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We study a class of random walk, the stored-energy-driven Lévy flight (SEDLF), whose jump length is
determined by a stored energy during a trapped state. The SEDLF is a continuous-time random walk with jump
lengths being coupled with the trapping times. It is analytically shown that the ensemble-averaged mean-square
displacements exhibit subdiffusion as well as superdiffusion, depending on the coupling parameter. We find
that time-averaged mean-square displacements increase linearly with time and the diffusion coefficients are
intrinsically random, a manifestation of distributional ergodicity. The diffusion coefficient shows aging in
subdiffusive regime, whereas it increases with the measurement time in superdiffusive regime.
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I. INTRODUCTION

Single-particle tracking experiments in biological systems
often show that diffusion is not normal but rather anomalous
[1–6]; that is, the mean-square displacement (MSD) does not
grow linearly with time but follows a power-law scaling〈

x2
t

〉 ∝ tβ (β �= 1). (1)

Because anomalous diffusions including subdiffusion (β < 1)
as well as superdiffusion (β > 1) are ubiquitously observed in
many biological experiments, anomalous diffusion is believed
to play significant roles in cell biology such as gene regulation
[7] and active transports [1,6]. However, the underlying
physical mechanisms remain controversial.

To understand the underlying mechanisms of these anoma-
lous diffusions, phenomenological models such as continuous-
time random walk (CTRW), Lévy walk and flight, and other
stochastic models of anomalous diffusion have been inten-
sively studied [5,8–13]. Among these models, CTRW shows a
prominent feature called distributional ergodicity [10–12,14];
that is, the time average of an observable converges to a
random variable, i.e., convergence in distribution, but it does
not coincide with the ensemble average as in the ordinary sense
of ergodicity. It is considered that this distributional behavior
of time-averaged observables in CTRW is related to large
fluctuations of transport coefficients in single-particle tracking
experiments [2–5]. It is known that such distributional behavior
is universal in infinite ergodic theory [15,16], where ergodicity
is satisfied with respect to an infinite (non-normalizable)
invariant measure. This feature differs completely from other
stochastic models of subdiffusion.

While uncoupled CTRWs, in which trapping time and jump
length are mutually independent, are extensively studied, ef-
fects of a coupling between them become physically important
for nonthermal systems such as cells [1,6]. In such nonthermal
systems, a particle in a trapped state would not be simply
frozen, but rather it would be storing a sort of energy for the
next jump. Thus, a random walk driven by stored energy during
a trapped state is essential in such nonthermal systems, and it
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will also be important in complex systems such as finance [17]
and earthquakes [18].

As a prototype model of such nonthermal random walks,
we study a CTRW with jump lengths correlated with trapping
times [19–21], which we refer to as the stored-energy-driven
Lévy flight (SEDLF). The SEDLF exhibits a whole spectrum
of diffusion: sub-, normal, and superdiffusion, depending on
a parameter γ , which characterizes the coupling strength
between jump length and trapping time. Here, we show a novel
type of distributional ergodicity. In particular, time-averaged
observables such as the time-averaged MSDs (TAMSDs) are
intrinsically random, even when the measurement time goes
to infinity.

II. MODEL

The SEDLF is based on CTRW with a nonseparable joint
probability of trapping time and jump length. In general,
CTRW is defined through the joint probability density function
(PDF) ψ(x,t), where ψ(x,t)dxdt is the probability that a
random walker jumps with length [x,x + dx) just after it is
trapped for period [t,t + dt) since its previous jump [22,23]. In
particular, the separable case ψ(x,t) = w(t)l(x), in which the
jump length and the trapping time are mutually independent,
has been extensively studied [8,10–12,24]. Here, we consider
a nonseparable case defined by

ψ(x,t) = w(t)
δ(x − tγ ) + δ(x + tγ )

2
, (2)

where w(t) is the PDF of trapping times and γ ∈ [0,1] is a
coupling strength. Note that a random walker undergoes a
long trapped state before it performs a long jump (Fig. 1). In
addition, we assume that the PDF of trapping times follows a
power law,

w(t) � c0

t1+α
, (3)

as t → ∞. Here, α ∈ (0,1) is the stable index, a constant c0 is
defined by c0 = c/|�(−α)| with a scale factor c.

For γ = 0, the SEDLF is just a separable CTRW with
jumps only to the nearest-neighbor sites. On the other hand, for
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FIG. 1. (Color online) A trajectory of SEDLF (α = 0.7 and γ =
0.9). A big jump occurs when a random walker is trapped for a long
time.

