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Expansion in Lorentzian functions of spectra of quantum autocorrelations
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We show that in a quantum mechanical many-body system of Boltzmann particles having space inversion
symmetry the spectrum of the autocorrelation function of a local observable can always be given, similarly to
the classical case [Phys. Rev. E 85, 022102 (2012)], in terms of a series of Lorentzian functions multiplied by
the proper quantum detailed balance factor. This is done by transforming the continued fraction representation,
which is derived via recurrent relations and without the use of the generalized Langevin equation hierarchy,
into a series expansion. In this way characteristic frequencies can be defined, also in quantum mechanics, which
refer to the particular autocorrelation. These are the frequencies of the eigenmodes of the relaxation function
connected to the observable. We also show that in practical cases of interest in experimental spectroscopy, and
particularly in inelastic neutron and x-ray scattering, the use of a finite number of Lorentzian shapes for an
approximate description of the data is related to a reduction of the number of the relevant dynamical variables
taken into account, equivalent to the lowering of the dimensionality of the orthogonalized space onto which
the dynamic of the system is projected. Examples of application are given for the spectrum of the velocity
autocorrelation function of liquid parahydrogen, calculated with a quantum simulation algorithm (path-integral
centroid molecular dynamics), and for the molecular center-of mass dynamic structure factor in liquid carbon
dioxide as computed by means of classical molecular dynamics simulation.
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I. INTRODUCTION

The time dependence of correlation functions is of primary
interest for the discussion of the dynamical properties of many-
particle systems, together with the complementary frequency
dependences of the respective spectra, which usually are
directly connected to experimental results. A large number
of spectroscopic methods are based on the use, as a probe, of
an external field weakly coupled to the system under study,
so that only the linear dependence of the response to the
perturbation is of interest. This fact gives the possibility of
studying the properties of the unperturbed system itself. The
use of photons, neutrons, charged particles, and phonons as
spectroscopic probes in a very broad range of energies is now
very common in order to study various types of dynamical
behavior in solids, liquids, and gases.

The most general framework in which the theory of the
linear response to an external perturbation has been developed
for both classical and quantum many-body systems was set
up in fundamental papers by Kubo, Mori, and Zwanzig [1–5].
Applications of this theory have been discussed in a number
of review papers [6–8] and books [9–11], particularly for the
study of properties of fluids and other disordered systems.

The generalized Langevin equation (GLE) is derived by
Mori and Zwanzig (MZ) [1,2,5] as the equation governing
the behavior of correlation functions of observables of the
system. The introduction of the concepts of fluctuating forces
and memory functions leads to a hierarchy of GLE equations,
which is formally solved via Laplace transformations to
give, as a final result, the well-known continued fraction
representation of spectra of correlation functions.

This representation, however, is rather formal and not easily
endowed with physical meaning as far as higher-order memory
functions are involved, leading to a difficult interpretation of
the GLE hierarchy. The lack of knowledge about the precise

time dependence to be assigned to memory functions and
the difficulty of interpreting the truncation of the continued
fraction have led sometimes to improper applications of the
MZ method.

An alternative approach to the dynamics of many-body
systems was developed some time ago by Lee [12–14]. This
method is based on a projection procedure in a Hilbert space
which does not require the introduction of memory functions
and provides a clearer connection to physical properties via the
derivation of particular recurrence relations, though leading to
the continued-fraction representation of spectra similar to what
is obtained in MZ theory. The correspondence of the MZ and
Lee approaches has been pointed out, for example, in Ref. [15].
We note, however, that in Lee’s works the method of recurrence
relations is only applied to the case of Hermitian operators,
leading to correlation functions which naturally possess the
time inversion symmetry, and therefore is less general than the
MZ theory, which does not have any restriction.

In a recent paper [16] we have exploited the Lee approach to
the description of the dynamics of classical systems, showing
that it leads to a very general formulation where correlation
functions display an exponential functionality (EF). More
precisely, it was shown that the time-dependent autocorrelation
function of a dynamical variable can be written as an infinite
sum of (complex) exponential functions, which play the role
of eigenmodes of the dynamical property under consideration,
and that in practical cases this is approximated by retaining
a small number of modes. In full analogy, the frequency
spectrum of the given correlation function is shown to have a
Lorentzian functionality (LF).

Here, we generalize the above results to the case of a
quantum-mechanical many-body system of Boltzmann par-
ticles. For the very broad class of autocorrelation functions of
the spatial Fourier components of local operators in a system
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with space inversion symmetry, we show that the spectra can
be written as products of the detailed balance factor times
a spectral function which possesses an LF, corresponding to
the existence of a set of characteristic frequencies which in
the following we refer to as eigenfrequencies of the given
autocorrelation. This result is obtained by exploiting the
connection between the autocorrelation function of a variable
and the corresponding relaxation function, as defined by Kubo
in the context of linear response theory [4]. In fact, we show
that an EF and an LF can be given for the relaxation functions
in time and frequency domain, respectively, and the same holds
for the whole hierarchy of memory functions.

Approximations for the frequency dependence of spectra
and the time behavior of the relaxation functions can be
directly related to the contraction of the dimensionality of the
assumed Hilbert space in which the dynamics of the system is
represented. This gives to possible practical approximations of
the LF of the spectra a precise meaning which provides a guide
for physical interpretations better founded than assuming an ad
hoc time dependence of the memory function at an arbitrarily
chosen truncation level.

