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I. INTRODUCTION

The free energy of conformally invariant two-dimensional
systems has been studied for some time [1–3]. In the case
where the system considered is an infinite strip, it is possible to
find an exact expression for the free energy per unit length. This
has been done in the isotropic case, with equal horizontal and
vertical coupling constants [4]. This was done by considering
a cylindrical Ising lattice of height M and circumference
2N with so-called Brascamp-Kunz boundary conditions [5].
Other aspects of finite size corrections with Brascamp-Kunz
boundary conditions have been considered in Ref. [6].

In this paper, the calculation corresponding to the calcu-
lation of the free energy in Ref. [4] will be done, but with
different vertical and horizontal coupling constants.

Blöte et al. [1] wrote the limit of the free energy at criticality
per unit length limN→∞ F/2N as

lim
N→∞

F

2N = fM + f × + �

M + · · · , (1)

where f is the bulk free energy per unit area and f ×/2 is the
surface free energy. In the isotropic case � is given by

� = − π

24
(c − 24h), (2)

where c − 24h is called the effective central charge. The
effective central charge has been discussed elsewhere, for
instance, by Izmailian et al. [7]. For the Ising lattice, the central
charge is c = 1/2, and the allowed values of the conformal
weight h are 0, 1/2, and 1/16. It can be seen from Eq. (17) of
Ref. [4] that the partition function is a multiple of the Virasoro
character χ1/16 = √

ϑ2/2η [where the suppressed argument is
iN /(M + 1)]. Thus h must be 1/16. It will be shown later in
this paper that in the isotropic case

� = π

24
. (3)

Since c = 1/2, (2) and (3) confirm that h = 1/16.
Equation (3) is only valid if the classical system is

rotationally invariant at large distances [1,2]. In terms of an
Ising lattice, this means that the lattice has to be isotropic. If
this is not the case, then (3) must be modified by dividing the
right-hand side by v, the “speed of light.” The speed of light
should be obtained from a dispersion relation ω ∼ vu, where
ω is the frequency and u is the momentum.

The Ising model of size M × N has exact solutions for
various boundary conditions, and finite size corrections have
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also been studied by many authors. For toroidal boundary
conditions, Izmailian and Hu [8] and Salas [9] calculated
the free energy up to order N−5. Lu and Wu [10] found
expressions for the partition functions of a quadratic Ising
lattice on a Möbius strip and on a Klein bottle and found
finite size corrections of the free energy to order N−1. Janke
and Kenna [6] considered an Ising lattice of size M × 2N

with Brascamp-Kunz boundary conditions. They calculated
corrections of the specific heat to order M−3.

Izmailian et al. [4] calculated the finite size correction of
the free energy of an isotropic lattice with Brascamp-Kunz
boundary conditions up to every order. To do this, they used
the fact that the partition function of a lattice with these
boundary conditions can be written in terms of a partition
function of a lattice with “twisted” boundary conditions. They
could then expand the free energy as a series and use the
Kronecker double series. Before this, Ivashkevich et al. [11]
had rewritten the partition function of the Ising lattice with
toroidal boundary conditions in the same way. In this paper,
we will apply this method to the anisotropic lattice with
Brascamp-Kunz boundary conditions. For an introduction to
Kronecker’s double series, see Refs. [4,11,12].

II. THE BRASCAMP-KUNZ BOUNDARY CONDITIONS

The Brascamp-Kunz boundary conditions were introduced
by Brascamp and Kunz [5] to study the zeros of the partition
function of a finite Ising lattice. It had previously been
conjectured by Fisher [13] that in the isotropic case, the zeros
of the partition function ZM,N in the variable x := e2βE will
approach the circles |x ± 1| = √

