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Unlike other natural network systems, assortativity can be observed in most human social networks; however,
it has been reported that a social dilemma situation represented by a 2 × 2 prisoner’s dilemma game favors
dissortativity to enhance cooperation. Our simulations successfully reveal that a public goods game with
coevolution for both agents’ strategy and network topology encourages assortativity, although it only slightly
enhances cooperation as compared to a 2 × 2 donor and recipient game with a strong dilemma to be solved. This
outcome occurs because the network dynamics in a multiplayer game discourages emerging cooperation unlike
its beneficial result in a 2 × 2 prisoner’s dilemma game.
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I. INTRODUCTION

The mechanism of cooperation evolution is a mysterious
puzzle that remains unsolved. Nowak and May [1] identified
five mechanisms that result in the evolution of cooperation
(C) instead of defection (D): kin selection, direct reciprocity,
indirect reciprocity, network reciprocity, and group selection.
Note that these mechanisms share a common feature, a means
of decreasing the anonymity of game-participating agents,
called “social viscosity” [2].

Among Nowak’s five mechanisms, network reciprocity has
been considered the most important from the biology and
physics viewpoints. Because network reciprocity relies on only
a simple mechanism that allows agents to interact with neigh-
bors and copy their strategy, defined as C or D, it may imply
that many animal species with unsophisticated information
processing have nevertheless developed cooperative social sys-
tems. In fact, since 1992, when Nowak and May [3] conducted
the first study on the spatial prisoner’s dilemma, hundreds
of studies have reported the mechanism through which
network reciprocity functions as a key protocol for develop-
ing cooperation. Researchers have understood that networks
with heterogeneous degree distribution, such as scale-free
networks, can better enhance cooperation than homogeneous
networks because heterogeneous networks allow the existence
of hub C-agents, perhaps having high payoffs, which compel
cooperation among their neighbors, thus causing strong, stable
cooperation (e.g., [4–7]); however, network reciprocity is more
strongly influenced by the assumed strategy updating and
dynamics than by the assumed underlying network topology
[8,9]. Note also that “heterogeneous topology” is represented
with not only degree distribution but also average path length,
average cluster coefficient, and other network parameters.
Among those parameters, assortativity has been frequently
studied in emerging cooperation. Rong et al. [10] noted that
the cooperative phase in prisoner’s dilemma (PD) games would
be more robust in a heterogeneous network with a negative
assortative coefficient [11].1 This finding might be plausible
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1The assortativity coefficient (AC) is the Pearson correlation

coefficient of degree between pairs of linked nodes, defined by

because hub C-agents who connect with low-degree neighbors
in a dissortative network convert less frequently from C to D
by copying from neighbors than do assortative network hub
C-agents who have high-degree (high payoff) neighbors likely
including defectors. This finding was validated (e.g., [12,13])
by assuming coevolutionary models (e.g., [14–16]).

Newman, who defined the assortative coefficient [11],
observed an interesting difference between human social
networks and natural network systems. Networks such as those
in physics, biology, mathematics coauthorships, and film-actor
collaborations; networks of company directors; and those
of teenagers’ sexual relationships have positive assortative
coefficients. In contrast, networks such as the Internet, protein
interactions, neural networks, and marine and freshwater
food-chain systems have negative assortative coefficients [11].

These observations raise the challenging question of why
human society has been able to develop cooperation even on
assortative heterogeneous networks. One possible answer is
that interactions among human networks might be different
from those among natural systems. Along with the previous
studies, one might infer whether human interactions can be
represented by 2 × 2 PD games. If that is possible, we must
then investigate the concrete model based on a 2 × 2 PD, where
both assortative heterogeneity and cooperation can emerge as
in human social systems.

In our previous study [17], we presented one possibility,
where agents play 2 × 2 PD games, and additionally assumed
two different agents’ features: learner and teacher agents
[18]. Through coexisting learners—who copy strategy from
neighbors as do models assumed in former studies—and
teachers—who impose their strategy upon neighbors—the
coevolutionary process allows emerging assortative networks
with an enhanced cooperation phase among those heteroge-
neous agents.