γ > 0, the PDF of jump follows a power law,

l(x) =
∫ ∞

0
ψ(x,t)dt = |x| 1

γ
−1

2γ
w

(|x| 1
γ

) � c0

2γ

1

|x|1+α/γ
. (4)

Thus, the mean jump length diverges for γ � α.
Note that the Lévy flight also has a power-law distribution

of jump length, which causes a divergence in the MSD. By
contrast, the MSD of the SEDLF is finite with the aid of the
coupling between jump lengths and trapping times as shown
below. This property makes the SEDLF a physically more
coherent model than Lévy flight.

III. THEORY

Generalized master equations for CTRWs obtained in
Ref. [22] can be utilized for our model. In general, the spacial
distribution P (x,t) of CTRWs with initial distribution P0(x)
at time zero satisfies the following equations:

P (x,t) =
∫ t

0
dt ′�(t − t ′)Q(x,t ′) + �0(t)P0(x), (5)

Q(x,t) =
∫ ∞

−∞
dx ′

∫ t

0
dt ′ψ(x ′,t ′)Q(x − x ′,t − t ′)

+
∫ ∞

−∞
dx ′ψ0(x ′,t)P0(x − x ′), (6)

where Q(x,t)dtdx is the probability of a random walker
reaching an interval [x,x + dx) just in a period [t,t + dt),
�(t) is the probability of being trapped for longer than time t ,

�(t) = 1 −
∫ ∞

−∞
dx ′

∫ t

0
ψ(x ′,t ′)dt ′ = 1 −

∫ t

0
w(t ′)dt ′, (7)

ψ0(x,t) is the joint PDF for the first jump, and �0(t) is
the probability that the first jump does not occur until time
t . Fourier-Laplace transform with respect to space and time

(x → k and t → s, respectively), defined by

P̂ (k,s) ≡
∫ ∞

−∞
dx

∫ ∞

0
dtP (x,t)eikxe−st , (8)

gives

P̂ (k,s) = P̂0(k)

1 − ψ̂(k,s)

1 − ŵ0(s) + ϕ̂0(k,s)

s
, (9)

where ϕ̂0(k,s) = [1 − ŵ(s)]ψ̂0(k,s) − [1 − ŵ0(s)]ψ̂(k,s).
In the case of the SEDLF, we obtain ψ̂(k,s) from Eq. (2) as

follows:

ψ̂(k,s) =
∫ ∞

0
e−st cos(ktγ )w(t)dt. (10)

Note that ψ̂(0,s) = ŵ(s), and the asymptotic behavior of the
Laplace transform of w(t) [Eq. (3)] is given by

1 − ŵ(s) � csα (s → 0). (11)

We assume that the initial distribution P0(x) is the δ function,
P0(x) = δ(x), and w(t) = w0(t) (ordinary renewal process
[25]). As a result, we have the following generalized master
equation in the Fourier and Laplace space:

P̂ (k,s) = 1

s

1 − ŵ(s)

1 − ψ̂(k,s)
, (12)

where ψ̂(k,s) and ŵ(s) are given by Eqs. (10) and (11).
Here, we derive the asymptotic behavior of the moments

of position xt for t → ∞ using the Fourier-Laplace transform
P̂ (k,s). The Laplace transform of 〈xt 〉, denoted by 〈xs〉, is
given by

〈xs〉 = −i
∂P̂ (k,s)

∂k

∣∣∣∣
k=0

= 0, (13)

which means there is no drift, 〈xt 〉 = 0. Similarly, the Laplace
transform of the second moment, i.e., the ensemble-averaged
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FIG. 2. (Color online) Ensemble-averaged mean square displace-
ments (α = 0.5). Symbols are the results of numerical simulations for
different γ with theoretical lines. There are no fitting parameters
in the theoretical lines. We set the PDF of the trapping time as
w(t) = αt−1−α (t � 1) in all the numerical simulations. Thus, the
jump length PDF is given by l(x) = α/2γ |x|1+α/γ from Eq. (4), and
〈l2〉 = α/(α − 2γ ) for 2γ < α.
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FIG. 3. (Color online) Probability density functions of a scaled position Xt = xt/
√〈x2

t 〉 (α = 0.25,0.5 and 0.75). PDF P (Xt ) converges to
a non-trivial PDF as t → ∞. (a), (d), and (g) the PDFs P (Xt ) converge to symmetric Mittag-Leffler distributions (γ = 0.1). For 2γ > α, the
PDFs P (Xt ) converge to different distributions depending on α as well as γ . The PDF w(t) used in the numerical simulation is the same as
that in Fig. 2.