2 in the thermodynamic limit
M,N → ∞. Brascamp and Kunz used a result by McCoy
and Wu [14] to show that with these boundary conditions,
the zeros do not just approach these circles but lie on them
even when the lattice is finite. To put it briefly, McCoy
and Wu considered a cylindrical lattice with free boundary
conditions and with a magnetic field H on the lower boundary.
Brascamp and Kunz found that in the limit βH → iπ/2, the
expression for the corresponding partition function is much
simplified. Moreover, in this limit the zeros approach the
circles mentioned above, even when the lattice is finite. They
then constructed a lattice whose dual lattice is the lattice of
McCoy and Wu with βH = iπ/2. (For a general discussion of
duality relations, see, for example, Ref. [15].) This lattice is the
Brascamp-Kunz lattice. Its partition function can be written in
such a way that it is easy to calculate finite size corrections
of the free energy. We consider the lattice 	 = {(m,n)|1 �
m � M,1 � n � 2N ,(m,2N + 1) = (m,1)}. The boundary
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FIG. 1. The lattice 	 (marked by crosses; M = 3, N = 2) and
the dual lattice 	∗ (at intersections of lines).

conditions are as follows: (i) The lattice interacts with a row
of fixed, positive spins above it. (ii) The lattice interacts with
a row of fixed, alternating spins below it. (See Fig. 1.)

III. THE PARTITION FUNCTION WITH
BRASCAMP-KUNZ BOUNDARY CONDITIONS

The interaction between neighboring spins on 	 is E1 in the
horizontal direction and E2 in the vertical direction. In what
follows, the dimensionless parameters Kl = βEl(l = 1,2) will
be used instead of E1 and E2. Apart from interactions between
nearest neighbors, there is an external magnetic field. Thus the
Hamiltonian is defined as

E	(σ,K1,K2,H ) = −E1

M∑
j=1

2N∑
k=1

σj,kσj,k+1

−E2

M∑
j=0

2N∑
k=1

σj,kσj+1,k

−
M∑
j=1

2N∑
k=1

H (j,k)σj,k, (4)

where σj,k = σj,k+2N = ±1, σ0,k = 1, and σM+1,k =
(−1)k+1. The partition function

Z	(K1,K2,H ) =
∑

σ∈{−1,1}	
exp −βE	(σ,K1,K2,H ) (5)

has been calculated for the constant external magnetic
fields H ≡ 0 and βH ≡ iπ/2, for which the problem is
exactly solvable. Brascamp and Kunz calculated Z	(K,K,0).
Z	(K1,K2,0) and Z	(K1,K2,iπ/2) were calculated in Ref.
[16]. Z	(K1,K2,0) is given by

Z	(K1,K2,0) = 22MN
N∏

j=1

M∏
k=1

{cosh 2K1 cosh 2K2

− sinh 2K1 cos θj − sinh 2K2 cos ϕk}, (6)

where

θj = (2j − 1)π/2N ,ϕk = kπ/(M + 1). (7)

IV. THE FREE ENERGY

The partition function (6) can be written as

Z	 = 2MN e2MNμ(K1,K1)
N∏

j=1

M∏
k=1

F (j,k), (8)

where

F (j,k) := 4

[
2 sinh2

(
sinh 2K2

sinh 2K1

)1/2

μ(K1,K2)

+ sin2 θj /2 + sinh 2K2

sinh 2K1
sin2 ϕk/2

]
(9)

and the mass μ(K1,K2) is defined as

sinh2 μ(K1,K2) := 1

4(sinh 2K1 sinh 2K2)1/2

× (cosh 2K1 cosh 2K2 − sinh 2K1

− sinh 2K2); (10)

in particular

μ(K,K) = 1
2 ln sinh 2K. (11)

Define ω(K1,K2; u) by the equation

sinh2 ω(K1,K2; u) := 2 sinh2

(
sinh 2K2

sinh 2K1

)1/2

μ(K1,K2)

+ sinh 2K2

sinh 2K1
sin2 u, (12)

so that

F (j,k) = 4[sinh2 ω(K1,K2; ϕk/2) + sin2 θj /2]. (13)

Then, using the identity [17]

2N−1∏
j=0

4
(
sinh2 ω + sin2 θj /2

) = 4 cosh2 2Nω, (14)

one obtains

2N−1∏
j=0

F (j + 1,0)F (j + 1,M + 1)

= [4 cosh 2Nω(K1,K2; 0) cosh 2Nω(K1,K2; π/2)]2.