A few years ago we reviewed [17] the theoretical models
most commonly employed as spectral functions to be fitted
to the experimental or simulated dynamic structure factor
S(k,ω) for the analysis of spectra of density fluctuations in
classical fluids. All the models there considered are based on
a common scheme that assumes for the second-order memory
function a time dependence in the form of a combination
of a δ function and/or exponential terms. We showed that
this assumption implies spectra composed of a number of
Lorentzian lines, which varies according to the chosen model,
i.e., to the type of truncation of the continued fraction, although
this general property has often gone unnoticed in most of the
literature on the subject. Thus, our previous work [16] and the
present one also provide a rigorous theoretical justification for
the use of such fit models. Moreover, although the models
considered in Ref. [17] referred to classical systems, the
present work demonstrates that essentially the same approach
can be extended to quantum systems if an analogous modeling
is applied to the spectrum of the relaxation function.

A large number of published works report on analyses of
spectra of correlation functions relevant to fluids dynamics,
and in some of them the observation of an LF is explicitly
made [18–20]. Here, as examples of spectra which can be
represented by a finite number of Lorentzian shapes, we
present the cases of the velocity autocorrelation function of
liquid parahydrogen [21] and of the center-of-mass dynamic
structure factor of the molecular liquid CO2, representing the
collective translational dynamics [22]. The first example refers
to a system displaying a non-negligible quantum behavior,
while the second pertains to an essentially classical case.

In Sec. II we recall the general theory for the Lee derivation
of the EF behavior of an inner product in a Hilbert space, which
is valid for any properly defined time-dependent inner product
possessing the time inversion symmetry property, but is applied
here to the specific case in which the inner product is identified
with a Kubo transform. In Sec. III we report definitions and
symmetry properties of correlation functions and their spectra
relevant for our discussion. Section IV is devoted to applying
our findings to the time autocorrelation of the spatial Fourier

components of local operators in many-body systems. In
Sec. V we briefly discuss the two abovementioned examples of
how the concepts exposed in this paper apply to the analysis of
spectral data, while the conclusions are summarized in Sec. VI.

II. GENERAL THEORY

Let us consider an N -body system at thermodynamic
equilibrium with total Hamiltonian H and denote by A the
operator which represents the property under consideration,
while A† is its adjoint.

The time evolution of both A and A† is governed by the
Liouville equation

d

dt
A(t) = iLA(t), (1)

where L = (1/h̄)[H, . . .] and [. . . , . . .] denotes the commuta-
tor. A formal solution for Eq. (1) can be given in an exponential
operator form and as a series expansion, i.e.,

A(t) = exp(iLt)A =
∞∑

ν=0

(tν/ν!)A(ν), (2)

where A(ν) = (iL)νA = [dνA(t)/dtν]t=0 and A(0) ≡ A, and
similarly for A†(t).

The study of the time behavior of the observables of the
N -body system, and in particular of A, can be carried out with
reference to an appropriate autocorrelation function defined
in a Hilbert space S, where Eq. (1) is a linear transformation
which determines the time evolution of any operator in S. This
study requires for two operators A and B of the system the
assumption of a specific form for their inner product (A,B),
and consequently the normalization and the metric of the space.

Here we define the inner product as the Kubo transform

(A,B) ≡
∫ β

0
dμ〈Ae−μH B†eμH 〉

=
∫ β

0
dμTr(Ae−μH B†eμHρ0), (3)

where 〈· · · 〉 = Tr(· · · ρ0) denotes a quantum mechanical av-
erage at thermodynamic equilibrium performed by means of
the statistical operator ρ0 = exp(−βH ) with β = 1/(kBT ),
where kB is the Boltzmann constant and T is the temperature.
For convenience, for now on we assume that 〈A〉 = 〈B〉 = 0,
which is always possible if one looks at the fluctuations of the
variables of the system. The correlation given in Eq. (3) is the
relaxation function, which is introduced in the linear response
theory [4], as discussed in Sec. III.

By definition of inner product, (A,A(t)) = (A,A(−t))∗.
Here, however, we consider only the particular case, even
though relevant for our purposes, in which the inner product is
actually symmetric under time reversal, that is, (A,A(t)) =
(A,A(−t)), which implies the reality of (A,A(t)). This
property is true, for example, when the operator A is Hermitian,
as can be easily demonstrated and is assumed in Ref. [12].
However, this is not a necessary condition and in Sec. IV we
consider a specific non-Hermitian case.

The solution (2) gives A(t) in terms of the complete set
{A(ν)} of S, which is not orthogonal. Once an inner product
is defined in S, the Gram-Schmidt process (GS) permits,
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however, construction of an orthogonal set {fν} starting
from {A(ν)}. Since in the process one of the {fν} can be
chosen arbitrarily, we make the choice f0 = A. Following
the procedure of construction of the set {fν} and using the
symmetry under time reversal of (A,A(t)) it is easy to show
that a differential recurrent relation holds for the {fν} [12], i.e.,

fν+1 = ḟν + �νfν−1, (4)

which is valid for all ν � 0 with the definition f−1 ≡ 0.
Here, ḟν = iLfν and �ν = (fν,fν)/(fν−1,fν−1), with �0 ≡ 1.
Equation (4) can be used to successively derive at all orders
the explicit expression of

fν = fν(A,A(1),A(2), . . . ,A(ν); �1,�2, . . . ,�ν−1). (5)

We can now rewrite A(t) in terms of the orthogonal set {fν}
as

A(t) =
∞∑

ν=0

a∗
ν (t)fν, (6)

where aν(t) = (fν,A(t))/(fν,fν) and in particular a0(t) =
(A,A(t))/(A,A), with aν(0) = δν0 and aν(t) −→ 0 for t −→
∞. Moreover, from the definition property of the inner
product for the complex conjugate of aν(t), we have a∗

ν (t) =
(A(t),fν)/(fν,fν).