MSD (EAMSD), is given by

〈
x2

s

〉 = −∂2P̂ (k,s)

∂k2

∣∣∣∣
k=0

= −1

s

ψ̂ ′′(0,s)

1 − ŵ(s)
. (14)

Using the asymptotic behavior at s → 0, we have

〈
x2

s

〉 �

⎧⎪⎪⎨
⎪⎪⎩

�(2γ−α)
|�(−α)|

1
s1+2γ , (2γ > α)

1
|�(−α)|sα+1 log

(
1
s

)
, (2γ = α)

〈t2γ 〉
csα+1 . (2γ < α)

(15)

The inverse Laplace transform for t → ∞ reads

〈
x2

t

〉 �

⎧⎪⎪⎨
⎪⎪⎩

�(2γ−α)
|�(−α)|�(1+2γ ) t

2γ , (2γ > α)
1

|�(−α)|�(1+α) t
α log t, (2γ = α)

〈l2〉
c�(1+α) t

α, (2γ < α)

(16)

where we used 〈t2γ 〉 = 〈l2〉 = ∫ ∞
−∞ x2l(x)dx. Figure 2 shows

the EAMSD for α = 0.5. Theory (16) is in excellent agreement
with numerical simulations.

It is also possible to derive higher-order moments in
the following way. By Eq. (12), we have the relation,
P̂ (k,s) = P̂ (k,s)ψ̂(k,s) + C, where C does not depend on
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FIG. 4. (Color online) Time-averaged mean square displacements (α = 0.5 and t = 106). TAMSDs for eight different realizations are
drawn in (a), (b), and (c) for γ = 0.1,0.6 and γ = 0.8, respectively. Linear scalings are shown by the solid lines for reference. The PDF w(t)
used in the numerical simulation is the same as that in Fig. 2.

k. Differentiating both sides n times with respect to k, we have

P̂ (n)(k,s) = 1

1 − ψ̂(k,s)

n−1∑
l=0

nClP̂
(l)(k,s)ψ̂ (n−l)(k,s). (17)

From Eq. (10), we have ψ̂ (2n+1)(0,s) = 0. Accordingly, we
obtain P̂ (2n+1)(0,s) = 0 and

P̂ (2n)(0,s) = 1

1 − ŵ(s)

n−1∑
l=0

2nC2l P̂
(2l)(0,s)ψ̂ (2n−2l)(0,s) (18)

by induction. Thus, 〈x2n+1
t 〉 = 0 and the leading order for the

Laplace transform of 〈x2n
t 〉 is given by

〈
x2n

s

〉 �
⎧⎨
⎩

Mn(α,γ )
s1+2nγ , (2γ > α)

(2n)!{−ψ̂ ′′(0,s)}n
2ns[1−ŵ(s)]n , (2γ � α)

(19)

where Mn(α,γ ) is given by a recursion relation Mn(α,γ ) =∑n
l=1 2nC2lMn−l(α,γ )�(2lγ − α)/|�(−α)|. The above
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FIG. 5. (Color online) Relative standard deviation of Dt as a
function of γ (α = 0.25,0.5, and 0.75). Symbols are results of
numerical simulations. We calculate Dt by δ2(�; t)/� in numerical
simulations with � = 103. Solid lines are theoretical curves (30).
The PDF w(t) used in the numerical simulation is the same as that in
Fig. 2.

equations (19) can be confirmed by Eq. (18) and mathematical
induction. Therefore, the asymptotic behavior for s → 0 is
given by

〈
x2n

s

〉 �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Mn(α,γ )
s1+2nγ , (2γ > α)

(2n)!{log( 1
s )}n

2n|�(−α)|nsnα+1 , (2γ = α)

(2n)!〈t2γ 〉n
(2c)nsnα+1 , (2γ < α)

(20)

and the inverse Laplace transform for t → ∞ reads

〈
x2n

t

〉 �

⎧⎪⎪⎨
⎪⎪⎩

Mn(α,γ )
�(1+2nγ ) t

2nγ , (2γ > α)
(2n)!