(15)

Therefore, using the same argument as in Ref. [4], one finds

Z2
	 = 22MN e4MNμ(K1,K1)

4 cosh 2Nω(K1,K2; 0) cosh 2Nω(K1,K2; π/2)

× Z̃	̃(1/2,0,μ(K1,K2)), (16)

where 	̃ is a lattice of size (2(M + 1),2N ) and the partition
function of 	̃ with twisted boundary conditions is given by
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the equation

[Z̃	̃(α,β,μ)]2 =
2N−1∏
j=0

2M+1∏
k=0

4

(
2 sinh2 μ + sin2 π (j + α)

2N + sinh 2K2

sinh 2K1
sin2 π (k + β)

2(M + 1)

)
. (17)

[Z̃	̃(1/2,0,μ(K1,K2))]2 is given by

[Z̃	̃(1/2,0,μ(K1,K2))]2 =
2N−1∏
j=0

2M+1∏
k=0

4

[
2 sinh2 μ(K1,K2) + sin2 θj+1/2 + sinh 2K2

sinh 2K1
sin2 ϕk/2

]
=

2N−1∏
j=0

2M+1∏
k=0

F (j + 1,k)

=
(

2

sinh 2K1

)4N (M+1) 2N−1∏
j=0

2M+1∏
k=0

[(
sinh 2K1

sinh 2K2

)1/2

(cosh 2K1 cosh 2K2 − sinh 2K1 − sinh 2K2)

+ 2 sinh 2K1 sin2 θj+1/2 + 2 sinh 2K2 sin2 ϕk/2

]
. (18)

Define ω̃(K1,K2; u) by the lattice dispersion relation

sinh2 ω̃(K1,K2; u) = sinh 2K1

sinh 2K2
[2 sinh2 μ(K1,K2) + sin2 u]

= (sinh 2K1)1/2

2(sinh 2K2)3/2
(cosh 2K1 cosh 2K2 − sinh 2K1 − sinh 2K2) + sinh 2K1

sinh 2K2
sin2 u. (19)

At criticality it reads

ω̃(K1,K2; u) ∼
(

sinh 2K1

sinh 2K2

)1/2

u. (20)

One would thus expect that

v =
(

sinh 2K1

sinh 2K2

)1/2

. (21)

It will be shown later that this is in fact the case. It follows from (18) and (19) that

[Z̃	̃(1/2,0,μ(K1,K2))]2 =
(

sinh 2K2

sinh 2K1

)4N (M+1) 2N−1∏
j=0

2M+1∏
k=0

4[sinh2 ω̃(K1,K2; θj+1/2) + sin2 ϕk/2]. (22)

Using the identity

2M+1∏
k=0

4
(
sinh2 ω + sin2 ϕk/2

) = 4 sinh2 2(M + 1)ω, (23)

one obtains from (22)

Z̃	̃(1/2,0; μ(K1,K2)) =
(

sinh 2K2

sinh 2K1

)2N (M+1) 2N−1∏
j=0

2 sinh 2(M + 1)ω̃
(
K1,K2; θj /2

)
. (24)

V. ASYMPTOTIC EXPANSION OF THE FREE ENERGY

A. The free energy at criticality

Let (K1,K2) = (K∗,K) be the curve on which μ(K1,K2) =
0, or, equivalently,

sinh 2K1 sinh 2K2 = 1. (25)

Let the Taylor expansion of ω̃(K∗,K; u) be

ω̃(K∗,K; u) =
∞∑

n=0

λ2n

(2n)!
u2n+1. (26)

In particular

λ0 =
(

sinh 2K∗

sinh 2K

)1/2

= sinh 2K∗. (27)