The substitution of Eq. (6) into the Liouville equation (1)
and the use of the recurrence relation (4) permits us to derive a
differential recurrence relation also for the correlations aν(t),
which are the coefficients of the expansion (6), i.e.,

aν−1(t) = ȧν + �ν+1aν+1(t), (7)

with ȧν = daν(t)/dt and a−1 ≡ 0. Denoting with a tilde the
Laplace transform of a function of time, such as ãν(z) =
L[aν(t)], the transformation of Eq. (7) gives

1 = zã0(z) + �1ã1(z), (8a)

ãν−1(z) = zãν(z) + �ν+1ãν+1(z), (8b)

for ν � 1, which can be rewritten in the form

K̃ν(z) = �ν[z + K̃ν+1(z)]−1, (9)

with K̃0(z) = ã0(z) and K̃ν(z) = �ν[ãν(z)/ãν−1(z)] for ν � 1.
The Laplace antitransformation of Eq. (9) into the time

domain gives

K̇ν(t) +
∫ t

0
dt ′Kν+1(t − t ′)Kν(t ′) = 0, (10)

with Kν(0) = �ν . This is the hierarchy of GLE equations
identifying {Kν(t)} as the set of quantum-mechanical memory
functions of a0(t) = K0(t). The GLE hierarchy is here derived
as a direct consequence of the Liouville equation via the pro-
jection in the manifold {fν} and the recurrent relation (7). Mori
and Zwanzig have demonstrated that {Kν(t)} are correlation
functions of variables of the many-body system, which can
be properly defined and denoted as “fluctuating forces” [2,5].
In particular it can be shown that these “forces” are directly
related to the {fν} [13].

Moreover, from Eq. (10) we see that when K0(t) is an even
function of time, so are all the {Kν(t)}, while from Eq. (7) the
{aν(t)} have the same parity as the index ν.

From the definition of K̃ν(z) for ν � 1 we also have

aν(t) = 1/�ν

∫ t

0
dt ′Kν(t − t ′)aν−1(t ′)

=
(

ν∏
i=1

1

�i

)∫ t

0
dtν

∫ tν

0
dtν−1 . . .

∫ t2

0
dt1

×Kν(t − tν)Kν−1(tν − tν−1) . . . K1(t2 − t1)a0(t1),

(11)

indicating that the {aν(t)} components of A(t) for ν � 1 in
the manifold {fν} are successively generated starting from
a0(t1) for t > tν > tν−1 > · · · > t2 > t1 > 0 via convolutions
with the memory functions Kλ(t − tλ), 1 � λ � ν. In other
words, since the norm ‖A(t)‖ = (A(t),A(t))/(A,A) = 1, the
dynamics of the vector A(t) in the Hilbert space S is a
rotation which successively in time acquires components aν (t),
which are driven by a memory function correlation with the
previous one aν−1(t ′) for t > t ′. These considerations clarify
that Eq. (6) is a possible way of building up A(t) in S starting
from its autocorrelation at t = 0 and then summing, in a
sequential process, correlations of A(t) itself with increasing-
order derivatives at t = 0, which are brought in particular
combinations up to A(ν) by the fν .

The hierarchy (9) can be combined to give the continued
fraction representation of ã0(z) and K̃ν(z), which is also the
result of the MZ theory, i.e.,

K̃ν(z) = �ν

z + �ν+1

z + �ν+2

z + · · ·

. (12)

Here we also see that K̃ν(z) is defined with respect to the
subspace Sν ⊂ S, which is also a Hilbert space, spanned, how-
ever, by fν , fν+1,. . ., f∞. Both �ν and K̃ν(0) = ∫ ∞

0 dtKν(t)
are positive quantities.

The continued fractions (12) can be expressed as ratios of
polynomials in z as it follows, since the first ν terms constitute
the νth convergent [12,23], that

K̃ν(z) = lim
λ→∞

�ν

det D(λ,ν+1)(z)

det D(λ,ν)(z)
, (13)

where D(λ,ν)(z) is a (λ − ν)-dimensional tridiagonal symmetric
matrix whose elements are D(λ,ν)

αα = z, D
(λ,ν)
αβ = i�

1/2
α+νδα,β−1,

where 1 � α < β � λ − ν.
If we denote by {z(λ,ν)

j } = {z(λ,ν)
1 ,z

(λ,ν)
2 , . . . ,z

(λ,ν)
λ−ν } the set

of zeros of the polynomial det D(λ,ν)(z), which can be derived
explicitly by diagonalizing the matrix D(λ,ν)(z) itself, expres-
sions (13) can also be written as

K̃0(z) = ã0(z) = lim
λ→∞

λ∑
j=1

I
(λ,0)
j

z − z
(λ,0)
j

, (14a)

K̃ν(z) = lim
λ→∞

λ−ν∑
j=1

I
(λ,ν)
j

z − z
(λ,ν)
j

, (14b)
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where the residues I
(λ,ν)
j are

I
(λ,ν)
j = lim

z→z
(λ,ν)
j

(
z − z

(λ,ν)
j

)
Kν(z). (15)

From Eqs. (14), by Laplace antitransformation we can now
write

a0(t) = (A,A(t))
(A,A)

=
∞∑

j=1

I
(0)
j exp

(
z

(0)
j |t |), (16a)

Kν(t) =
∞∑

j=1

I
(ν)
j exp

(
z

(ν)
j |t |), (16b)

with Rez(ν)
j < 0, where we have also dropped the superscript

λ having taken the limit to infinity. Here I
(ν)
j and z

(ν)
j appear as

amplitudes and characteristic frequencies of a normal-mode
representation of a0(t) and Kν(t) and may be in general either
real or pairs of complex conjugate values in agreement with
our assumption of reality of these functions. We indicate
expression (16a) as the EF solutions of the dynamics of the
many-body system.

