. Okawa, A. Majumdar, and A. Zettl, Science

314, 1121 (2006).
[9] P. J. Jones, J. A. M. Huhtamäki, K. Y. Tan, and M. Möttönen,
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