AC =
∑

jk jk(ejk−pj qk )

σ 2
q

, where pk is the degree distribution; qk is the

distribution of the remaining degree, given by qk = (k+1)pk+1∑
j jpj

; ejk

refers to the joint probability distribution of the remaining degrees of
the two vertices. This quantity is symmetric on an undirected graph,
and follows the sum rules

∑
jk ejk = 1 and

∑
j ejk = qk .
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In the current study, we present another possibility by using
a different coevolutionary model. One important difference
from our previous study is that the assumed game played by
agents is not 2 × 2 but PGG (e.g., [19–22]). We observe that
this little difference causes interesting and substantially differ-
ent results from what we know about the coevolutionary model
of 2 × 2 games. Recently, Moreira et al. [23] reported a novel
result by an analytical approach assuming a coevolutionary
situation based on a public goods game (PGG), but noted
nothing on network characteristics, including assortativity,
observed in emerging networks.

This paper contains four sections. Section II presents the
model description and assumptions for numerical simulations.
Section III reports results and discussion of the numerical
simulations. Section IV summarizes our findings.

II. MODEL SETUP

A. Public goods game

At each time step, an agent on a network plays a public
goods game (PGG), which is a multiplayer prisoner’s dilemma.
Agent i’s payoff, depending on her strategy si = 1 for a
cooperator (C) or 0 for a defector (D), is defined as follows:

πi
si

= r
ni

C

Gi

− si = r
ni

C

ki + 1
− si, (1)

where ki is the degree of Agent i, ni
C is the number of her

cooperative neighbors including Agent i, and r is the game
parameter indicating dilemma weakness. Gi indicates the
game size (number of game participants) that Agent i hosts.
That is, Gi = ki + 1. Agent i also obtains payoffs resulting
from games that her neighbors host. Assuming one of her ki

neighbors, Agent j , we define Agent i’s payoff through link
i-j as follows:

πi j
si

= r
n

j

C

kj + 1
− si . (2)

Thus, the total payoff obtained by Agent i is

�i = πi
∗ +

∑

j∈{Ni }
πi j

∗ , (3)

where {Ni} denotes Agent i’s neighbor set, and ∗ indicates a
wildcard of either C or D, which is Agent i’s strategy. The
first term indicates the payoff of the game Agent i hosts, and
the second term represents those of the games that Agent i’s
respective neighbors host. The total number of games Agent
i plays is ki + 1. Because r

nC

k+1 − 1 < r
nC

k+1 is always true,
a PGG becomes a multiplayer PD game when r

nC

k+1 − 1 <

r
nC−1
k+1 (that is, r/G < 1) is satisfied.
For comparison, we can define another PGG by assuming

Gi = 2 instead of Gi = ki + 1, where each multiplayer game
is always played by two agents connected by a link. This
structure characterizes a donor and recipient (D&R) game,
a subclass of 2 × 2 PD games. The relationship of dilemma
strength between PGG and D&R games can be drawn as
follows: r = 2(1 − Dg) = 2(1 − Dr ) when we define a 2 × 2

payoff matrix [24] as ( R S

T P ) = ( 1 −Dr

1 + Dg 0 ). In D&R games,
Dg = Dr is satisfied. The two parameters Dg = T − R and

Dr = P − S imply a chicken-type dilemma and stag-hunt
dilemma, respectively [24]. The PD game class is achieved by
assuming 0 � Dg � 1 and 0 � Dr � 1. In D&R games, the
total number of games Agent i plays is ki .

B. Strategy and network adaptations

After games at each time step, either strategy updating with
the probability pstr or network adaptation occurs. Throughout
this study, we assume that pstr = 0.5, which means that we
assume the same time scales for both strategy and network
adaptations.

As strategy updating, we assume imitation max (IM), where
the focal player i imitates the strategy, either C or D, with the
maximum payoff among all strategies taken by the focal player
and her immediate neighbors [9]. We assume the synchronous
procedure for strategy updating.

At the beginning of each simulation episode, agents are
connected by a random network [based on the Erdős-Rényi
graph [25] (E-R random graph)] having 〈k〉 N/2 links. N

denotes the number of nodes in the network (population
count of agents) and 〈k〉 denotes the average degree. A
double-connected link is prohibited. Each simulation episode
generates a different E-R random graph.

Network adaptation consists of two procedures: severing
a link with one neighbor and creating a new link with an
unknown agent. An agent who severs a link must create a new
link, thus preserving her degree during the adaptation process.