Moreover, it can be shown from the GS construction of the
fν and the definition of the {�ν} = {�1,�2, . . . ,�ν}, all the
three sets {�ν}, {I (0)

j }, and {z(0)
j } may be expressed in terms

of the normalized spectral moments {〈ω(ν)〉} = {ω(ν)/ω(0)}.
In particular, from Eq. (16a) and the relationship between
the normalized moments and the zero-time derivatives of the
correlation function, we see that {I (0)

j } and {z(0)
j } satisfy a set

of relations of the form
∞∑

j=1

I
(0)
j

(
z

(0)
j

)k = ik〈ωk〉 (17)

for 0 < k < ∞. Similar considerations can also be given for
all the memory functions Kν(t) of Eq. (16b).

The expansion (16a) of the quantum mechanical relaxation
function (normalized to its initial-time value) a0(t) of the
variable A is given in terms of an infinite set of exponential
functions and is a general form for the solution of the GLE (10),
which appears as a reorganization of, and an alternative to, the
usual power expansion

a0(t) =
∞∑

n=0

in〈ωn〉
n!

tn. (18)

The expressions (16a) and (18) of the time behavior of
the correlation function a0(t) are both exact but in some
sense complementary to each other since, when taken in an
approximated form with partial summation, Eq. (18) is useful
in describing the behavior at short times, while Eq. (16a) is
useful at longer times. In fact, approximations of (18) mean to
retain a few power terms, while to approximate Eq. (16a)
means to retain a few exponential functions, which is the
same as truncating the continued fraction (12) at a convenient
low level. Obviously both approximations violate, at some
level, the physical request that all frequency moments of
(A,A(t)) must be determined and finite, limiting the number
of relations (17) that can be practically used.

From the previous considerations it is clear that the general
result given in Eqs. (14a) and (16a) can be derived, in the

present framework, without introducing the GLE and the
concept of memory function. We have, however, rederived the
GLE and introduced here the definition of memory functions
in order to match the theoretical derivations conventionally
adopted following the MZ approach. Once the concept of
memory function is introduced, Eq. (16b) shows that an EF
can also be given for the {Kν(t)} for any value of ν.

III. SYMMETRY PROPERTIES OF AUTOCORRELATIONS
AND SPECTRA

In order to apply the results of Sec. II to time autocorrelation
functions relevant to the study of many-body quantum mechan-
ical systems, we need to consider their symmetry properties
and those of the related spectra. For this, we refer to and
recall a few basic results of the linear response theory [4,6,24],
assuming that we are interested in the time evolution of the
autocorrelation of a variable A, expressed as

fAA† (t) = 〈AA†(t)〉. (19)

We consider a system in which initially (t = −∞) is in
thermodynamic equilibrium, for which a small perturbation
H1 = −Aξ (t) is added adiabatically to the equilibrium Hamil-
tonian H . The effect of the perturbation is to produce an
explicit time dependence of the average value of the variable
associated to the operator A†, given by

A†(t) =
∫ t

−∞
dt ′

i

h̄
φA†A(t − t ′)ξ (t ′), (20)

where we used the previous assumption that 〈A†〉 = 0 and
where

φA†A(t) = 〈[A†(t),A]〉 = fA†A(−t) − fAA†(t). (21)

For convenience, we use in the following φA†A(t) instead
of the exact linear response function defined in the literature
as (i/h̄)φA†A(t).

For our purposes, as will become clear later, a more
interesting function is the Kubo relaxation function

RA†A(t) =
∫ β

0
dμ〈Ae−μH A†(t)eμH 〉, (22)

which is related to the response function through

RA†A(t) = i

h̄

∫ ∞

t

dt ′φA†A(t ′) (23)

and describes the time behavior of the relaxation of the system.
In fact, the change in A†(t) after that the perturbation ξ (t) is
switched off at t = 0 is, from Eq. (20)

A†(t) =
∫ ∞

t

dt ′
i

h̄
φA†A(t ′)ξ (t − t ′), (24)

showing that RA†A(t) is a property of the system independent
of the form of the perturbation, which in particular closely
resembles the evolution of A†(t) after the switching off of a
static perturbation.