Then

ω̃(K∗,K; u) = sinh−1 λ0 sin u = sinh−1 sinh 2K∗ sin u, (28)

and similarly,

ω(K∗,K; u) = sinh−1 λ−1
0 sin u = sinh−1 sinh 2K sin u. (29)
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Thus, on the critical curve, the free energy as obtained from (16) is

F = − ln Z	 = − MN ln 2 − 2MNμ(K∗,K∗) + ln 2 + 1

2
ln cosh 2N sinh−1

(
sinh 2K

sinh 2K∗

)1/2

−1

2
ln Z̃	̃(1/2,0,μ(K∗,K))

= −MN ln 2 − 2MNμ(K∗,K∗) + ln 2 + 1

2
ln cosh 4NK − 1

2
ln Z̃	̃(1/2,0,μ(K∗,K)). (30)

Clearly

ln Z̃	̃(1/2,0,μ(K∗,K)) = 2N (M + 1) ln

(
sinh 2K

sinh 2K∗

)
+ 2(M + 1)

2N−1∑
j=0

ω̃(K∗,K,θj /2)

+
2N−1∑
j=0

ln [1 − exp −4(M + 1)ω̃(K∗,K,θj /2)]. (31)

The two sums in (31) can be calculated exactly up to an exponentially small correction O(e−N ).

B. Calculation of (31)

The first sum in (31) can be written as a power series using the Euler-Maclaurin summation formula:

2(M + 1)
2N+1∑
j=0

ω̃(K∗,K,θj /2) = S

π

∫ π

0
ω̃(K∗,K,u)du − 2πξ

∞∑
n=0

(
π2ξ

S

)n
λ2n

(2n)!

B2n+2(1/2)

2n + 2
, (32)

where S = 4N (M + 1), ξ = (M + 1)/N , and Bp(·) is the pth Bernoulli function. It is defined as

Bp(x) := − p!

(2πi)p
∑

k∈Z\{0}
k−pe2πikx . (33)

It remains to calculate the second sum of (31).
The second sum in (31) can be written as

2N−1∑
j=0

ln (1 − e−4(M+1)ω̃(K∗,K,θj /2)) = −2
∞∑

m=1

1

m

N−1∑
j=0

e−2m2(M+1)ω̃(K∗,K,θj /2). (34)

Let P (p) = {π = (q1, . . . ,qν,r1, . . . ,rν)|qj ,rj ∈ N,1 � ν � p,qj 	= qk if j 	= k,
∑ν

j=1 qj rj = p}. The exponential on the right-
hand side of (34) can be written as

e−2m2(M+1)ω̃(K∗,K,θj /2) = exp

⎡
⎣−2πmλ0ξ (j + 1/2) − 2πmξ

∞∑
p=1

λ2p

(2p)!

(
π2ξ

S

)p

(j + 1/2)2p+1

⎤
⎦

=
⎡
⎣1 − 2πmξ

∞∑
p=1

(
π2ξ

S

)p
(j + 1/2)2p+1

(2p)!
	2p

⎤
⎦ e−2πmλ0ξ (j+1/2), (35)

where

	2p = (2p)!
∑

π∈P (p)

(
ν(π)∏
l=1

1

rl!

(
λ2ql

(2ql)!

)rl

)
[−2πmξ (j + 1/2)]r1+···+rν(π)−1. (36)

Together, (34), (35), and (36) imply that

2N−1∑
j=0

ln (1 − e−4(M+1)ω̃(K∗,K,θj /2))

= −2
∞∑

m=1

1

m

⎛
⎝N−1∑

j=0

e−2πmλ0ξ (j+1/2)

⎞
⎠ + 4πξ

∞∑
p=1

(
π2ξ

S

)p
1

(2p)!
	2p

⎛
⎝ ∞∑

m=1

N−1∑
j=0

(j + 1/2)2p+1e−2πmλ0ξ (j+1/2)

⎞
⎠ . (37)
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As in Ref. [11], if, for large N , the finite sum
∑N−1

j=0 is replaced by the infinite sum
∑∞

j=0 in (37), then equality still holds up to
an exponentially small correction O(e−N ). Thus