In 2 × 2 game research, several studies have addressed
defining the protocol for severing links. Zimmermann et al.
[14] assumed that D-D links should be disconnected. Tanimoto
then investigated differences from Zimmermann’s result if
both C-D and D-D links are disconnected [15]. Tanimoto
posed another criterion for disconnecting a link: if the link
has the minimum payoff, and if its payoff is less than
(P + R + S + T )/4 [12]. These previous studies share the
basic concept for disconnecting links: The focal agent’s link
most significantly malfunctioning to gain her payoff should
be disconnected because disconnecting “bad” links (links
with defectors) assures reciprocity by using the “game exit”
option (e.g., [26]). A PGG requires a different protocol for
disconnecting links because the game situation of what occurs
around the focal agent differs from that of a 2 × 2 game.
Therefore, we define the following severing protocol:

Agent i disconnects the link with Agent j if it is the link
with the minimum payoff among her neighbor hosting games,
and Agent j has a lower fraction of cooperators among the
game participants in her hosting game than pth

C .
The parameter pth

C is defined to be globally constant. In this
study, we fix pth

C = 0.5. One may consider the latter part of the
protocol to be inappropriate if we believe that an agent playing
a PGG knows only local information obtained through the link
with that particular neighbor if one assumes that the data on
how many cooperative neighbors that particular neighbor has
seems secondary or is indirectly known by the focal agent.
However, this assumption is incorrect. The focal Agent i can
know whether her neighbor, Agent j , has a lower or greater
fraction of cooperators than pth

C by evaluating whether the
following inequality is true:

πi j
si

� rpth
C − si . (4)
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Either π
i j

C or π
i j

D is observable by Agent i, and pth
C is

disclosed to every agent.
Following the disconnection, the agent creates a new link

with another agent; however, the new link is never the same as
any existing link. Thus, we assume a random connection.

C. Simulation procedure

Each simulation runs as follows. Initially, an equal percent-
age of strategies is randomly distributed to the players allocated
on different vertices of the network, as previously described.
Several simulation time-step generations are run until the
frequency of cooperation arrives at quasiequilibrium. If the co-
operation frequency continues to fluctuate, we obtain the
average frequency of cooperation for the last 250 generations
over a 10 000-generation run. We vary r to control dilemma
strength. The result shown below is drawn from 100 runs;
that is, each ensemble average is drawn from 100 simulation
episodes. We assume N = 4900 and 〈k〉 = 8 (meaning 〈G〉 = 9
for PGG). N = 4900 is confirmed as sufficiently large to yield
simulation results insensitive to system size.

III. RESULTS AND DISCUSSION

Figure 1 depicts correlation of dilemma weakness with
(a) cooperation fraction, (b) maximum degree, (c) assorta-
tive coefficient, (d) maximum degree of cooperators, and
(e) maximum degree of defectors. Each panel depicts the
ensemble average with standard deviation among 100 runs.
Figure 2 compares the cooperation fraction by the proposed
coevolution model [i.e., Fig. 1(a)] with that by the conventional
(monoevolution) model, considering only strategy adaptation
among agents playing a PGG (hereafter, monoevolution).
Figure 2 also depicts the comparison between coevolution and
monoevolution results when agents play a 2 × 2 D&R game
instead of PGG. To ensure the validity of the comparison
between the PGG and D&R games, we normalize dilemma
weakness by taking r/G instead of r in Fig. 2.

Figure 1 indicates that the present model encourages evolv-
ing assortative and heterogeneous topology in its coevolution-
ary process. Specifically, when we compare the coevolution
model currently presented (red closed circle) with monoevo-
lution (blue open square) in Fig. 2, we observe that coevolution
exhibits cooperation slightly inferior to monoevolution for the
stronger dilemma region (gray dotted line) despite much better
cooperation for the weaker dilemma region. We discuss the
point in greater detail later in this section.

Figure 3 indicates the evolutionary processes when co-
operators successfully survive to the game’s end. Figure 3
depicts ensemble-averaged time evolution only when agents
can attain cooperative coexisting equilibrium with r = 5.0,
which is on the border between the cooperative phase and
the all-defectors phase, as Fig. 1(a) depicts. This gap in
the cooperation fraction happens in a discontinuous manner,
because all evolutionary trails are attracted by either the all-
defectors equilibrium for r � 4.5 or the almost all-cooperators
equilibrium for r � 5.5. For r = 5.0 (we took �r = 0.5 in
our simulations), though, roughly 30% of trails are attracted
by the almost all-cooperators state while the remaining 70%

FIG. 1. (Color online) Relations of dilemma weakness r with
(a) cooperation fraction, (b) maximum degree, (c) assortative coeffi-
cient, (d) maximum degree of cooperators, and (e) maximum degree
of defectors. Sigma means standard deviation.
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FIG. 2. (Color online) Comparison of cooperation fractions by
the proposed coevolution model for PGG [red closed circle, same
as Fig. 1(a)]; the monoevolution model for PGG (blue open square);
and coevolution (gray bold line) and monoevolution (black bold line)
models for a 2 × 2 D&R game.

are attracted by the all-defectors state. Figure 3 depicts the
average time evolution of those 30% of trails’ cooperation
fraction, assortative coefficient, and cooperation fractions of
neighbors to cooperators and defectors (a), and the maximum
degree among all agents and average degrees of cooperators
and defectors (b).