From the general property of the autocorrelation (19)

fAA† (−t) = f ∗
AA† (t) (25)

and Eq. (21) it follows that

φA†A(−t) = φ∗
A†A(t), (26)

062133-4



EXPANSION IN LORENTZIAN FUNCTIONS OF SPECTRA . . . PHYSICAL REVIEW E 87, 062133 (2013)

while from the definition (22) one also has

RA†A(−t) = R∗
A†A(t). (27)

Moreover, it is easy to show that

fAA† (−t) = fA†A(t + ih̄β), (28)

φA†A(−t) = −φAA†(t), (29)

and

RA†A(−t) = RAA†(t). (30)

The latter two equations display the opposite behavior of
φA†A(t) and RA†A(t) with respect to the time inversion under
exchange of the involved operators, in agreement with (23) or
with its equivalent

i

h̄
φA†A(t) = −dRA†A

dt
(t). (31)

Let us now discuss the properties of the power spectrum of
the various correlation functions defined above. If we denote
by F̂ (ω) the Fourier transform of a generic function of time
F (t) we have

F̂ (ω) = 1

2π

∫ +∞

−∞
dt exp(−iωt)F (t)

= 1

2π
L[F (t),z = iω] + 1

2π
L[F (−t),z = −iω],

(32)

but if F (−t) = F ∗(t) the last term equals (1/2π )L[F ∗(t),z =
−iω] so that

F̂ (ω) = 1

π
ReF̃ (iω) (33)

and the spectrum F̂ (ω) is real. Equations (25)–(27) show that
the above condition is satisfied by all the correlation functions
of interest here.

Under Fourier transformation the relationships (28)–(30)
translate into

f̂AA†(−ω) = exp(−βh̄ω)f̂A†A(ω), (34)

φ̂A†A(−ω) = −φ̂AA†(ω), (35)

and

R̂A†A(−ω) = R̂AA†(ω), (36)

while from Eq. (31) the spectra of RA†A(t) and φA†A(t) are
related by

φ̂A†A(ω) = −h̄ωR̂A†A(ω). (37)

Using Eqs. (21), (34), and (37) we finally find

f̂AA† (ω) = −[1 + n(ω)]φ̂A†A(ω)

= h̄ω[1 + n(ω)]R̂A†A(ω) (38)

with 1 + n(ω) = [1 − exp(−βh̄ω)]−1, where n(ω) is the oc-
cupation number in the Bose-Einstein statistics.

It is seen that the spectra f̂AA† (ω), R̂A†A(ω), φ̂A†A(ω) are all
related to one another by means of simple expressions and the
knowledge of one is sufficient to know all of them. They also
possess simple symmetry relations with respect to ω inversion
and operator exchange.

The key formula in this section is Eq. (30), because we have
used the Kubo relaxation function for the definition of the inner
product (3) in order to demonstrate the LF of spectra from
the continued fraction representation. However, we already
noted that the Lee method requires the inner product to be an
even function of time. Equation (30) evidently satisfies this
condition when A is a Hermitian operator, but in the next
section we show that the same is also true for correlations
of large interest in spectroscopic techniques, in which non-
Hermitian operators are involved.

IV. HERMITIAN LOCAL OPERATORS

Let us now consider the relevant particular case of a
Hermitian operator A(r) representing a local variable and
therefore explicitly depending on the coordinate r of a generic
point in the N -body system. We write

A(r) =
N∑


=1

A
δ(r − R
), (39)

where R
 is the position operator of the 
th particle while A


is the operator corresponding to the one-particle dynamical
variable. The spatial Fourier components of A(r),

Ak =
N∑


=1

A
 exp(ik · R
), (40)

are not Hermitian and, in fact, Ak = A
†
−k.

We are interested in the space-time autocorrelation of A(r)
defined in general as 〈A(r)A(r′,t)〉. However, it is customary
to remove the dependence on the choice of the space origin by
integrating on the whole space, and consider the quantity

fAA(r,t) =
〈

1

N

∫
dr′A(r′ − r)A(r′,t)

〉
, (41)

where now r denotes the distance between the two points.
With A
 = 1 this is, for example, the standard definition of the
pair correlation function G(r,t) introduced by van Hove [25]
in order to describe the dynamics of the autocorrelation of
density fluctuations. It can be easily shown [24] that

fAA(r,t) = 1

(2π )3

∫
dkF

A
†
kAk

(k,t) exp(−ik · r), (42)

where we have introduced the so-called intermediate correla-
tion function

F
A

†
kAk

(k,t) = 1

N
〈A†

kAk(t)〉. (43)

We now apply the results of previous sections to the time
autocorrelation (43) and to its spectrum

f̂
A

†
kAk

(k,ω) = N

2π

∫ +∞

−∞
dt exp(−iωt)F

A
†
kAk

(k,t), (44)

which is the space and time Fourier transform of fAA(r,t).
Equations (34) and (38) prescribe that

f̂
A

†
kAk

(k,ω) = exp(−βh̄ω)f̂
AkA

†
k
(k,ω)

= h̄ω[1 + n(ω)]R̂
AkA

†
k
(k,ω). (45)
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If the system possesses space inversion symmetry, namely,
fAA(r,t) = fAA(−r,t), it is immediately found from Eq. (42)
that all the time correlations of the Ak are symmetric with
respect to the k inversion, which amounts to interchange the
subscripts Ak and A

†
k. Then

R
A

†
kAk

(k,t) = R
AkA

†
k
(k,t). (46)

Since from Eq. (30) we also have R
A

†
kAk

(k,t) = R
AkA

†
k
(k,−t),

we find

R
A

†
kAk

(k,t) = R
A

†
kAk

(k,−t). (47)

Together with Eq. (27), this shows that R
A

†
kAk

(k,t) is a real,
even function of time and, correspondingly, its spectrum obeys

R̂
A

†
kAk

(k,ω) = R̂
A

†
kAk

(k,−ω), (48)

i.e., it is an even function of ω.
Equations (47) or (48) ensure the applicability of the results

of Sec. II for the development of the LF representation of
f̂

A
†
kAk

(k,ω) through the one relative to R̂
A

†
kAk

(k,ω). We start
by writing R

A
†
kAk

(k,t) and its Laplace transform using Eq. (16)
as

R
A

†
kAk

(k,t) = R
A

†
kAk

(k,0)
∞∑

j=1

I
(R)
j (k) exp

(
z

(R)
j (k)|t |), (49)