2N−1∑
j=0

ln (1 − e−4(M+1)ω̃(K∗,K,θj /2)) = −2
∞∑

m=1

1

m

⎛
⎝ ∞∑

j=0

e−2πmλ0ξ (j+1/2)

⎞
⎠

+ 4πξ

∞∑
p=1

(
π2ξ

S

)p
1

(2p)!
	2p

⎛
⎝ ∞∑

m=1

∞∑
j=0

(j + 1/2)2p+1e−2πmλ0ξ (j+1/2)

⎞
⎠ + O(e−N ). (38)

Combining (32), (38), and (31), one obtains

ln Z̃	̃(1/2,0,μ(K∗,K)) = 2N (M + 1) ln

(
sinh 2K

sinh 2K∗

)
+ S

π

∫ π

0
ω̃(K∗,K,u)du

− 2πξ

∞∑
n=0

(
π2ξ

S

)n
λ2n

(2n)!

B2n+2(1/2)

2n + 2
− 2

∞∑
m=1

1

m

∞∑
j=0

e−2πmλ0ξ (j+1/2)

+ 4πξ

∞∑
p=1

(
π2ξ

S

)p
1

(2p)!
	2p

∞∑
m=1

∞∑
j=0

(j + 1/2)2p+1e−2πmλ0ξ (j+1/2) + O(e−N ). (39)

This expression may be further simplified in terms of elliptic θ functions. However, it is simplest to consider the limit N → ∞.

C. The free energy in the limit N → ∞
In the limit N → ∞ while M is fixed, an exact result can be obtained.
Combining (30) and (39), one obtains

lim
N→∞

F

2N = −1

2
M ln 2 − Mμ(K∗,K∗) + K − lim

N→∞
1

4N ln Z̃	̃(1/2,0,μ(K∗,K))

= −1

2
M ln 2 − (M + 2)μ(K,K) + K

− lim
N→∞

M + 1

π

∫ π

0
ω̃(K∗,K,u)du + 1

2
lim

N→∞
1

N

∞∑
m=1

1

m

∞∑
j=0

e−2πmλ0ξ (j+1/2)

− lim
N→∞

1

N πξ

∞∑
p=1

(
π2ξ

S

)p
1

(2p)!
	2p

∞∑
m=1

∞∑
j=0

(j + 1/2)2p+1e−2πmλ0ξ (j+1/2). (40)

The limit of the double sum can be calculated to be

1

2
lim

N→∞
1

N

∞∑
m=1

1

m

∞∑
j=0

e−2πmλ0ξ (j+1/2) = π

24(M + 1)λ0
. (41)

Further, by Ref. [11]
∞∑

m=1

∞∑
j=0

(j + 1/2)2p+1e−2πmλ0ξ (j+1/2) = 1

4(p + 1)

[
B2p+2(1/2) − K1/2,0

2p+2(iλ0ξ )
]
, (42)

where Bp(·) is the pth Bernoulli function and

Kα,β
p (τ ) := − p!

(−2πi)p
∑

m,n ∈ Z
(m,n) 	= (0,0)

e−2πi(nα+mβ)

(n + τm)p
(43)

is Kronecker’s double series.
It can be shown [4] that K1/2,0

2p (iξ ) can be expressed in terms of the elliptic θ functions ϑ2, ϑ3, and ϑ4. It can therefore be
shown [4] that for small ξ

K1/2,0
2p+2(iλ0ξ ) = B2p+2(λ0ξ )−2p−2 + O(ξ−2p−1), (44)

where Bn := Bn(1) is the nth Bernoulli number. Since

	2p = λ2p + O(ξ ) (45)
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for small ξ , it follows that

lim
N→∞

F

2N = −1

2
M ln 2 − (M + 2)μ(K,K) − M + 1

4π

∫ π

0
ω̃(K∗,K,u)du + K + π

24(M + 1)λ0

+
∞∑

p=1

(
π

2(M + 1)

)2p+1 B2p+2

(2p)!(2p + 2)

λ2p

λ
2p+2
0

. (46)

In particular, one sees that the expected value of v given in (21) is correct.