Initially, the cooperation fraction rapidly decreases from
0.5 because neighboring defectors rapidly invade cooperators
originally randomly allocated on an E-R random network.
If the trail’s equilibrium would not be attracted by the all-
defectors state, some cooperators must survive during this
initial ordeal by preventing assault from the surrounding defec-
tors. In fact, a certain number of cooperative clusters survive, in
which the cooperators are heavily connected to each other. The
rapid increase in the average degree of cooperators and slower
decrease in the cooperation fraction of cooperators’ neighbors
than that of defectors’ neighbors before the minimum point
of global cooperation fraction demonstrates this behavior
(dotted-line box in Fig. 3). This situation is followed by the
rapid increase in assortativity, global cooperation fraction, and
global maximum degree, as well as the slightly decreasing
defectors’ average degree (broken-line box in Fig. 3) after
the relatively invariant period of 20 time steps. This fact
suggests that the surviving cooperative clusters composed of
heavily connected cooperators belonging to the same clusters

are linked to each other during the relatively invariant period,
and then those liaised cooperative clusters gradually change
the surrounding defectors to cooperators. Defectors directly
neighboring the cooperative clusters become cooperators.
Furthermore, by the network dynamics, hub cooperators
in cooperative clusters connect with relatively high-degree
defectors, and convert those defectors into cooperators through
strategy adaptation. This behavior triggers quick conversion of
lower-degree defectors underlying those high-degree defectors
to cooperators. To this end, a hub cooperator connects to
another hub cooperator, which raises assortativity and the
global maximum degree as well as the global cooperation
fraction, and produces cooperative equilibrium. This phe-
nomenon might crucially explain why our model achieves
assortativity in emerging heterogeneous networks, in contrast
to all coevolutionary models presented in previous studies
where emerging networks exhibit disassortativity instead of
heterogeneity. As the evolutionary trails depicted in Fig. 3
suggest, existence of the surviving cooperative clusters with
dense mutual relations triggers assortativity. Those cooperative
clusters bias the assortative coefficient positively because all
cooperators belonging to a cluster have relatively high degree.
The assortative coefficient also increases as a result of the
process in which hub defectors convert to cooperators when
they interact with high-degree cooperators belonging to the
initial dense cooperative clusters.

Figure 4 depicts one of the representative degree distribu-
tions of cooperative trails at the 100th time steps, which is
almost the same as the distribution at the equilibrium of this
particular episode. Obviously, the coevolution process drives
heterogeneous topology.

Note that the PGG coevolution model allows evolving
cooperation despite causing assortative topology. This study
marks this feature’s first observation in ordinal coevolution
models.

Let us return to Fig. 2. As noted, for a stronger dilemma
region, the PGG coevolution model depicts inferior coop-
eration compared to the monoevolution model, although
the coevolution model results are superior to those of
the monoevolution model for a weaker dilemma region.
Interestingly, Fig. 2 confirms that the coevolution model
for a 2 × 2 D&R, which is a G = 2 PGG, results in
network reciprocity superior to the monoevolution model
for all dilemma regions. Thus, we can state that, unlike a

FIG. 3. (Color online) Ensemble time evolution episode only when agents can attain cooperative coexisting equilibrium when r = 5.0:
(a) cooperation fraction, assortative coefficient, and cooperation fractions of neighbors to cooperators and defectors; and (b) maximum degree
among all agents and average degrees of cooperators and defectors.
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FIG. 4. (Color online) Degree distribution at time step = 100
of one of the episodes, which attain cooperative coexisting phase
(showing ensemble average time evolution). Cooperation fraction
Pc, assortative coefficient Ac, average cluster coefficient 〈C〉, average
path length 〈L〉, maximum degree kmax, and average degree of
cooperators and defectors 〈kC〉, 〈kD〉 at time step = 100 are
shown. The broken line represents the initial distribution (Poisson
distribution), the bold line represents the distribution of all agents, and
the red and blue plots represent those of defectors and cooperators,
respectively.