R̃
A

†
kAk

(k,z) = R
A

†
kAk

(k,0)
∞∑

j=1

I
(R)
j (k)

z − z
(R)
j (k)

, (50)

where I
(R)
j (k) and z

(R)
j (k), similarly to the general case

(16), are functions of the reduced moments {〈ων(k)〉} of
R̂

A
†
kAk

(k,ω) and may only be either real or pairs of complex
conjugate values because in this case we are dealing with a
relaxation function which is real and symmetric under time
reversal. I

(R)
j (k) and z

(R)
j (k) appear as the amplitudes and the

eigenfrequencies, respectively, of a normal mode representa-
tion of R

A
†
kAk

(k,t), with Rez(R)
j (k) < 0 since R

A
†
kAk

(k,t) → 0
for t → ∞.

Expression (49) is a solution of the dynamical equation for
R

A
†
kAk

(k,t) given in terms of an expansion with respect to a set
of exponential functions, and also in this case is alternative to
the usual expansion in powers of the time

R
A

†
kAk

(k,t)

R
A

†
kAk

(k,0)
= (Ak,Ak(t))

(Ak,Ak)
=

∞∑
j=0

t j

j !
〈ωj (k)〉, (51)

where ij 〈ωj (k)〉 = (Ak,A
(j )
k )/(Ak,Ak), while the parity of

R
A

†
kAk

(k,t) implies that 〈ωj (k)〉 = 0 for all odd j .

The spectrum R̂
A

†
kAk

(k,ω) assumes the LF form [26]:

R̂
A

†
kAk

(k,ω) = 1

π
R

A
†
kAk

(k,0)Re
[
R̃

A
†
kAk

(k,iω)
]

= 1

π
R

A
†
kAk

(k,0)

[∑
r

−Ir (k)zr (k)

z2
r (k) + ω2

+
∑

c

(−I ′
c(k)z′

c(k) + I ′′
c (ω − z′′

c (k))

(z′
c(k))2 + (ω − z′′

c (k))2 + −I ′
c(k)z′

c(k) − I ′′
c (ω + z′′

c (k))

(z′
c(k))2 + (ω + z′′

c (k))2

)]
, (52)

where we have dropped the superscript (R) and where r labels the real {zj (k),Ij (k)}, while c refers to pairs of complex conjugate
{zj (k),Ij (k)} with mode frequencies zc(k) = z′

c(k) ± iz′′
c (k) and respective amplitudes Ic(k) = I ′

c(k) ± iI ′′
c (k).

The final expression in LF form of the spectrum of the autocorrelation function is then

f̂
A

†
kAk

(k,ω) = 1

π
h̄ω[1 + n(ω)]R

A
†
kAk

(k,0)

[∑
r

−Ir (k)zr (k)

z2
r (k) + ω2

+
∑

c

(−I ′
c(k)z′

c(k) + I ′′
c (ω − z′′

c (k))

(z′
c(k))2 + (ω − z′′

c (k))2 + −I ′
c(k)z′

c(k) − I ′′
c (ω + z′′

c (k))

(z′
c(k))2 + (ω + z′′

c (k))2

)]
. (53)

In full analogy with the results (47) and (48), one also
obtains that φ

A
†
kAk

(k,t) is an imaginary and odd function of

time, while φ̂
A

†
kAk

(k,ω) is a real and odd function of frequency.
Using Eq. (31) it is then possible to write φ

A
†
kAk

(k,t) in the form

φ
A

†
kAk

(k,t) = ih̄ sgn(t)R
A

†
kAk

(k,0)

×
∞∑

j=1

I
(R)
j (k)z(R)

j (k) exp
(
z

(R)
j (k)|t |), (54)

where sgn(t) = t/|t | accounts for the odd time parity property
of φ

A
†
kAk

(k,t). Also, using Eq. (37), the spectrum of the

response function φ̂
A

†
kAk

(k,ω) is immediately obtained from

Eq. (52) in terms of the same set of eigenfrequencies which
characterize the time or frequency behavior of the relaxation
function.

V. APPLICATIONS

We now consider two cases of practical application of the
results of the general theory to spectra of many-body correla-
tion functions in fluids, showing that they can be represented
with Lorentzian functions. In both cases, the relevant quantities
are not directly accessible with spectroscopic techniques.
Therefore, we analyze spectra obtained by molecular dynamics
simulations, which usually present the further advantage of
being calculated in broad frequency ranges. However, the
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FIG. 1. (Color online) Spectrum of the relaxation function of the velocity autocorrelation function of liquid parahydrogen computed from
PICMD simulation [21] (thick black curve) and best fits (red [gray] dots) obtained with the sum of 2, 6, and 10 Lorentzian lines in panels
(a)–(c) respectively. In panels (b) and (c), besides the total fit, the contributions to the total of the most intense pairs of Lorentzian lines are also
shown by the solid (green online), dashed (blue online), and dash-dotted (magenta online) curves.

compatibility of simulations with available experimental data
has been demonstrated [21,22] as a preliminary, mandatory
task to be carried out before confidently resorting to simulated
data.