D. The free energy for large N
We now consider the case of large N , where the partition function is given by (39). According to Ref. [11],

− 2
∞∑

m=1

1

m

∞∑
j=0

e−2πmλ0ξ (j+1/2) = 2
∞∑

j=0

ln (1 − e−2πλ0ξ (j+1/2)) = ln
ϑ4(iλ0ξ )

η(iλ0ξ )
+ πλ0ξB2(1/2), (47)

where η(τ ) := [ϑ2(τ )ϑ3(τ )ϑ4(τ )/2]1/3 = eiπτ/12 ∏∞
n=1(1 − ei2πτn). From (39), (42), and (47) one thus obtains

ln Z̃	̃(1/2,0,μ(K∗,K)) = 2N (M + 1) ln

(
sinh 2K

sinh 2K∗

)
+ S

π

∫ π

0
ω̃(K∗,K,u)du

− 2πξ

∞∑
n=0

(
π2ξ

S

)n
λ2n

(2n)!

B2n+2(1/2)

2n + 2
+ ln

ϑ4(iλ0ξ )

η(iλ0ξ )
+ πλ0ξB2(1/2)

+πξ

∞∑
p=1

(
π2ξ

S

)p
1

(2p)!
	2p

1

p + 1

[
B2p+2(1/2) − K1/2,0

2p+2(iλ0ξ )
] + O(e−N ). (48)

It now follows from (30) and (48) that

F = −MN ln 2 − 2MNμ(K∗,K∗) + 1

2
ln 2 + 2NK − N (M + 1) ln

(
sinh 2K

sinh 2K∗

)
− S

2π

∫ π

0
ω̃(K∗,K,u)du

+πξ

∞∑
n=0

(
π2ξ

S

)n
λ2n

(2n)!

B2n+2(1/2)

2n + 2
− 1

2
ln

ϑ4(iλ0ξ )

η(iλ0ξ )
− 1

2
πλ0ξB2(1/2)

− 1

2
πξ

∞∑
p=1

(
π2ξ

S

)p
1

(2p)!
	2p

1

p + 1

[
B2p+2(1/2) − K1/2,0

2p+2(iλ0ξ )
] + O(e−N ). (49)

VI. CONCLUSION

In this paper we have generalized the result found in Ref.
[4]. The calculation in Ref. [4] depended on the expression
found by Brascamp and Kunz for the partition function of
an isotropic Ising lattice 	 without external magnetic field
and with Brascamp-Kunz boundary conditions, Z	(K,K,0).
The form of that expression allows the partition function
to be written in terms of the partition function of an Ising
lattice with twisted boundary conditions. The twisted boundary
conditions allow the calculation of the correction of the free
energy to every order, with the use of the Kronecker double
series.

The results obtained in this paper depend on the cal-
culation of the partition function of the anisotropic lattice,
Z	(K1,K2,0), done in Ref. [16]. We have found that this
partition function can also be written as the partition function
of a lattice with twisted boundary conditions, just like in the
isotropic case. Hence we could expand the partition function
and use the Kronecker double series to obtain our result.

We have calculated the free energy density F/2N of an
Ising lattice with Brascamp-Kunz boundary conditions and

obtained exact results up to exponentially small corrections.
In particular, we have considered the free energy density
of an infinite strip with Brascamp-Kunz boundary condi-
tions, limN→∞ F/2N . In this case, the result is exact as
a series expansion. Further, we have modified the effective
central charge of Eq. (1) to an anisotropic lattice. This was
done by calculating the speed of light corresponding to the
anisotropy.

The twisted boundary conditions have been used for
toroidal [11] and Brascamp-Kunz boundary conditions ( [4]
and the present paper). It has not yet been fully explored to
which cases the twisted boundary conditions can be applied.
This may be an interesting topic to investigate.
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