2n|�(−α)|n�(1+nα) t
nα{log t}n, (2γ = α)

(2n)!〈l2〉n
(2c)n�(1+nα) t

nα. (2γ < α)

(21)

It follows that the distribution of a scaled position xt/
√

〈x2
t 〉

converges to a time-independent nontrivial distribution. In
other words, xt/

√
〈x2

t 〉 converges in distribution to Xα,γ as
t → ∞, where

〈eikXα,γ 〉 =
⎧⎨
⎩

∑∞
n=0

(ik)2nMn(α,γ )�(1+2γ )n

(2n)!M1(α,γ )n�(1+2nγ ) , (2γ > α)∑∞
n=0

(ik)2n�(1+α)n

2n�(1+nα) . (2γ � α)
(22)

We note that the distribution of the random variable Xα,γ for
2γ � α is called a symmetric Mittag-Leffler distribution of
order α/2 [26,27]. Figure 3 shows the PDFs of Xα,γ for γ =
0.1,0.6, and 0.8 (α = 0.25, 0.5, and 0.75). For 2γ < α, the
PDFs converge to the symmetric Mittag-Leffler distribution,
which does not depend on γ . However, the PDFs differ from
the symmetric Mittag-Leffler distribution and depend crucially
on γ when 2γ > α.

IV. DISTRIBUTIONAL ERGODICITY OF
TIME-AVERAGED MEAN-SQUARE DISPLACEMENT

Here, we investigate ergodic properties of time-averaged
MSD (TAMSD), defined by

δ2(�; t) ≡ 1

t − �

∫ t−�

0
[x(t ′ + �) − x(t ′)]2dt ′. (23)
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FIG. 6. (Color online) Histograms of the normalized diffusion coefficients D ≡ Dt/〈Dt 〉 for different γ = 0.1, 0.4, 0.6, and 0.8 (α = 0.25
and 0.75). Dt is calculated in the same way as in Fig. 5. The solid curves represent the Mittag-Leffler distribution. The PDF w(t) used in the
numerical simulation is the same as that in Fig. 2.

It has been known that TAMSD can be represented using
the total number of jumps [12,27], i.e., Nt , and hk = �l2

k +
2
∑k−1

m=1 lklmθ (� − tk + tm),

δ2(�; t) � 1

t

Nt∑
k=0

hk (t → ∞), (24)

where lk is the kth jump, tk is the time kth jump occurs, and
θ (t) is a step function, defined by θ (t) = 0 for t < 0 and t

otherwise.
One can show that

∑Nt

k=0(hk − �l2
k )/

∑Nt

k=0 l2
k → 0 as

t → ∞ (see Appendix). It follows

δ2(�; t) � Dt� (� � t and t → ∞), (25)

where Dt = ∑Nt

k=0 l2
k /t . As shown in Fig. 4, TAMSDs increase

linearly with time � (normal diffusion), while the diffusion
coefficients show large fluctuations.

Now we derive the PDF P2(z,t) of Zt ≡ ∑Nt

k=0 l2
k . We note

that l2
k and Nt are mutually correlated because both of them

depend on the kth trapping time, and, thus, we cannot apply the
method used in previous studies [12,27]. Instead, we use the

fact that Zt obeys a directed SEDLF with the joint probability

ψ2(z,t) = w(t)δ(z − t2γ ). (26)

Therefore, in the same way as Eq. (12), we obtain

P̂2(k,s) = 1

s

1 − ŵ(s)

1 − ψ̂2(k,s)
, (27)

with ψ̂2(k,s) = ∫ ∞
0 e−st eikt2γ

w(t)dt. Thus, the calculations of
the moments Zt are almost parallel with the case of xt . For
example, we obtain the mean diffusion coefficient, 〈Dt 〉 =
〈Zt 〉/t , as follows:

〈Dt 〉 �

⎧⎪⎪⎨
⎪⎪⎩

�(2γ−α)
|�(−α)|�(1+2γ ) t

2γ−1, (2γ > α)
1

|�(−α)|�(1+α) t
α−1 log t, (2γ = α)

〈l2〉
c�(1+α) t

α−1, (2γ < α)

(28)

for t → ∞. For 2γ > 1, the diffusion coefficient enhances,
otherwise it shows aging. This enhancement of diffu-
sion coefficients completely differs from separable CTRWs
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[10,11,14,27] and correlated CTRWs [28], both of which show
only aging.