A. The velocity autocorrelation function of liquid hydrogen

The normalized velocity autocorrelation function is defined
as

fvv(t) = 〈v(0) · v(t)〉
〈v(0) · v(0)〉 , (55)

where v(t) is the Hermitian operator representing the velocity
of a single particle at time t and the dot denotes the scalar
product. When quantum-mechanical properties are relevant it
is convenient to refer to the normalized velocity relaxation
function Rvv(t)

Rvv(t) =
∫ β

0 dμ〈ve−μH · v(t)eμH 〉∫ β

0 dμ〈ve−μH · v(0)eμH 〉
. (56)

Much work has been devoted in recent years to the
development of algorithms for the simulation of the dynamics
of quantum mechanical fluids of Boltzmann particles. We
use here the results obtained recently from the application
of the path-integral centroid molecular dynamics (PICMD)
technique to the case of liquid parahydrogen [21], and we
analyze the spectrum R̂vv(ω) by fitting to the data the sum of
an increasing number of Lorentzian lines. It turns out that the
quality of the fit significantly improves when new lines are
added in pairs, corresponding to the introduction of pairs of
complex conjugate frequencies z

(R)
j , and we have used 2, 4, 6,

8, and 10 lines.
The results are shown in Fig. 1 for the cases of 2, 6, and 10

lines. The contributions of the most intense pairs are shown
together with the total fitted spectrum, which can hardly be
distinguished from the data in the second fit and shows a perfect
agreement in the third one. The dramatic improvement of the
fit quality with increasing the number of complex Lorentzian
lines is evident in Fig. 2, which shows an exponential
reduction of sum of squares of residuals �2 = ∑

i(Si − Si,fit)2,
where Si and Si,fit are the simulated and fitted spectral
intensities, respectively, and the index i runs over the data
points.

B. The dynamic structure factor of liquid CO2

The dynamic structure factor of a monatomic fluid is the
spectrum (44) of the autocorrelation function (43) of the local
operator Ak given by Eq. (40) when A
 = 1, thus

S(k,ω) = 1

2π

∫ +∞

−∞
dt exp(−iωt)

×
〈

1

N

N∑

,
′=1

exp(−ik · R
)exp(ik · R
′(t))

〉
. (57)

(In order to comply with the standard notation we do not put
a hat over the symbol S.) In the case of a molecular fluid,
being interested in the translational dynamics, we identify
the position R
 as that of the center of mass of the 
th
molecule, as discussed in Ref. [22] where a neutron scattering
experimental validation of molecular dynamics simulations
of liquid carbon dioxide allowed for a detailed analysis of
the partial carbon-carbon dynamic structure factor. CO2 can
be considered as a classical fluid, so that the expansion in
Lorentzian functions can be applied directly to the structure
factor, which for a homogeneous and isotropic fluid depends
only on the magnitude k of the wave vector k.

In Ref. [22] it was shown that the spectrum is well described
if the continued fraction is truncated at the level of the
second-order memory function and a viscoelastic modeling

Δ2    
[a

rb
. u

ni
ts

] 

number of modes 
0 2 4 6 8 10 12

10-2

10-1

100

FIG. 2. Values of the sum of squares of residuals in the fit of sum
of Lorentzian lines to the data shown in Fig. 1, as a function of the
number of lines, arbitrarily normalized to the value obtained with two
Lorentzians.
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FIG. 3. (Color online) Left panels: simulated center-of-mass S(k,ω) of liquid CO2 (dots) and best fits obtained with the four-line viscoelastic
model (solid [red online] curve through the data points) and the three-line generalized-hydrodynamics model (dashes [blue online]). Only the
peak region is displayed. Central panels: for the viscoelastic fit only, the total curve (black solid curve) is shown together with the separate
contributions of each central Lorentzian line (thin solid [magenta online] curves) and of the pair of inelastic sound modes (dashes [blue online]).
Right panels: The low-intensity parts of the plots in the central frames are magnified for a clearer display of the inelastic mode contributions.
The upper panels refer to k = 6 nm−1, and the lower panels refer to k = 9 nm−1.

for the latter is assumed, which is known to give rise to a
four-Lorentzian spectrum [17]. In the whole k range, with the
exception of an interval around the position of the main peak
of the static structure factor S(k), two of the four lines are
characterized by complex eigenfrequencies and correspond to
the excitation of acoustic modes. Here we compare the result
of such a viscoelastic fit with the one based on the simpler
function provided by the generalization of the well-known
three-line hydrodynamic lineshape, where only one central
Lorentzian is added to the pair of inelastic lines describing the
acoustic modes.

Figure 3 shows, for two values of k, how the four-Lorentzian
approximation reveals itself superior, mainly in the description
of the shape of the quasielastic central peak. For the two values
of k considered in the figure, the reduced χ2 of the fit is smaller
by factors of 5.5 and 1.8, respectively, than that obtained with
the generalized-hydrodynamics fit model. It is worth noting
that the same result was obtained in the analysis of liquid
CD4 as well [19]. The two central components and the sum
of the two inelastic lines of the viscoelastic spectrum are also
displayed in Fig. 3.

As already recalled in Sec. I, this kind of analysis has been
carried out on a large variety of experimental datasets obtained
from neutron and x-ray inelastic scattering studies on fluids
by modeling the second-order memory function in various
ways, which can all be shown to lead to a spectrum composed
of a sum of an appropriate number of Lorentzian lines [17],
although in many cases this universal property of the line
shapes was not recognized.