2 × 2 game, coevolution, where agent behavior changes the
network as well as the strategy, does not always enhance
cooperation as compared to monoevolution when assuming
PGG.

Figure 5 schematically explains this phenomenon. This
example depicts both network adaptations for 2 × 2 D&R and
PGG around the cooperative focal agent with four neighbors,
three cooperators, and one defector. Here, the focal cooperator
occupies the boundary of the cooperative cluster encountering
the defector. Let us assume that the global cooperative fraction
Pc is low because of a strong dilemma. For a 2 × 2 D&R, this
focal cooperator severs the link with the defective neighbor,
and randomly reconnects with a cooperator. As long as Pc is not
too small (say, not almost zero), the possibility of connecting
with a cooperator is not too small (which is an order of Pc

according to mean field approximation). Thus, in a 2 × 2 D&R,
she successfully improves her total payoff by these network
dynamics (network adaptation process). Alternatively, we
can say that the cooperative cluster can expand by dint of
network adaptation. However, in a PGG, it deteriorates, as
Fig. 5(b) reveals, by the following chain of causation. The focal
cooperator (Agent i) severs the link with the defector (Agent j )
that has the lowest percentage of cooperative game participants
among that of focal cooperator i’s other neighbors. In fact, this
percentage is not as low as the global cooperative fraction Pc,
although it is less than pth

C . Thus, the focal cooperator i finds
it difficult to establish a new link with either a cooperator or
defector who has a higher percentage of cooperative game
participants than that of Agent j , from whom she has just
defected to play. To this end, she may build a new link,
as Fig. 5(b) depicts, with a new neighbor who has a high
percentage of defective neighbors, even though this new agent
herself acts as a cooperator. Unless the focal cooperator i

adapts her network by the above-mentioned process, she must
change her strategy by copying defection from defector j . In
short, in a PGG, the cooperative cluster can be corroded by
coevolution in a strong dilemma environment. In summary,

FIG. 5. (Color online) Schematic of what happens in respective
coevolutionary processes for a 2 × 2 D&R and PGG to explain why
coevolution destroys cooperation in a stronger dilemma situation.
In a 2 × 2 D&R (a), network adaptation may improve the focal
agent’s payoff by rewiring a cooperator. In a PGG (b), the situation
seems more complicated. The maximum cooperator among the Agent
i’s neighbor and Agent i herself is Agent k. Hence, 24

5 r − 5 <
14
5 r ⇔ r < 5

2 is valid, Agent j becomes “maximum”. Under a strong
dilemma, the focal i copies D from the defective neighbor j who gains
maximum payoff among i’s neighbors and i when focal i updates
her strategy. Thus, when focal i updates her links with neighbors,
the link with j is severed even if the cooperative fraction among the
participants of the game j hosts is not as low as the global cooperative
fraction. In addition, focal i encounters difficulty in establishing a new
link with an appropriate agent who has relatively denser cooperative
neighbors than does agent j . Consequently, focal i builds a new link
with the inappropriate agent who herself is a cooperator but has a
high percentage of defective neighbors.

when assuming a multiplayer game as an interaction model
instead of a two-player game, the cooperation fraction of
the focal player’s secondary neighbors inevitably affects her
total payoff, which implies greater entanglement or deeper
interdependence among agents’ influences on social efficiency
in multiplayer games. This model may explain the phenomena
in human social networks.

IV. CONCLUSIONS

To explain why a human network prefers an assortative
topology for building a cooperative society, which differs from
the explanations offered by 2 × 2 game models, we establish a
coevolutionary model based on a multiplayer situation PGG.
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The simulation results reveal that the coevolutionary model
encourages cooperation through establishing assortative net-
works. However, unlike a 2 × 2 game, the coevolutionary PGG
model does not always enhance cooperation as compared
to monoevolution, where only strategy adaptation occurs.
That is, assuming a PGG, under relatively strong dilemma
situations, coevolution causes inferior cooperation compared
to monoevolution. This occurs because the focal agent’s
secondary as well as direct neighbors influence coevolution
in a PGG.

One implication drawn from the present study’s findings is
that the human social network interactions might be simulated
in a multiplayer game, where, unlike in a 2 × 2 game,

secondary as well as immediate neighbors influence the focal
agent’s payoff. We can thus state that human interactions are
not as simple as pairwise relationships, but actually more
entangled and interdependent.
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