Furthermore, the second moment of Dt is given by

〈
D2

t

〉 �

⎧⎪⎪⎨
⎪⎪⎩

�(4γ−α)|�(−α)|+2�(2γ−α)2

�(4γ+1)|�(−α)|2 t4γ−2, (2γ > α)
2

�(2α+1)|�(−α)| (t
α log t)2, (2γ = α)

2〈l2〉2

c2�(2α+1) t
2(α−1). (2γ < α)

(29)

It follows that the relative standard deviation (RSD) of Dt ,
σEB ≡

√
〈D2

t 〉 − 〈Dt 〉2/〈Dt 〉, which is an ergodicity breaking
parameter [11,12,14,29,30], remains constant as t → ∞,

σEB �
⎧⎨
⎩

√[
�(4γ−α)|�(−α)|

�(2γ−α)2 + 2
]
�(2γ ) − 1, (2γ > α)

√
2�(α) − 1, (2γ � α)

(30)

where �(x) ≡ �(x + 1)2/�(2x + 1). As shown in Fig. 5, the
RSDs of Dt depend on γ , and they differ from that in CTRW
when 2γ > α. Moreover, when 2γ = 1, distributional behav-
ior of diffusion coefficients of TAMSDs appears intrinsically,
whereas the EAMSD is normal.

In a way similar to the calculation for xt , we can obtain all
the higher moments of Dt . In particular, for 2α < γ ,

〈
Dn

t

〉 � n!〈l2〉n
cn�(n + α)

tn(α−1). (31)

Therefore, the distribution of the scaled diffusion coefficient
D ≡ Dt/〈Dt 〉 converges to the Mittag-Leffler distribution, i.e.,
the Laplace transform of the random variable D is given by

〈ezD〉 =
∞∑

n=0

�(1 + α)nzn

�(1 + nα)
. (32)

Moreover, for 2γ > α, the distribution of D also converges
to a time-independent nontrivial distribution as t → ∞,
indicating that the scaled diffusion coefficient converges to
a random variable (i.e., distributional ergodicity). PDFs of the
normalized diffusion coefficient D for different parameters
are shown in Fig. 6 by numerical simulations. PDFs depend
crucially on the coupling parameter γ for 2γ > α. We note that
the PDF for 2γ < α is exactly the same as the Mittag-Leffler
distribution of order α.

V. CONCLUSION

In conclusion, we have shown subdiffusion as well as
superdiffusion in the SEDLF using Laplace analysis. By
numerical simulations, we have presented the asymptotic

behaviors of the PDFs of the normalized positions in the
SEDLF. This model (SEDLF) removes unphysical situations
in Lévy flight such that the EAMSD always diverges. In the
SEDLF, we have shown that TAMSDs increase linearly with
time and the diffusion coefficients converge in distribution
(distributional ergodicity).

Distributions of the diffusion coefficients depends not only
on the exponent α of the trapping-time distribution but also
on the coupling exponent γ for 2γ > α and, thus, differ from
those in separable CTRWs [11] as well as random walks with
static disorder [14]. Especially, in superdiffusive regime (γ >

0.5), the mean diffusion coefficient enhances according to the
increase of the measurement time.

APPENDIX: DERIVATION OF EQ. (25)

Here, we derive Eq. (25). For γ ∈ (0,α/2), because of
〈l2

k 〉 < ∞, both terms

1

n

n∑
k=1

�l2
k and

2

n

n∑
k=1

k−1∑
m=1

lklmθ (� − tk + tm) (A1)

converge to their ensemble averages as n → ∞ thanks to the
law of large numbers. Moreover, the first term is dominant
over the second because the ensemble average of the second
term is 0 from 〈lk〉 = 0. Thus, we obtain the approximation
given by Eq. (25).

For γ ∈ (α/2,α), the first term diverges as n → ∞ because
of 〈l2

k 〉 = ∞, while the second term remains finite. Thus, in
this case, too, the first term is dominant and Eq. (25) is valid.

For γ ∈ (α,1), both terms diverge, but still the same
approximation holds. From the generalized limit theorem for
stable distributions [23], the first term scales as ∼ n2γ /α−1,
because a random variable y = l2

k is distributed according to
PDF f (y) ∼ 1/y1+α/2γ . On the other hand, the second term
scales as � nγ/α−1 because

n∑
k=1

k−1∑
m=1

|lklmθ (� − tk + tm)| < �2
n∑

k=1

|lk| � �2nγ/α,

where we used the generalized central limit theorem
again for the scaling of

∑
m |lm| (note that |lm| follows

the PDF p(l) ∼ 1/l1+α/γ ). We also used the facts that
τk + · · · + τm+1 � � if θ (� − tk + tm) > 0, where τk ≡ tk −
tk−1. Thus,

∑k−1
m=1 |lm|θ (� − tk + tm) = ∑k−1

m=1 τ
γ
mθ (� − tk +

tm) < �2. Finally, the ratio of the second term against the first
goes to zero, i.e., nγ/α−1/n2γ /α−1 = n−γ /α → 0 as n → ∞.
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