VI. CONCLUSIONS

We have here applied the recurrent relation approach to the
solution of the dynamical problem in a many-body quantum
mechanical system of Boltzmann particles at thermodynamic
equilibrium. We have demonstrated the following:

(a) The relaxation function of a single operator defined by
the Kubo transform can be written in terms of an infinite sum
of exponential functions when either the operator is Hermitian
or it is the spatial Fourier component of a local variable in a
system with space inversion symmetry. As a consequence, the
spectum of the relaxation function can be given as an infinite
sum of Lorentzian functions.

(b) The previous results lead to the possibility of defining
eigenfrequencies in a normal-mode representation of the re-
laxation function. These are the complex frequencies emerging
from the diagonalization procedure of the continued-fraction
Laplace transform of the relaxation itself.

(c) Exploiting directly the relation between the spectrum of
the relaxation function and that of the autocorrelation function
of a dynamical variable, we also give an LF for the latter, which
is the quantity usually connected to experimental results and
also properly takes into account the detailed balance property.

(d) Similar to the classical case, also in the general quantum
case the solution of the dynamical problem in terms of the EF
of the relaxation function as well as the LF representation
of its spectrum does not require the introduction of the GLE
hierarchy and the concept of memory function, although these
may be useful in some cases.
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(e) In practical cases, experimental or calculated spectra of
autocorrelations must be approximated with a finite number of
Lorentzian functions, and the related relaxation function must
be approximated with a finite number of exponential functions.
This amounts to performing a “long-time” representation
which will not be able to account in detail for all the
higher-order time derivatives at t = 0, corresponding to the
impossibility of having finite values for the higher-order
frequency moments of the spectrum.

(f) From a practical point of view, the few-mode approxi-
mation is equivalent to the truncation of the continued fraction
at an appropriate level. However, it is directly linked to the con-
cept of retaining an appropriate number of normal modes in the
description of the correlation which is not evident at all in the
continued fraction alone. This truncation can be carried out by
exploiting the Markovian approximation to model the memory
function at the corresponding level as a δ function of time.

(g) The few-mode approximation, as well as the truncation
of the continued fraction at a given level ν0, has the same
effect as the contraction of the general Hilbert space S down
to ν0 dimensions. This is equivalent to considering for the
reconstruction of a0(t) only the manifold {f1,f2, . . . ,fν0},
corresponding to the well-defined physical fact of taking into
account, in the time evolution of a0(t), only correlations of
A(t) with A(ν) up to ν = ν0.

What we call here eigenmodes of the correlation functions
or of the respective spectra reflect the existence of many

(in theory, infinite) decay channels for the correlation under
consideration. These may differ to a great extent depending on
the dynamical variable of which one takes the autocorrelation,
the system, and its macroscopic state. For example, physical
intuition suggests that the eigenmodes of correlation functions
related to single-particle dynamics in fluids may clearly differ
in meaning and behavior when passing from a dilute gas to
a dense liquid, reflecting the difference between situations
dominated, respectively, either by free streaming or by slow
diffusion hindered by oscillatory motions related to cage
effects, as in the case considered. The results of the theory
presented in this paper are very general in nature and, as such,
we do not expect them to have a prescriptive character in
detail.

The two examples reported in this work illustrate the
general properties summarized here. While the analysis of
collective dynamics spectra is traditionally performed by
means of fit models that can be reduced to application of the
LF property, the interpretation of the velocity autocorrelation
spectrum in terms of Lorentzian lines has not been presented
so far in the literature.

ACKNOWLEDGMENT

We are grateful to Martin Neumann for providing the
simulation data of the velocity autocorrelation spectrum of
liquid hydrogen.

[1] R. Zwanzig, in Lectures in Theoretical Physics, edited by W. E.
Brittin (Interscience, New York, 1961).

[2] H. Mori, Prog. Theor. Phys. 33, 423 (1965); 34, 399 (1965).
[3] R. Zwanzig, Annu. Rev. Phys. Chem. 16, 67 (1965).
[4] R. Kubo, Rep. Prog. Phys. 29, 255 (1966).
[5] S. Nordholm and R. Zwanzig, J. Stat. Phys. 13, 347 (1975).
[6] W. Marshall and R. Lowde, Rep. Prog. Phys. 31, 706 (1968).
[7] B. J. Berne, Adv. Chem. Phys. 17, 63 (1970).
[8] U. Balucani, M. H. Lee, and V. Tognetti, Phys. Rep. 373, 409

(2003).
[9] J. P. Boon and S. Yip, Molecular Hydrodynamics (McGraw-Hill,

New York, 1980).
[10] J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, 2nd

ed. (Academic Press, London, 1986).
[11] U. Balucani and M. Zoppi, Dynamics of the Liquid State

(Clarendon, Oxford, 1994).
[12] M. H. Lee, Phys. Rev. B 26, 2547 (1982).
[13] M. H. Lee, Phys. Rev. Lett. 49, 1072 (1982).
[14] M. H. Lee, Phys. Rev. E 62, 1769 (2000).
[15] I. Sawada, Phys. A (Amsterdam, Neth.) 315, 14 (2002).
[16] F. Barocchi, U. Bafile, and M. Sampoli, Phys. Rev. E 85, 022102

(2012).
[17] U. Bafile, E. Guarini, and F. Barocchi, Phys. Rev. E 73, 061203

(2006).

[18] M. Sampoli, U. Bafile, F. Barocchi, E. Guarini, and G. Venturi,
J. Phys.: Condens. Matter 20, 104206 (2008).

[19] U. Bafile, E. Guarini, M. Sampoli, and F. Barocchi, Phys. Rev.
E 80, 040201(R) (2009).

[20] F. Demmel and C. Morkel, Phys. Rev. E 85, 051204 (2012);
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